求函数值域常见的五种方法
求函数值域的常用方法

解:∵ ,
∴ 的图像如图所示,
由图像知:函数 的值域为
例1求函数 的值域
解: 设
例2求函数Байду номын сангаас的值域。
解:由 = ,令 ,
因为 , ,则 = ,
于是 , ,
,所以 。
三、分离常数法
分子、分母是一次函数 的有理函数,可用分离常数法,将原函数化为 ,值域为
例1求函数 的值域
解:∵ ,∵ ,∴ ,
∴函数 的值域为
例2求函数 的值域
四、反解法
利用函数的定义域与值域的关系,通过将原函数变形,反解出x或者与x有关的式子,再根据原函数的定义域求出原函数的值域。
例1求函数 的值域。
解:令 ,则
(1)当 时, ,当且仅当t=1,即 时取等号,所以 (2)当t=0时,y=0,综上所述,函数的值域为:
例2已知函数f(x)= ,x∈[1,+∞ ,当a= 时,求函数f(x)的值域
例3求函数的值域:
解:
当且仅当 时,即 时等号成立,
,所以元函数的值域为 .
例4求函数 的值域.
解: ;ⅰ)当 时, , ,此时 ,等号成立,当且仅当 .ⅱ)当 时, , ,此时有
,
等号成立,当且仅当 .综上,原函数的值域为: .
八、数型结合法
函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。
例4求函数 的值域
例5求函数 的值域
五、判别式法
对形如 ( 、 不同时为零)的函数的值域,通常转化成关于x的二次方程,由于方程有实根,即 从而求得y的范围,即值域。注意:主要适用于定义在R上的分式函数,需要注意检验二次项系数为零时,方程是否有解,若无解或是函数无意义,都应从值域中去掉该值。
求函数值域的几种方法

求函数值域的几种方法函数是中学数学的重要的基本概念之一,它与代数式、方程、不等式、三角函数、微积分等内容有着密切的联系,应用十分广泛。
函数的基础性强、概念多,其中函数的定义域、值域、奇偶性等是难点之一,是高考的常见的题型。
下面就函数的值域的求法,举例说如下。
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数的值的值域。
≥0,故。
∴函数的值域为y≥3点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数12xyx+=+的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数12xyx+=+的反函数为:121yxy-=-,其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数21(x-1)3(12)21(2)xxx x-+≤⎧⎪-≤≤⎨⎪->⎩的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由22x x -++≥0,可知函数的定义域为x ∈[-1,2]。
此时22x x -++=-21()2x -+94∈[0,94]∴≤32,函数的值域是[0, 32] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种)一、 观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例:求函数()x 323y -+=的值域。
点拨:根据算术平方根的性质,先求出()x 3-2的值域。
解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。
点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。
练习:求函数()5x 0x y ≤≤=的值域。
(答案:{}5,4,3,2,1,0)二、反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例:求函数2x 1x y ++=的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数2x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数x-x -xx 10101010y ++=的值域。
(答案:{}1y 1-y |y 或)。
三、配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。
例:求函数()2x x-y 2++=的值域。
点拨:将被开方数配方成平方数,利用二次函数的值求。
解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。
此时2x x -2++=4921-x -2+⎪⎭⎫ ⎝⎛()232x x-02≤++≤∴,即原函数的值域为⎭⎬⎫⎩⎨⎧≤23y 0|y点评:求函数的值域的不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:x 4-155-x 2y +=的值域。
(答案:{}3y |y ≤)四、判别式法:若可化为关于某变量的二次方程的分式函数或无理数,可用判别式法求函数的值域。
求值域的几种方法

求值域的几种方法一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为 .点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
求函数值域的几种常用方法

