2019-2020学年四川省泸州市高一下学期期末数学试卷 (解析版)

合集下载

2019-2020学年三年级下学期期末考试数学试卷(含答案和解析)

2019-2020学年三年级下学期期末考试数学试卷(含答案和解析)

2019-2020学年三年级下学期期末考试期末试卷一、填空题1.(3分)今年是2020年,共有天,这个月是6月,有天.2.(3分)□59÷4,如果商是三位数,□里最小可以填,如果商是两位数,□里最小可以填.3.(3分)(2013春•纳雍县校级期末)找找规律,接着写两个数:A 1.9,2.8,,,5.5.B 8.5,8.1,7.7,,.4.(3分)在横线里填上“>”、“<”或“=”.5.6___6.5 27*35__900 7km__2000m+5km5.(3分)有两个长方形,长都是2厘米,宽都是1厘米,如果把它们拼成一个正方形,这个正方形的面积是平方厘米,周长是厘米.如果把它拼成一个大长方形,这个长方形的面积是平方厘米,周长是厘米.6.(3分)(2014秋•广陵区校级期末)在□里填上合适的小数.7.(2分)(2013春•纳雍县校级期末)把下面的数按从小到大的顺序排起来.5.4 5.04 5.54 5.458.(3分)(2013春•香港校级月考)填上合适的单位.学校操场面积为800小明的身高132课桌面的面积为20黑板的周长为9小青每天练字120汽车每小时行60.9.(3分)5平方米=平方分米5月份有个星期零天3.9米=分米厘米3天=小时.二、判断10.(3分)(2015春•崇州市校级期末)单月是大月,双月是小月..(判断对错)11.(3分)两个数相乘的积一定大于两个数相加的和..(判断对错)12.(3分)(2016春•厦门校级期末)边长4厘米的正方形周长和面积相等..(判断对错)13.(3分)(2013春•纳雍县校级期末)小明家客厅面积是18平方分米..(判断对错)14.(3分)(2014春•梁子湖区期末)公历年份是4的倍数,这一年不一定是闰年..(判断对错)三、选一选.把正确答案的序号填在( )里15.(3分)(2014秋•平原县期末)125×8的积的末尾有()个0.A. 1B. 2C. 3 D.416.(3分)(2016春•厦门校级期末)相邻两个常用的面积单位之间的进率是()A. 10B. 100C. 100017.(3分)(2013春•纳雍县校级期末)宁海县县城的面积大约是25() A. 平方千米 B. 平方分米 C. 平方米 D. 千米18.(3分)(2012春•临夏县期末)比较两个图形,说法正确的是()A.甲、乙的面积相等,周长也相等B.甲、乙的面积相等,但甲的周长长C.甲、乙的周长相等,但乙的面积大D.甲的面积小,周长也小19.(3分)(2012春•临夏县期末)学校开设两个兴趣小组,三(3)班42人都报名参加了活动,其中27人参加书画小组,24人参加棋艺小组,两个小组都参加的有()A. 7人B. 8人C. 9人D. 10人四、计算20.直接写得数.500÷5= 2.3+3.4= 9﹣3.5= 8×125=80×50= 5.3﹣3.5= 15×20= 88÷4=1﹣= 8+4.7= 125×6=+=21.(2013春•纳雍县校级期末)列竖式计算.(带*的题要验算)*927÷3 *25×58 20﹣14.8 35.2+13.9.六、操作题.22.计算下列图形的面积和周长.六、解决问题(32分)23.(2013春•金华期末)一枝铅笔0.70元,一根钢笔5.60元.买一枝铅笔和两枝钢笔一共要付多少元?24.学校的长方形操场,长90米,宽50米.这个操场的面积有多大?姚老师每天早晨绕操场跑道走一圈,他要走多少米?25.超市购进288箱水果,用4辆同样的卡车分2次运来.平均每辆卡车每次运多少箱?26.上学期期末测试中,李军语文、数学的平均成绩为92分,英语成绩为86分,他语文、数学、英语3门功课的平均成绩是多少分?27.一块正方形菜地,它的周长为24米.这块正方形菜地的面积是多少平方米?如果每平方米能收获3kg土豆,这块长方形菜地一共能收获多少千克?参考答案与试题解析一、填空题1.(3分)今年是2016年,共有366天,这个月是6月,有30天.【分析】首先判断2016年是闰年还是平年,平年2月有28天,全年365天,闰年2月有29天,全年366天,1、3、5、7、8、10、12月是大月有31天,4、6、9、11是小月有30天,据此解答即可.【解答】解:2016÷4=504,所以2016年是闰年,所以这年的天数有366天;6月是小月,有30天;答:今年是2012年,共有366天;这个月是6月,共有30天;故答案为:366,30.【点评】此题考查了日期的计算,关键是平年和闰年的判断.2.(3分)□59÷4,如果商是三位数,□里最小可以填4,如果商是两位数,□里最小可以填1.【分析】(1) 根据整数除法计算法则可知:要想商是三位数,即商的最高位是百位,被除数□59也是三位数,就是被除数最高位上的数要大于等于除数4,要求最小,即4是最小的,据此解答;(2) 根据整数除法计算法则可知:要想商是两位数,即商的最高位是十位,被除数□59是三位数,即被除数的最高位不够除,要看前两位,商要写在十位上,最高位不够除即要小于除数4,小于4的数中3是最大的,最高位不能是0,所以最小是1,据此解答.【解答】解:(1)□59÷4,如果商是三位数,□里最小可以填4;(2) 如果商是两位数,□里最小可以填1;故答案为:4,1.【点评】本题主要考查整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面.如果哪一位上不够商1,要补“0”占位.每次除得的余数要小于除数.3.(3分)(2013春•纳雍县校级期末)找找规律,接着写两个数:A 1.9,2.8, 3.7, 4.6,5.5.B 8.5,8.1,7.7,7.3, 6.9.【分析】A、2.8﹣1.9=0.9,后一个数比前一个数大0.9,按此规律计算出要求的两个数,然后结合最后一个数是5.5进行验证;B、8.5﹣8.1=0.4,8.1﹣7.7=0.4,前一个数比后一个数大0.4,由此求解.【解答】解:A,2.8+0.9=3.7;3.7+0.9=4.6;验证:4.6+0.9=5.5.B,7.7﹣0.4=7.3;7.3﹣0.4=6.9;故答案为:3.7,4.6;7.3,6.9.【点评】解决本题关键是找出相邻两个数的差是一个恒值,再根据这个规律求解.4.(3分)(2013春•纳雍县校级期末)在横线里填上“>”、“<”或“=”.5.6<6.5 27×35>900 7千米= 2000米+5千米.【分析】(1) 根据小数大小比较的方法进行解答.(2) 27×35=945,所以27×35>900,(3) 2000米+5千米=2千米+5千米=7千米,所以7千米=2000米+5千米.