求函数值域的十种方法
函数值域的13种求法

函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
数学-值域的10种求法(学生版)

函数值域1基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.;当a<0时,值域为(2)y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为y y≥4ac−b24a.y y≤4ac−b24a.(3)y=k x(k≠0)的值域是y y≠0(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.2函数值域的求解方法方法归纳观察法根据最基本函数值域(如x2≥0,a x>0及函数的图像、性质、简单的计算、推理,凭观察能直接得到些简单的复合函数的值域.方法归纳配方法对于形如y=ax2+bx+c a≠0的值域问题可充分利用二次函数可配方的特点,结合二次函数的定义城求出函数的值域.方法归纳图像法(数形结合)根据所给数学式子的特征,构造合适的几何模型.方法归纳基本不等式法注意使用基本不等式的条件,即一正、二定、三相等.方法归纳换元法(代数换元与三角换元)分为三角换元法与代数换元法,对于形y=ax+b+cx+d的值城,可通过换元将原函数转化为二次型函数.方法归纳分离常数法对某些齐次分式型的函数进行常数化处理,使函数解析式简化内便于分析.方法归纳判别式法把函数解析式化为关于x的-元二次方程,利用一元二次方程的判别式求值域,一般地,形如y=Ax+博观而约取 厚积而薄发B ,ax 2+bx +c 或y =ax 2+bx +cd x 2+ex +f的函数值域问题可运用判别式法(注意x 的取值范围必须为实数集R ).方法归纳单调性法先确定函数在定义域(或它的子集)内的单调性,再求出值域.对于形如y =ax +b +cx +d 或y =ax +b +cx +d 的函数,当ac >0时可利用单调性法.方法归纳有界性法充分利用三角函数或一些代数表达式的有界性,求出值域.因为常出现反解出y 的表达式的过程,故又常称此为反解有界性法.方法归纳导数法先利用导数求出函数的极大值和极小值,再确定最大(小)值,从而求出函数的值域.1.例题精讲题型一:观察法1函数y =1x +1-1的值域是( )A.-∞,-1B.+1,+∞C.-∞,-1 ∪-1,+∞D.-∞,+∞2下列函数中,值域为0,+∞ 的是( )A.y =x 2B.y =2xC.y =2xD.y =log 2x3下列函数中,函数值域为(0,+∞)的是( )A.y =(x +1)2,x ∈(0,+∞) B.y =log 2x ,x ∈(1,+∞)C.y =2x -1D.y =2x -1题型二:配方法1函数的y =-x 2-6x -5值域为()A.0,+∞B.0,2C.2,+∞D.2,+∞2函数y =f x 的图象是如图所示的折线段OAB ,其中A 1,2 ,B 3,0 ,函数g x =x ⋅f x ,那么函数g x 的值域为()Ox y 213ABA.0,2B.0,94C.0,32D.0,43已知正实数a ,b ,c 满足2a +b =1,abc +1=2c ,则c 的最大值为()A.12B.23C.815D.2题型三:图像法(数形结合)数形结合:即作出函数的图像,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域。
十种函数函数的解法

例说求函数值域的十种基本方法值域是全体函数值所构成的集合,值域也是构成函数的三要素之一。
由于求函数值域所涉及到的知识面较宽,所用到的数学思想与数学方法也相应较多,因此、求函数的值域往往是数学考察的基本内容之一,本文将举例说明求函数值域常用的十种方法,仅供参考。
1、利用非负数的性质根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。
例1、(1)求函数216x y -=的值域。
(2)求函数1322+-=x x y 的值域。
解析:(1)161602≤-≤x , 41602≤-≤∴x故 所求函数的值域为 []40,∈y 。
(2)012>+x ,∴原函数可化为 3)1(22-=+x x y ,即 3)1(2+=-y y x , 当1≠y 时,y y x -+=132, 02≥x ,013≥-+∴yy ,解得13≤≤-y 又 1≠y , 所以 13<≤-y ,故 所求函数的值域为 ),13[-∈y 。
2、利用函数的图象对于含有绝对值(或分段)函数,若函数图象比较易作出,则利用函数图象能较快的求出其值域。
例2、求函数|1||2|+--=x x y 的值域。
解析:去掉绝对值符号得 :⎪⎩⎪⎨⎧-<=++-≤≤-+-=+-->=+--=)1(3)1(2)21(12)1(2)2(3)1(2x x x x x x x x x x y 。
画出函数的图象(如图):由函数的图象可得,原函数的值域为]33[,-∈y 。
3、利用二次函数的性质对于二次函数或与二次函数有关的函数,在求其值域时常用此法。
例3、(1)求函数]22[2,,-∈+-=x x x y 的值域。
(2)求函数]231[27,,∈-=x x x y 的值域。
解析:(1)41)21(22+--=+-=x x x y ,]22[,-∈x ,416≤≤-∴y 故 所求函数的值域为 ]416[,-∈y (2)849)471(2722727222+--=+-=-=-=x x xx x x x y , ]231[,∈x ,4273≤≤∴y 解得:, 故 所求函数的值域为 ]4273[,∈y 。
高中数学:求函数值域的方法十三种