求函数值域的几种常用方法函数值域是指函数在定义域内所有可能的输出值的集合。
求解函数值域通常有几种常用的方法,下面将对这些方法进行详细的介绍。
1.代入法:代入法是求解函数值域最直接的方法。
通过将定义域内的值代入函数表达式,得到对应的函数值,然后将这些函数值集合起来形成函数的值域。
例如对于函数f(x)=x²+1,我们可以将定义域内的各个数值代入该函数,计算函数值,然后再将函数值组成的集合确定为函数的值域。
2.图像法:图像法是通过绘制函数的图像来求解函数的值域。
对于一些简单的函数,可以直接绘制函数的图像,然后观察图像来确定函数的值域。
通过观察函数的图像,我们可以看出函数的上界、下界以及其他特征,从而确定函数的值域。
需要注意的是,通过图像法求解函数值域只能获得大致的范围,如果需要准确求解,请使用其他方法。
3.分析法:分析法是通过对函数表达式进行分析,找出函数的特点来求解函数的值域。
例如对于多项式函数,可以通过对其导数进行分析,找出导数的零点,以及函数在这些零点附近的变化情况,进而确定函数的最值和值域。
另外,还可以通过计算函数的极限来确定函数的值域,例如对于有界闭区间上的连续函数,它的值域就是该函数在这个区间内取得的最大值和最小值之间的闭区间。
4.反函数法:反函数法是通过求解函数的反函数来求解函数的值域。
如果函数存在反函数,并且已知反函数的定义域,则函数的值域就等于反函数的定义域。
可以通过求解函数的反函数来确定函数值域的范围。
5.值域的性质法:对于一些特殊的函数,可以利用其性质来求解函数的值域。
例如三角函数和指数函数等,我们可以利用其周期性、奇偶性和单调性等特点来确定函数的值域。
通过分析这些函数的性质,结合函数的定义域,可以直接得出函数的值域。
需要注意的是,对于复杂的函数,可能需要结合多种方法来求解函数的值域。
有时候还需要利用一些数学工具和理论来辅助求解,如极值定理、介值定理等。
最终获得函数的值域需要结合具体情况,并根据函数的定义域和性质来确定。
函数值域的常见求法8大题型(解析版)

函数值域的求法8大题型命题趋势函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
满分技巧一、求函数值域的常见方法1.直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2.逐层法:求f 1(f 2⋯f n (x ))型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3.配方法:配方法是二次型函数值域的基本方法,即形如“y =ax x +bx +c (a ≠0)”或“y =a [f (x )]2+bf (x )+c (a ≠0)”的函数均可用配方法求值域;4.换元法:利用换元法将函数转化为易求值域的函数,常用的换元有(1)y =ax +b cx +d或y =cx +dax +b 的结构,可用“cx +d =t ”换元;(2)y =ax +b ±cx +d (a ,b ,c ,d 均为常数,a ≠0,c ≠0),可用“cx +d =t ”换元;(3)y =bx ±a 2-x 2型的函数,可用“x =a cos θ(θ∈[0,π])”或“x =a sin θθ∈-π2,π2”换元;5.分离常数法:形如y =ax +b cx +d (ac ≠0)的函数,应用分离常数法求值域,即y =ax +b cx +d=ac +bc -adc 2x +d c ,然后求值域;6.基本不等式法:形如y =ax +bx(ab >0)的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a +b ≥2ab 求函数的值域(或最值)时,应满足三个条件:①a >0,b >0;②a +b (或ab )为定值;③取等号的条件为a =b ,三个条件缺一不可;7.函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如y =ax +b -cx +d (ac <0)的函数可用函数单调性求值域;(2)形如y =ax +bx的函数,当ab >0时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解;公众号:高中数学最新试题当ab <0时,y =ax +bx在(-∞,0)和(0,+∞)上为单调函数,可直接利用单调性求解。
求函数值域常用的方法

求函数值域常用的方法(1)直接法——从自变量x 的范围出发,推出y =f(x)的取值范围;(2)二次函数法(配方法)——配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
(3)分离常数法——形如)0(≠++=a b ax d cx y 的函数,求出y 的取值范围;(4)单调性法——根据函数在定义域(或定义域的某个子集)上的单调性求出函数的值域;(5)换元法——形如d cx b ax y +±+=的函数(6)利用函数的导数——当一个函数在定义域上可导时,可据其导数求值域;(7)数形结合法——利用函数所表示的几何意义,借助几何方法或图象来求函数的值域. (8)不等式法——利用基本不等式,“)00(22>>≥+b a ab b a ,” “一正、二定、三相等”。
当条件不具备时,需要进行适当的转化基础训练:(求下列函数的值域)1:函数1y 2. 函数12-=x y3,函数]2,3[,822-∈--=x x x y 4.函数y =5.函数12x y x +=+ 6、函数x x y --=127.函数14()3y x x =-≤ 8、函数x x y 2122-+=9、 函数x x y 1+=)0(>x 10、函数 )2(4>+=x xx y强化训练:1,函数3y =+2、函数322+--=x x y3、函数xx y +-=11 4、函数y x =5、函数123+-+=x x y6、函数]1,1[,122-∈++-=x x x y7、函数]2,0[,sin 2cos 2π∈-=x x x y8、(整体换元) 已知[]0,2x ∈,求函数1224)(-∙+=x x x f 的值域。
9、(三角换元) 求函数21x x y -+=值域。
10、若222x y x +=,求22x y +的最大值和最小值。
11、已知1->x ,求函数32432+++=x x y 的值域。
求函数值域的几种常见方法