【解答】解:(1)5.6<6.5,(2) 27×35>900,(3) 7千米=2000米+5千米.故答案为:<,>,=.【点评】本题的关键是根据题目特点,再选择合适的方法进行比较.5.(3分)有两个长方形,长都是2厘米,宽都是1厘米,如果把它们拼成一个正方形,这个正方形的面积是4平方厘米,周长是8厘米.如果把它拼成一个大长方形,这个长方形的面积是4平方厘米,周长是10厘米.【分析】本题关键弄清拼成的图形的形状,然后解决问题,第一种拼组后的正方形的边长是2厘米,然后运用正方形的周长、面积公式进行解答,第二种拼组的方法是把这两个长方形的宽相接在一起如图二,这时这个长方形的长是2+2=4厘米,宽是1厘米,在运用长方形的周长,面积公式进行解答,即可求出答案.【解答】解:拼成的图形如下(1):①拼成的正方形的面积:2×2=4(平方厘米),②正方形的周长是:(2+2) ×2=8(厘米),拼成的图形(2),①面积是:(2+2)×1=4(平方厘米),②周长是:(2+2+1)×2,=5×2,=10(厘米);故答案为:4,8,4,10.【点评】本题考查了图形的拼组,第一次拼成正方形,第二次拼成了长方形,同时考查了正方形、长方形的周长及面积公式的运用情况.6.(3分)(2014秋•广陵区校级期末)在□里填上合适的小数.【分析】由图中的数轴可知,数轴中从“0”向右每一大格代表的数值单位是1,每一大格被平均分成10份,根据小数的意义可知,每小格是一大格的,代表的数值单位是“”或“0.1”.据此将各数在数轴中相应的位置表示出即可.【解答】解:如图所示:【点评】根据小数的意义得出每一小格代表的数值单位是多少是完成本题的关键.7.(2分)(2013春•纳雍县校级期末)把下面的数按从小到大的顺序排起来.5.4 5.04 5.54 5.455.04<5.4<5.45<5.54.【分析】根据小数大小比较的方法:先看小数的整数部分,整数部分大的这个数就大,整数部分相同的就看十分位,十分位大的这个数就大,十分位相同的,再看百分位,百分位大的这个数就大….【解答】解:根据以上分析知:5.04<5.4<5.45<5.54.故答案为:5.04<5.4<5.45<5.54.【点评】本题主要考查了学生对小数大小比较方法的掌握情况.8.(3分)填上合适的单位.学校操场面积为800平方米小明的身高132厘米课桌面的面积为20平方分米黑板的周长为9米小青每天练字1小时20分汽车每小时行60千米.【分析】根据生活经验、对面积、长度和时间单位和数据大小的认识进行解答即可.【解答】解:学校操场面积为800 平方米小明的身高132 厘米课桌面的面积为20 平方分米黑板的周长为9 米小青每天练字1 小时20 分汽车每小时行60 千米故答案为:平方米,厘米,平方分米,米,小时,分,千米.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.9.(3分)5平方米=500平方分米5月份有4个星期零3天3.9米=3分米90厘米3天=72小时.【分析】(1) 高级单位平方米化低级单位平方分米乘进率100.(2) 根据年月日的认识,5月份是大月,有31天,用31除以7商为星期数,余数为零的天数.(3) 3.9米看作3米与0.9米之和,把0.9米乘进率100化成90厘米.(4) 高级单位天化低级单位小时乘进率24.【解答】解:(1)5平方米=500平方分米;(2) 5月份有4个星期零3天;(3) 3.9米=3 分米90厘米;(4) 3天=72小时.故答案为:500,4,3,3,90,72.【点评】单位换算首先要弄清是由高级单位化低级单位还是由低级单位化高级单位,其次记住单位间的进率;由高级单位化低级单位乘进率,由低级单位化高级单位除以进率.二、判断10.(3分)(2015春•崇州市校级期末)单月是大月,双月是小月.错误.(判断对错)【分析】一年中,1、3、5、7、8、10、12月是大月有31天,4、6、9、11月是小月有30天,因此得解.【解答】解:8、10、12月是双月同样是大月,9、11月是单月却是小月,所以单月是大月,双月是小月是错误的.故答案为:错误.【点评】此题考查了大月小月的认识.11.(3分)两个数相乘的积一定大于两个数相加的和.×.(判断对错) 【分析】此题可以利用赋值法,举例子解答.【解答】解:如果这两个数中有一个数是1,因为1乘任何数都得原数,则两个数的积就是另一个数,而这两个数的和一定比另一个数大1,如:1×3=3,1+3=4,3<4,所以原题说法错误;故答案为:×.【点评】灵活应用1与任何数相乘都得原数的性质即可解答.12.(3分)(2016春•厦门校级期末)边长4厘米的正方形周长和面积相等.×.(判断对错)【分析】根据正方形的周长公式:C=4a,面积公式:S=a2,把数据分别代入公式解答即可.【解答】解:4×4=16(厘米),4×4=16(平方厘米);答:正方形的周长是16厘米,面积是16平方厘米;虽然正方形的周长和面积的算出的得数一样,但单位不一样,所以周长和面积是无法比较大小的;故答案为:×.【点评】此题主要考查正方形的面积公式、周长公式的灵活应用.13.(3分)(2013春•纳雍县校级期末)小明家客厅面积是18平方分米.错误.(判断对错)【分析】根据生活经验、对面积单位和数据的大小,可知计量小明家客厅面积应用“平方米”做单位,用平方分米做单位太小了,所以错误,据此解答.【解答】解:小明家客厅面积是18平方米.故答案为:错误.【点评】此题考查根据情景判断对错,要注意联系生活实际、计量单位和数据的大小,灵活的判断.14.(3分)(2014春•梁子湖区期末)公历年份是4的倍数,这一年不一定是闰年.√.(判断对错)【分析】根据非整百年份是4的倍数,这一年就是闰年,如果是整百年份需是400的倍数,这一年才是闰年,由此即可判断.【解答】解:非整百年份是4的倍数就是闰年,整百年份是400的倍数就是闰年;所以公历年份是4的倍数,这一年不一定是闰年.故答案为:√.【点评】此题主要根据平年、闰年的判断方法解决问题,关键是判断整百年份是闰年的方法.三、选一选.把正确答案的序号填在( )里15.(3分)(2014秋•平原县期末)125×8的积的末尾有()个0.A. 1B. 2C. 3 D.4【分析】要求125×8的积的末尾有几个0,要先算出积,然后再数出积的末尾有几个0,进而选择.【解答】解:因为125×8=1000,所以125×8的积的末尾有3个0;故选:C.【点评】此题考查整数的乘法及应用,要求积的末尾有几个0,要先算出得数,再确定积末尾0的个数.16.(3分)相邻两个常用的面积单位之间的进率是()A. 10B. 100C. 1000【分析】相邻两个常用的面积单位间的进率是100,据此选择即可.【解答】解:相邻两个面积单位间的进率是100,故选:B.【点评】本题主要考查相邻两个常用的面积单位间的进率.17.