高中数学:求函数值域的十三种方法
一、观察法(☆
)二、配方法(☆)
三、分离常数法(☆)
四、反函数法(☆)
五、判别式法(☆)
六、换元法(☆☆☆)
七、函数有界性
八、函数单调性法(☆)九、图像法(数型结合法)(☆)十、基本不等式法十一、利用向量不等式十二、一一映射法十三、多种方法综合运用一、观察法:从自变量x 的范围出发,推出()y
f x 的取值范围。
【例1】求函数1y
x 的值域。
【解析】∵0x ,∴
11x ,∴函数1y x 的值域为[1,)。
【例2】求函数x 1
y
的值域。
【解析】∵0x
∴0x 1显然函数的值域是:),0()0,(【例3】已知函数
112x y ,2,1,0,1x ,求函数的值域。
【解析】因为2,1,0,1x ,而331f f ,02
0f f ,11f 所以:3,0,1y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ,则函数的值域为
1|y y 。
二.配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c 的函数的值域问题,均可使用配方法。
【例1】求函数225,[1,2]y x x x 的值域。
【解析】将函数配方得:∵
由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,
故函数的值域是:[4,8] 【变式】已知,求函数的最值。
求函数值域的方法

求函数值域的十种方法前言:求函数是高中数学的一项基本技能,而且在解高中数学题中是常用到的工具之一,由于求函数值域的方法很多,有时技巧要求很高,致使学生产生畏难情绪.我们试图介绍在求函数值域的十种方法,每一种方法各举了若干个典型例子并配以相应练习,以使学生能举一反三,掌握求函数值域这一高中数学的基本技能.这十种方法是1. 部分分式法;2. 配方法;3. 判别式法; 4. 反函数;5. 函数有界性法;6. 函数单调性法;7. 换元法;8. 数形结合法;9. 不等式法;10. 多种方法综合运用一. 部分分式法(分离常数法)(分式且分子、分母中有相似的项,通过该方法可将原函数转化为为)(x f k y ±=(为k 常数)的形式) 例1、求函数12++=x x y 的值域 解:利用恒等变形,得到:111++=x y ,容易观察知x ≠-1,y ≠1,得函数的值域为y ∈(-∞,1)∪(1, +∞)。
注意到分数的分子、分母的结构特点,分离出一个常数后,再通过观察或配方等其他方法易得函数值域。
例2、求函数122+--=x x xx y 的值域。
观察分子、分母中均含有x x -2项,可利用部分分式法;则有43)21(11111122222+--=+--+-=+--=x x x x x x x x x y 不妨令:)0)(()(1)(,43)21()(2≠=+-=x f x f x g x x f 从而)∞+⎢⎣⎡∈,43)(x f 注意:在本题中应排除0)(=x f ,因为)(x f 作为分母。
所以 ⎝⎛⎥⎦⎤∈43,0)(x g 故)1,31⎢⎣⎡-∈y练习.求下列函数的值域:(1) 231--=x x y (2) 1122+-=x x y .答案:(1)值域),(),(3131+∞⋃-∞∈y (2)值域y ∈[-1,1] 例3、求函数])1,1[,,0,0(-∈>>>-+=x b a b a bxa bxa y 的值域。
函数值域求法大全

函数值域求法大全函数的值域是由定义域和对应法则共同确定。
确定函数的值域是研究函数不可缺少的重要一环。
本文介绍了十一种函数值域求法。
首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。
例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。
再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。
其次是配方法,这是求二次函数值域最基本的方法之一。
例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。
还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。
除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。
这些方法各有特点,应根据具体情况选择合适的方法来求解。
总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。
换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。
其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。
换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。
例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。
代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。
由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。
因此,函数的值域为 $[1,+\infty)$。
又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。
求值域的10种方法