求函数值域的几种常见方法函数的值域可以定义为函数的输出或结果的集合。
确定一个函数的值域有几种常见的方法,包括图像法、符号法和算法法。
下面将详细介绍这些方法。
一、图像法图像法是通过绘制函数的图像来确定函数的值域。
要使用图像法确定函数的值域,需要遵循以下步骤:1.根据函数的定义确定函数的自变量的取值范围。
通常需要考虑定义域和边界条件。
2.绘制函数的图像。
可以使用图表、软件或手工绘制。
3.根据图像确定函数的值域。
值域是函数图像上所有可能的输出值的集合。
可以观察图像找出最大值、最小值和其他可能的取值。
注意:图像法仅适用于可视化的函数。
对于复杂函数,可能需要使用其他方法来确定值域。
二、符号法符号法是利用函数的数学特性和符号来确定函数的值域。
符号法可以分为以下几种情况:1.对于代数函数,可以通过感性地观察含有未知数的表达式中的符号来确定函数的值域。
例如,对于一个二次函数,通过观察二次项系数的符号可以确定函数的开口方向和最值的取值。
2.对于三角函数,可以使用周期性和界限来确定函数的值域。
例如,对于正弦函数,它的值域在[-1,1]之间。
3.对于指数函数和对数函数,可以使用指数和对数的性质来确定函数的值域。
例如,指数函数的值域在(0,+∞),对数函数的值域在(-∞,+∞)。
三、算法法算法法是通过算法或计算来确定函数的值域。
算法法常用于分段函数、复合函数和隐函数等情况。
以下是一些常见的算法法:1.对于分段函数,可以将定义域分成若干个区间,然后通过分析每个区间的函数表达式来确定函数的值域。
2.对于复合函数,可以从内层函数开始,将结果代入外层函数,逐步计算并确定函数的值域。
3.对于隐函数,可以通过假设一组函数值,然后解方程组,将解代入隐函数表达式来确定函数的值域。
注意:算法法可能需要进行大量的计算和推理,适用于复杂函数,但可能会带来较高的计算复杂性。
同时,算法法可能无法找到确切的值域,只能给出一个估计或范围。
总结:函数的值域可以通过图像法、符号法和算法法来确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求函数值域常见的五种方法
求函数的值域是函数学习的一个难点,求值域时涉及到的知识和方法较多,下面介绍几种常用的方法供参考.
一、 判别式法
思路:将函数式整理成一元二次方程的形式,借用判别式求值域.
例1 求函数的4
312--=x x y 值域. 解:原式整理成01432
=---y yx yx , )4()41()1(∞+⋃-⋃--∞∈,,,x ,且0≠y ,
∴0)14(492≥++=∆y y y .
解得0≥y 或25
4-≤y . 当 25
4-=y 时,)41(23,-∈=x . 又0≠y , ∴所求函数的值域是),0(]25
4--+∞⋃∞,(. 二、 配方法
例2 求函数x x y 21-+=的值域. 解:由已知得2
121)21(21+-+--=x x y 1)121(2
12+---=x
∴所求函数的值域是
]1-,(∞. 三、 单调性法
思路:利用函数的图象和性质求解.
例3 当)0,2
1(-∈x 时,求函数)1lg()1lg(x x y -++=的值域.
解:由已知得)1lg(2
x y -=, ∵)0,2
1(-∈x ,∴)41,0(2∈x . 又2x -在)0,2
1(-∈x 上递增, ∴)1,43(12
∈-x . 又u y lg =在)1,4
3(上递增, ∴)0,43(lg )1lg(2∈-x ,原函数的值域为)0,4
3(lg . 四、 反函数法
例4 求函数x
x y -+=11的值域. 解:∵函数的定义域是{}1,0|≠≥x x x 且,由原函数变形得01
1≥+-=y y x , ∴1≥y 或1-<y .
∴函数的值域为),1[)1,(+∞⋃--∞.
五、 换元法
例5 求函数x x y --=1的值域。
解:令x t -=1,则)0(12≥-=t t x ,那么4
5)21
(2++-=t y . ∵1≥t 时,y 在),0[+∞上递减, ∴当t ≥0时,]1,(-∞∈y .
∴原函数的值域是]1,(-∞.。