(3分)(2013春•纳雍县校级期末)宁海县县城的面积大约是25() A. 平方千米 B. 平方分米 C. 平方米 D. 千米【分析】根据生活经验、对面积单位大小的认识,可知计量宁海县县城的面积,因为数据是25,应用“平方千米米”做单位,是25平方千米.【解答】解:宁海县县城的面积大约是25平方千米;故选:A.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.18.(3分)(2012春•临夏县期末)比较两个图形,说法正确的是()A.甲、乙的面积相等,周长也相等B.甲、乙的面积相等,但甲的周长长C.甲、乙的周长相等,但乙的面积大D.甲的面积小,周长也小【分析】如图:连接GH,那么四边形ABFE的面积等于四边形CDEF的面积,所以S甲<S乙;四边形ABFE的周长与四边形EFCD的周长是相等的.【解答】解:如上图,连接GH,因为S四边形ABFE=S四边形CDEF,S甲=S四边形ABFE﹣S丙,S乙=S四边形ABFE+S丙,所以S甲<S乙;图形甲的周长=AB+BF+HF+HK+JK+JG+GE+AE,图形乙的周长=DC+CF++HF+HK+JK+JG+GE+DE,又因为AB=DC,BF=CF,AE=DE,所以图形甲的周长=图形乙的周长;故选C.【点评】此题通过对图形的分析,运用作辅助线的方法,解决图形的面积与周长问题.19.(3分)(2012春•临夏县期末)学校开设两个兴趣小组,三(3)班42人都报名参加了活动,其中27人参加书画小组,24人参加棋艺小组,两个小组都参加的有()A. 7人B. 8人C. 9人D. 10人【分析】用27+24求出至少参加一个兴趣小组的同学的总人数,再减去报名参加的总人数就是两个小组都参加的人数.【解答】解:27+24﹣42,=51﹣42,=9(人);答:两个小组都参加的有9人,故选:C.【点评】解答此题的关键是根据容斥原理,找出对应量,列式解决问题.四、计算20.直接写得数.500÷5= 2.3+3.4= 9﹣3.5= 8×125=80×50= 5.3﹣3.5= 15×20= 88÷4=1﹣= 8+4.7= 125×6=+=【分析】根据分数、小数加减法运算和整数乘除法运算的计算法则进行计算即可.【解答】解:500÷5=100 2.3+3.4=5.7 9﹣3.5=5.5 8×125=100080×50=4000 5.3﹣3.5=1.8 15×20=300 88÷4=221﹣=8+4.7=12.7 125×6=750+=1【点评】此题考查了分数、小数和整数四则运算的计算法则的运用.21.(2013春•纳雍县校级期末)列竖式计算.(带*的题要验算)*927÷3 *25×58 20﹣14.8 35.2+13.9.【分析】(1) 根据整数除法竖式计算的方法求解,并根据乘法验证除法的方法验算;(2) 根据两位数的乘法竖式计算的方法求解,并交换因数的位置进行验算;(3) (4)根据小数加减法竖式计算的方法求解.【解答】解:(1)927÷3=309;3093;验算:309;(2) 25×58=1450;25;验算:58;(3) 20﹣14.8=5.2;20;(4) 35.2+13.9=49.1;35.2.【点评】本题考查了简单的竖式计算的方法,计算时要细心,注意把数位对齐.六、操作题.22.计算下列图形的面积和周长.【分析】(1) 已知长方形的长是6厘米,宽是3厘米,根据长方形的面积公式:S=ab,长方形的周长公式:C=(a+b)×2解答即可;(2) 已知正方形的边长是4分米,根据正方形的面积公式:S=a2,正方形的周长公式:C=4a进行解答即可.【解答】解:(1)6×3=18(平方厘米)(6+3) ×2=9×2=18(厘米)答:面积是18平方厘米,周长是18厘米.(2) 4×4=16(平方厘米)4×4=16(厘米)答:面积是16平方厘米,周长是16厘米.【点评】本题主要考查了学生对长方形、正方形周长和面积公式的掌握.六、解决问题(32分)23.一枝铅笔0.70元,一根钢笔5.60元.买一枝铅笔和两枝钢笔一共要付多少元?【分析】把买一枝铅笔和两枝钢笔的钱加起来就是一共要付的钱数.据此解答即可.【解答】解:0.70+5.60×2,=0.70+11.2,=11.9(元);答:买一枝铅笔和两枝钢笔一共要付11.9元.【点评】本题重点考查了学生根据小数加法和小数乘法的意义解答应用题的能力.24.(2013春•纳雍县校级期末)学校的长方形操场,长90米,宽50米.这个操场的面积有多大?姚老师每天早晨绕操场跑道走一圈,他要走多少米?【分析】(1) 根据长方形的面积公式S=ab,求出长方形操场的面积;(2) 根据长方形的周长公式C=(a+b)×2,求出长方形操场的周长,即姚老师每天早晨绕操场跑道走一圈的米数.【解答】解:(1)90×50=4500(平方米),(2) (90+50)×2,=140×2,=280(米),答:这个操场的面积有4500平方米;姚老师每天早晨绕操场跑道走一圈,他要走280米.【点评】本题主要考查了长方形的面积公式S=ab与长方形的周长公式C=(a+b)×2的实际应用.25.超市购进288箱水果,用4辆同样的卡车分2次运来.平均每辆卡车每次运多少箱?【分析】用4辆同样的卡车分2次运来,说明平均每辆卡车每次运的箱数相同,用288÷2=144箱,算出一次运的箱数,再用一次运的箱数÷4就算出平均每辆卡车每次运的箱数.【解答】解:288÷2÷4,=144÷4,=38(箱);答:平均每辆卡车每次运38箱.【点评】此题是简单的归一应用题,要弄明白分几次运,再看用几辆车运.26.上学期期末测试中,李军语文、数学的平均成绩为92分,英语成绩为86分,他语文、数学、英语3门功课的平均成绩是多少分?【分析】用92×2求出李军语文和数学的总分数,再加86就是语文、数学与英语三门功课的总分数,最后用语文、数学与英语三门功课的总分数除以3就是3门功课的平均成绩.【解答】解:(92×2+86)÷3,=(184+86)÷3,=270÷3,=90(分);答:语文、数学、英语3门功课的平均成绩是90分.【点评】此题主要考查了平均数的计算方法,即功课的总分数÷功课的门数=平均每门功课的成绩.27.一块正方形菜地,它的周长为24米.这块正方形菜地的面积是多少平方米?如果每平方米能收获3kg土豆,这块长方形菜地一共能收获多少千克?【分析】(1) 根据题意,用24÷3求出正方形菜地的周长,再根据正方形的面积S=a×a,即可求出正方形菜地的面积;(2) 正方形菜地的面积乘3求出土豆的总产量.【解答】解:(1)正方形菜地的边长:24÷4=6(米)6×6=36(平方米)(2) 36×3=108(千克)答:这块正方形菜地的面积是36平方米;这块地一共能收获108千克.【点评】解答此题的关键是弄清题意,求出边长,再根据正方形的面积S=a×a解决问题.。