求值域的10种方法值域是一个函数在定义域内所有可能的输出值的集合。
找到函数的值域通常是为了确定函数可能的取值范围,并且在数学和计算中都是非常重要的。
以下是求值域的10种方法:1.列举法列举法是最简单直接的方法。
通过观察函数的定义,给出一组有序的输出值,并将这些值组成一个集合。
这些值将构成函数的值域。
例如,对于函数f(x)=x^2,我们可以通过进行一系列的替换运算,然后给出输出值的集合{0,1,4,9,16,...}。
2.图像法在图像法中,我们首先绘制函数的图像,然后找到图像上所有纵坐标的值。
这些纵坐标的集合构成了函数的值域。
例如,对于函数f(x)=x^2,我们可以绘制一个抛物线形状的图像,然后观察所有纵坐标的值。
3.解析法解析法是通过使用代数表达式或方程来确定函数的值域。
例如,对于函数f(x)=x^2,我们可以使用代数方法将方程f(x)=y转化为x^2=y。
然后通过解这个方程,我们可以得到y可能的取值范围,即函数的值域。
4.图像逼近法在图像逼近法中,我们通过绘制函数的图像,并观察图像在最高和最低点之间所有可能的纵坐标值。
这些纵坐标的集合构成函数的值域。
5.猜测法猜测法是一种直觉方法,凭借对函数的直觉和理解猜测出其可能的取值范围。
这种方法通常需要一定的数学背景和经验,并且在实践中被广泛应用。
6.极值法在极值法中,我们通过找到函数的极大值和极小值来确定函数的值域。
极大值是函数图像的局部最高点,极小值是函数图像的局部最低点。
函数的值域就是极值点之间的所有可能的函数值。
7.夹逼法夹逼法是通过使用两个已知函数(夹逼函数)来夹住待求函数,然后确定待求函数的值域。
待求函数的值域将位于夹逼函数的值域之间。
8.对数法对数法是通过取函数的对数来确定函数的值域。
求函数的对数在一些问题中很有用,因为它可以将具有无穷大或无穷小解的问题转化为具有有限解的问题。
9.差集法差集法是通过找到函数定义域的补集,然后从全体实数集中去除差集的元素,得到函数的值域。
高中函数值域的12种解法(含练习题)

高中函数值域的12 种求法一、观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1 求函数y=3+√ (2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥ 0,故3+√(2-3x)≥ 3。
∴函数的知域为[3 ,+∞]。
点评:算术平方根具有双重非负性,即:( 1 )被开方数的非负性,(2 )值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0 ≤ x≤ 5)的值域。
(答案:值域为:{0,1,2,3,4,5})二、反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2 求函数y=(x+1)/(x +2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x +2)的反函数为:x=(1 -2y)/ (y-1 ),其定义域为y≠ 1 的实数,故函数y 的值域为{y∣ y≠ 1,y∈ R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10 x+10 -x)/(10 x-10-x)的值域。
(答案:函数的值域为{y∣ y<- 1 或y> 1 })三、配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。
例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥ 0,可知函数的定义域为x∈[-1 ,2]。
此时-x2+x+2=-(x-1/2)2+9/4 ∈ [0,9/4] ,∴ 0≤√ (-x2+x+2)≤ 3/2, 函数的值域是[0,3/2] 。
点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求函数值域的十种方法 一 、 直 接 法 ( 观 察 法 ) : 对于一些比较简单的函数,其值域可通过观察
得到。 例 1:求函数 y
x 1的值域。
解:∵ x 0 ,∴ x 1 1 , ∴函数 y
共 16 页
二 、 配 方 法 :适用于二次函数及能通过换元法等转化为二次函数的题型。形
如 F ( x) af 2 ( x) bf ( x) c 的函数的值域问题,均可使用配方法。 例 2:求函数 y x 2 4 x 2 ( x [1,1] )的值域。 解: y x 2 4 x 2 ( x 2)2 6 , ∵ x [1,1] ,∴ x 2 [3, 1] ,∴ 1 ( x 2)2 9 ∴ 3 ( x 2)2 6 5 ,∴ 3 y 5 ∴函数 y x 2 4 x 2 ( x [1,1] )的值域为 [3,5] 。 例 3、求函数 y 2 x 2 4 x ( x 0, 4) 的值域。 解:本题中含有二次函数可利用配方法求解,为便于计算不妨设:
f ( x) x 2 4 x( f ( x) 0) 配方得: f ( x) ( x 2) 2 4( x 0, 4) 利用二次函数
的相关知识得 f ( x) 0, 4 ,从而得出: y 2, 2 。 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义 域的限制,本题为: f ( x) 0 。 例 4、若 x 2 y 4, x 0, y 0 ,试求 lg x lg y 的最大值。 分析与解:本题可看成第一象限内动点 p( x, y) 在直线 x 2 y 4 上滑动时函数
目录
求函数值域的十种方法............................................................................................................................... 1 一、直接法(观察法): .......................................................................................................................... 1 二、配方法 ....................................................................................................................................................... 2 三、反函数法 .................................................................................................................................................. 2 四、分离变量法 ............................................................................................................................................. 3 五、换元法 ....................................................................................................................................................... 4 六、判别式法 .................................................................................................................................................. 7 七、函数的单调性法 ................................................................................................................................... 8 八、利用有界性 ............................................................................................................................................. 9 九、图像法(数型结合法) ...................................................................................................................10 十:不等式法 ................................................................................................................................................13 十一、 多种方法综合运用 .....................................................................................................................14