2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)

2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)
19.已知复数z满足 , 的虚部为2,
(1)求复数z;
(2)若复数z在复平面内所对应的点位于第一象限,且复数m满足 ,求 的最大值和最小值.
20.某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间 、 、…、 、 .
【详解】
∵向量 ,
∴ ,又 ,
∴ ,
∴ .
故选:B.
6.D
【分析】
设出正六棱柱底面边长为 ,可知正六棱柱的高为 ,再通过正六棱锥与正六棱柱的侧面积之比为 可得正六棱锥的高,这样就可以得到答案.
【详解】
设正六棱柱底面边长为 ,由题意可知正六棱柱的高为 ,则可知正六棱柱的侧面积为 .
设正六棱锥的高为 ,可知正六棱锥侧面的一个三角形的边为 上的高为 ,
9.BD
【分析】
根据图表,对各项逐个分析判断即可得解.
【详解】
对A,在前四年有下降的过程,故A错误;
对B,六年的在校生总数为24037,平均值为4006以上,故B正确;
对C, ,未接受高中阶段教育的适龄青少年有468万人以上,故C错误;
对D, ,故D正确.
故选:BD
10.ABC
【分析】
对于A, ,可判断错误;对于B找出反例 不满足题意,判定错误;对于C若 ,则其不正确;对于D, ,则其虚部为0,故正确.故可得答案.
A.近六年,高中阶段在校生规模与毛入学率均持续增长
B.近六年,高中阶段在校生规模的平均值超过4000万人
C.2019年,未接受高中阶段教育的适龄青少年不足420万
D.2020年,普通高中的在校生超过2470万人
10.下列说法不正确的是()

【期末冲刺】2019—2020学年高一年级下学期期末冲刺满分训练卷——第十一章 立体几何初步(解析版)

【期末冲刺】2019—2020学年高一年级下学期期末冲刺满分训练卷——第十一章 立体几何初步(解析版)

2019—2020学年高一年级下学期期末冲刺满分训练卷第十章 立体几何初步 期末单元测试卷(范围:新教材人教B 版 必修四 考试时间:90分钟 满分:150分)一、选择题(本题共12道小题,每小题5分,共60分)1.以下命题(其中a 、b 表示直线,α表示平面)中,正确的命题是( )A. 若//a b ,b α⊂,则//a αB. 若//a α,//b α,则//a bC. 若//a b ,b α⊥,则a α⊥D. 若//a α,b α⊂,则//a b答案及解析:1.C【分析】根据线线、线面有关定理对选项逐一分析,由此确定正确选项.【详解】对于A 选项,直线a 可能含于平面α,所以A 选项错误.对于B 选项,,a b 可能异面,所以B 选项错误.对于C 选项,由于//a b ,b α⊥,所以a α⊥,所以C 选项正确.对于D 选项,,a b 可能异面,所以D 选项错误.故选:C【点睛】本小题主要考查空间线线、线面位置关系的判断,属于基础题.2.下列命题正确的是( )A. 有两个面平行,其余各面都是四边形的几何体叫棱柱。

B. 有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。

C. 绕直角三角形的一边旋转所形成的几何体叫圆锥。

D. 用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。

答案及解析:2.B【分析】根据课本中的相关概念依次判断选项即可.【详解】对于A 选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B ,根据课本中棱柱的概念得到是正确的;对于C ,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D ,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为:B.【点睛】这个题目考查了几何体的基本概念,属于基础题.3.在正方体ABCD - A 1B 1C 1D 1中,动点E 在棱BB 1上,动点F 在线段A 1C 1上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O-AEF 的体积( )A. 与x ,y 都有关B. 与x ,y 都无关C. 与x 有关,与y 无关D. 与y 有关,与x 无关答案及解析:3.B【分析】 根据等体积法以及锥体体积公式判断选择.【详解】因为V O -AEF =V E -OAF ,所以,考察△AOF 的面积和点E 到平面AOF 的距离的值,因为BB 1∥平面ACC 1A 1,所以,点E 到平面AOE 的距离为定值,又AO ∥A 1C 1,所以,OA 为定值,点F 到直线AO 的距离也为定值,即△AOF 的面积是定值,所以,四面体O-AEF 的体积与x ,y 都无关,选B 。

2020学年山东省济宁市高二下学期期末考试数学试题(解析版)

2020学年山东省济宁市高二下学期期末考试数学试题(解析版)

2020学年山东省济宁市高二下学期期末考试数学试题一、 单选题1. 已知集合{}2{0,1,2,3,4},|560A B x x x ==-+>,则A B =I ( )A .{0,1}B .{4}C .{0,1,4}D .{0,1,2,3,4}【答案】 C【解析】解一元二次不等式求得集合B ,由此求得两个集合的交集. 【详解】由()()256320x x x x -+=-->,解得2x <,或3x >,故{}0,1,4A B =I .故选C. 【点睛】本小题主要考查两个集合交集的运算,考查一元二次不等式的解法,属于基础题.2.计算52752C 3A +的值是( ) A .72 B .102 C .5070 D .5100【答案】B【解析】根据组合数和排列数计算公式,计算出表达式的值. 【详解】依题意,原式227576232354426010221C A ⨯=+=⨯+⨯⨯=+=⨯,故选B. 【点睛】本小题主要考查组合数和排列数的计算,属于基础题.3.设23342,log 5,log 5a b c -===,则a ,b ,c 的大小关系是( )A .a c b <<B .a b c <<C .b c a <<D .c b a <<【答案】A【解析】先根据1来分段,然后根据指数函数性质,比较出,,a b c 的大小关系. 【详解】由于203221-<=,而344log 5log 5log 41>>=,故a c b <<,所以选A. 【点睛】本小题主要考查指数函数的单调性,考查对数函数的性质,考查比较大小的方法,属于基础题.4.5(12)(1)x x ++的展开式中3x 的系数为( ) A .5 B .10 C .20 D .30【答案】D【解析】根据乘法分配律和二项式展开式的通项公式,列式求得3x 的系数. 【详解】根据乘法分配律和二项式展开式的通项公式,题目所给表达式中含有3x 的为()3322335512102030C x x C x x x ⋅+⋅=+=,故展开式中3x 的系数为30,故选D.【点睛】本小题主要考查二项式展开式通项公式的应用,考查乘法分配律,属于基础题.5.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,每天的正点率X 服从正态分布2(0.98)N σ,,且(0.97)0.005P X <=,则(0.970.99)P X <<=( )A .0.96B .0.97C .0.98D .0.99【答案】D【解析】根据正态分布的对称性,求得指定区间的概率. 【详解】由于0.98μ=,故(0.970.99)12(0.97)0.99P X P X <<=-⨯<=,故选D. 【点睛】本小题主要考查正态分布的对称性,考查正态分布指定区间的概率的求法,属于基础题.6.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【答案】C【解析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续. 7.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是( ) A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值 D .()f x 有最大值2,最小值75【答案】A【解析】试题分析:()2132()11x f x f x x x +==+⇒--在[)8,4--上是减函数()f x 有最大值5(8)3f -=,无最小值,故选A.【考点】函数的单调性.8.已知函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩,若()22()f a f a ->,则实数a 的取值范围是( ) A .(2,1)-B .(1,2)-C .(,1)(2,)-∞-+∞UD .(,2)(1,)-∞-+∞U【答案】A【解析】代入特殊值对选项进行验证排除,由此得出正确选项. 【详解】若0a =,()()()20212,00,120f f f -===>符合题意,由此排除C,D 两个选项.若1a =,则()()2211f f -=不符合题意,排除B 选项.故本小题选A.【点睛】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.9.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为36,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为二项式5(31)x -的展开式的各项系数之和.现从0,1,2,3,4,5中任取两个不同的数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .115B .215 C .15D .415【答案】B【解析】先求得二项式5(31)x -的展开式的各项系数之和为32.然后利用列举法求得在05:一共6个数字中任选两个,和为4的概率,由此得出正确选项. 【详解】令1x =代入5(31)x -得5232=,即二项式5(31)x -的展开式的各项系数之和为32.从0,1,2,3,4,5中任取两个不同的数字方法有:01,02,03,04,05,12,13,14,15,23,24,25,34,35,45共15种,其中和为36324-=的有04,13共两种,所以恰好使该图形为“和谐图形”的概率为215,故选B. 【点睛】本小题主要考查二项式展开式各项系数之和,考查列举法求古典概型概率问题,属于基础题.10.函数()21()ln 2x f x x e -=+-的图像可能是( )A .B .C .D .【答案】A【解析】分析四个图像的不同,从而判断函数的性质,利用排除法求解。

高中数学必修二 北京市丰台区 — 学年度 高一下学期期末练习数学试题(含答案)

高中数学必修二  北京市丰台区 — 学年度 高一下学期期末练习数学试题(含答案)
12.某中学共有教师300名,其中男教师有180名.现要用分层抽样的方法从教师中抽取一个容量为50的样本,应抽取的男教师人数为__________.
【答案】
【解析】
【分析】
先求解出分层抽样的抽样比,然后根据每一层入样的个体数等于该层个体数乘以抽样比,由此可计算出结果 .
【详解】因为分层抽样的抽样比为 ,
9.如图所示,在复平面内,复数 , 所对应的点分别为A,B,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】
根据 并结合复数的几何意义得到 的表示.
【详解】因为 , 与 对应, 与 对应,
所以 ,
故选:C.
【点睛】本题考查复数的几何意义的简单运用,难度较易.复数 和复平面内的点 一一对应,同时复数 和平面向量 也一一对应.
丰台区2019~2020学年度第二学期期末练习
高一数学
注意事项:
1.答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码.
2.本次考试所有答题均在答题卡上完成.选择题必须使用2B铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项.非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚.
【答案】D
【解析】
【分析】
根据球与正方体位置关系,分析出球 半径,由此球的体积可求.
【详解】因为球内切于正方体,所以球的半径等于正方体棱长的 ,
所以球的半径为 ,所以球的体积为 ,
故选:D.
【点睛】本题考查根据正方体与球的相切关系求球的体积,难度较易.当球内切于正方体时,球的半径为正方体棱长的 ;当球外接于正方体时,球的半径为正方体棱长的 .

2022年四川省泸州市中考数学试卷(解析版)

2022年四川省泸州市中考数学试卷(解析版)

2022年四川省泸州市中考数学试卷(真题)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2022•泸州)﹣=()A.﹣2 B.C.D.22.(3分)(2022•泸州)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.7.55×106B.75.5×106C.7.55×107D.75.5×107 3.(3分)(2022•泸州)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.4.(3分)(2022•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,点B 在直线b上,AB⊥AC,若∠1=130°,则∠2的度数是()A.30°B.40°C.50°D.70°5.(3分)(2022•泸州)下列运算正确的是()A.a2•a3=a6B.3a﹣2a=1C.(﹣2a2)3=﹣8a6D.a6÷a2=a36.(3分)(2022•泸州)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35 B.34,33 C.34,35 D.35,34 7.(3分)(2022•泸州)与2+最接近的整数是()A.4 B.5 C.6 D.78.(3分)(2022•泸州)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是()A.y=﹣x2+x B.y=﹣x2﹣4C.y=﹣x2+2021x﹣2022 D.y=﹣x2+x+19.(3分)(2022•泸州)已知关于x的方程x2﹣(2m﹣1)x+m2=0的两实数根为x,x2,若(x1+1)(x2+1)=3,则m的值为()1A.﹣3 B.﹣1 C.﹣3或1 D.﹣1或3 10.(3分)(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO 的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是()A.1 B.C.2 D.411.(3分)(2022•泸州)如图,在平面直角坐标系xOy中,矩形OABC的顶点B 的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为()A.y=3x B.y=﹣x+C.y=﹣2x+11 D.y=﹣2x+12 12.(3分)(2022•泸州)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为()A.B.C.D.1二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)(2022•泸州)点(﹣2,3)关于原点的对称点的坐标为.14.(3分)(2022•泸州)若(a﹣2)2+|b+3|=0,则ab=.15.(3分)(2022•泸州)若方程+1=的解使关于x的不等式(2﹣a)x ﹣3>0成立,则实数a的取值范围是.16.(3分)(2022•泸州)如图,在Rt△ABC中,∠C=90°,AC=6,BC=2,半径为1的⊙O在Rt△ABC内平移(⊙O可以与该三角形的边相切),则点A 到⊙O上的点的距离的最大值为.三、本大题共3个小题,每小题6分,共18分.17.(6分)(2022•泸州)计算:()0+2﹣1+cos45°﹣|﹣|.18.(6分)(2022•泸州)如图,E,F分别是▱ABCD的边AB,CD上的点,已知AE =CF.求证:DE=BF.19.(6分)(2022•泸州)化简:(+1)÷.四、本大题共2个小题,每小题7分,共14分.20.(7分)(2022•泸州)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:频数劳动时间t(单位:小时)0.5≤t<1 121≤t<1.5 a1.5≤t<2 282≤t<2.5 162.5≤t≤3 4(1)m=,a=;(2)若该校学生有640人,试估计劳动时间在2≤t≤3范围的学生有多少人?(3)劳动时间在2.5≤t≤3范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率.21.(7分)(2022•泸州)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?五、本大题共2个小题,每小题8分,共16分.22.(8分)(2022•泸州)如图,直线y=﹣x+b与反比例函数y=的图象相交于点A,B,已知点A的纵坐标为6.(1)求b的值;(2)若点C是x轴上一点,且△ABC的面积为3,求点C的坐标.23.(8分)(2022•泸州)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).六、本大题共2个小题,每小题12分,共24分.24.(12分)(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB 交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.(1)求证:FD∥AB;(2)若AC=2,BC=,求FD的长.25.(12分)(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c 经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.2022年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2022•泸州)﹣=()A.﹣2 B.C.D.2【分析】根据算术平方根的定义判断即可.【解答】解:.故选:A.【点评】本题考查了算术平方根,掌握算术平方根的定义是解答本题的关键.2.(3分)(2022•泸州)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.7.55×106B.75.5×106C.7.55×107D.75.5×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:75500000=7.55×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.3.(3分)(2022•泸州)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形判定则可.【解答】解:从物体上面看,底层有一个正方形,上层有四个正方形.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误地选其它选项.4.(3分)(2022•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,点B 在直线b上,AB⊥AC,若∠1=130°,则∠2的度数是()A.30°B.40°C.50°D.70°【分析】首先利用平行线的性质得到∠1=∠DAC,然后利用AB⊥AC得到∠BAC =90°,最后利用角的和差关系求解.【解答】解:如图所示,∵直线a∥b,∴∠1=∠DAC,∵∠1=130°,∴∠DAC=130°,又∵AB⊥AC,∴∠BAC=90°,∴∠2=∠DAC﹣∠BAC=130°﹣90°=40°.故选:B.【点评】本题考查平行线的性质,解答本题的关键是明确平行线的性质,求出∠DAC的度数.5.(3分)(2022•泸州)下列运算正确的是()A.a2•a3=a6B.3a﹣2a=1C.(﹣2a2)3=﹣8a6D.a6÷a2=a3【分析】选项A根据同底数幂的乘法法则判断即可,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;选项B根据合并同类项法则判断即可,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;选项C根据积的乘方运算法则判断即可,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;选项D根据同底数幂的除法法则判断即可,同底数幂的除法法则:底数不变,指数相减.【解答】解:A.a2•a3=a5,故本选项不合题意;B.3a﹣2a=a,故本选项不合题意;C.(﹣2a2)3=﹣8a6,故本选项符合题意;D.a6÷a2=a4,故本选项不合题意;故选:C.【点评】本题考查了同底数幂的乘除法,幂的乘方与积的乘方以及合并同类项,掌握相关运算法则是解答本题的关键.6.(3分)(2022•泸州)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35 B.34,33 C.34,35 D.35,34【分析】根据中位数和众数的定义求解可得.【解答】解:∵35出现的次数最多,∴这组数据的众数是35,把这些数从小到大排列,排在中间的两个数分别为33、35,故中位数为,故选:D.【点评】本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.(3分)(2022•泸州)与2+最接近的整数是()A.4 B.5 C.6 D.7【分析】估算无理数的大小,再确定更接近的整数,进而得出答案.【解答】解:∵3<<4,而15﹣9>16﹣15,∴更接近4,∴2+更接近6,故选:C.【点评】本题考查估算无理数的大小,理解算术平方根的定义以及数的大小关系是正确解答的前提.8.(3分)(2022•泸州)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是()A.y=﹣x2+x B.y=﹣x2﹣4C.y=﹣x2+2021x﹣2022 D.y=﹣x2+x+1【分析】根据抛物线的平移规律,可得答案.【解答】解:∵将抛物线y=﹣x2+x+1经过平移后开口方向不变,开口大小也不变,∴抛物线y=﹣x2+x+1经过平移后不可能得到的抛物线是y=﹣x2+x+1.故选:D.【点评】本题考查了二次函数图象与几何变换,由平移规律得出a不变是解题的关键.9.(3分)(2022•泸州)已知关于x的方程x2﹣(2m﹣1)x+m2=0的两实数根为x,x2,若(x1+1)(x2+1)=3,则m的值为()1A.﹣3 B.﹣1 C.﹣3或1 D.﹣1或3【分析】根据方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,得出x1+x2与x1x2的值,再根据x12+x22=3,即可求出m的值.【解答】解:∵方程x2﹣(2m﹣1)x+m2=0的两实数根为x1,x2,∴x1+x2=2m﹣1,x1x2=m2,∵(x1+1)(x2+1)=x1x2+x1+x2+1=3,∴m2+2m﹣1+1=3,解得:m1=1,m2=﹣3,∵方程有两实数根,∴Δ=(2m﹣1)2﹣4m2≥0,即m≤,∴m2=1(不合题意,舍去),∴m=﹣3;故选:A.【点评】本题考查了根与系数的关系及根的判别式,难度适中,关键掌握x1,x是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.210.(3分)(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO 的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是()A.1 B.C.2 D.4【分析】由垂径定理可知,点D是AC的中点,则OD是△ABC的中位线,所以OD=BC,设OD=x,则BC=2x,则OE=4﹣x,AB=2OE=8﹣2x,在Rt△ABC 中,由勾股定理可得AB2=AC2+BC2,即(8﹣2x)2=(4)2+(2x)2,求出x 的值即可得出结论.【解答】解:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥AC,∴点D是AC的中点,∴OD是△ABC的中位线,∴OD∥BC,且OD=BC,设OD=x,则BC=2x,∵DE=4,∴OE=4﹣x,∴AB=2OE=8﹣2x,在Rt△ABC中,由勾股定理可得,AB2=AC2+BC2,∴(8﹣2x)2=(4)2+(2x)2,解得x=1.∴BC=2x=2.故选:C.【点评】本题主要考查中位线的性质与判定,垂径定理,勾股定理等知识,设出参数,根据勾股定理得出方程是解题关键.11.(3分)(2022•泸州)如图,在平面直角坐标系xOy中,矩形OABC的顶点B 的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为()A.y=3x B.y=﹣x+C.y=﹣2x+11 D.y=﹣2x+12 【分析】分别求出矩形OABC和菱形ABEF的中心的坐标,利用待定系数法求经过两中心的直线即可得出结论.【解答】解:连接OB,AC,它们交于点M,连接AE,BF,它们交于点N,则直线MN为符合条件的直线l,如图,∵四边形OABC是矩形,∴OM=BM.∵B的坐标为(10,4),∴M(5,2),AB=10,BC=4.∵四边形ABEF为菱形,BE=AB=10.过点E作EG⊥AB于点G,在Rt△BEG中,∵tan∠ABE=,∴,设EG=4k,则BG=3k,∴BE==5k,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4.∴E(4,12).∵B的坐标为(10,4),AB∥x轴,∴A(0,4).∵点N为AE的中点,∴N(2,8).设直线l的解析式为y=ax+b,∴,解得:,∴直线l的解析式为y=﹣2x+12,故选:D.【点评】本题主要考查了矩形和菱形的性质,中点坐标的特征,直角三角形的边角关系定理,利用待定系数法确定函数的解析式是解题的关键.12.(3分)(2022•泸州)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为()A.B.C.D.1【分析】根据正方形的性质、相似三角形的判定和性质,可以求得CN和BN 的长,然后根据BC=3,即可求得MN的长.【解答】解:作FH⊥BG交于点H,作FK⊥BC于点K,∵BF平分∠CBG,∠KBH=90°,∴正方形BHFK是正方形,∵DE⊥EF,∠EHF=90°,∴∠DEA+∠FEH=90°,∠EFH+∠FEH=90°,∴∠DEA=∠EFH,∵∠A=∠EHF=90°,∴△DAE∽△EHF,∴,∵正方形ABCD的边长为3,BE=2AE,∴AE=1,BE=2,设FH=a,则BH=a,∴,解得a=1;∵FM⊥CB,DC⊥CB,∴△DCN∽△FKN,∴,∵BC=3,BK=1,∴CK=2,设CN=b,则NK=2﹣b,∴,解得b=,即CN=,∵∠A=∠EBM,∠AED=∠BME,∴△ADE∽△BEM,∴,∴,解得BM=,∴MN=BC﹣CN﹣BM=3﹣﹣=,故选:B.【点评】本题考查正方形的性质、相似三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)(2022•泸州)点(﹣2,3)关于原点的对称点的坐标为(2,﹣3).【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点M(﹣2,3)关于原点对称,∴点M(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案为(2,﹣3).【点评】本题考查关于原点对称的点的坐标特征,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.14.(3分)(2022•泸州)若(a﹣2)2+|b+3|=0,则ab=﹣6 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,所以,ab=2×(﹣3)=﹣6.故答案为:﹣6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.(3分)(2022•泸州)若方程+1=的解使关于x的不等式(2﹣a)x﹣3>0成立,则实数a的取值范围是a<﹣1 .【分析】先解分式方程,再将x代入不等式中即可求解.【解答】解:+1=,+=,=0,解得:x=1,∵x﹣2≠0,2﹣x≠0,∴x=1是分式方程的解,将x=1代入不等式(2﹣a)x﹣3>0,得:2﹣a﹣3>0,解得:a<﹣1,∴实数a的取值范围是a<﹣1,故答案为:a<﹣1.【点评】本题考查分式方程的解,不等式的解集,解题的关键是正确求出分式方程的解,要注意分母不能为0.16.(3分)(2022•泸州)如图,在Rt△ABC中,∠C=90°,AC=6,BC=2,半径为1的⊙O在Rt△ABC内平移(⊙O可以与该三角形的边相切),则点A 到⊙O上的点的距离的最大值为2+1 .【分析】连接OE、OF,根据正切的定义求出∠ABC,根据切线长定理得到∠OBF =30°,根据含30°角的直角三角形的性质、勾股定理计算,得到答案.【解答】解:当⊙O与BC、BA都相切时,连接AO并延长交⊙O于点D,则AD 为点A到⊙O上的点的距离的最大值,设⊙O与BC、BA的切点分别为E、F,连接OE、OF,则OE⊥BC,OF⊥AB,∵AC=6,BC=2,∴tan∠ABC==,AB==4,∴∠ABC=60°,∴∠OBF=30°,∴BF==,∴AF=AB﹣BF=3,∴OA==2,∴AD=2+1,故答案为:2+1.【点评】本题考查的是切线的性质、直角三角形的性质、切线长定理,根据题意得出AD为点A到⊙O上的点的距离的最大值是解题的关键.三、本大题共3个小题,每小题6分,共18分.17.(6分)(2022•泸州)计算:()0+2﹣1+cos45°﹣|﹣|.【分析】根据实数的运算法则,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值直接计算即可.【解答】解:原式=1++×﹣=1++1﹣=1+1=2.【点评】本题考查实数的运算,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值,解题的关键是熟练掌握知识点,正确计算.18.(6分)(2022•泸州)如图,E,F分别是▱ABCD的边AB,CD上的点,已知AE =CF.求证:DE=BF.【分析】根据平行四边形的性质,可以得到∠A=∠C,AD=CB,再根据AE=CF,利用SAS可以证明△ADE和△CBF全等,然后即可证明结论成立.【解答】证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴DE=BF.【点评】本题考查平行四边形的性质、全等三角形的判定与性质,解答本题的关键是证明△ADE和△CBF全等.19.(6分)(2022•泸州)化简:(+1)÷.【分析】先把括号部分通分并计算加法,再根据分式的乘除法法则化简即可.【解答】解:原式====.【点评】本题考查了分式的混合运算,掌握分式的通分以及相关乘法公式是解答本题的关键.四、本大题共2个小题,每小题7分,共14分.20.(7分)(2022•泸州)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:劳动时间t(单位:小频数时)0.5≤t<1 121≤t<1.5 a1.5≤t<2 282≤t<2.5 162.5≤t≤3 4(1)m=80 ,a=20 ;(2)若该校学生有640人,试估计劳动时间在2≤t≤3范围的学生有多少人?(3)劳动时间在2.5≤t≤3范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率.【分析】(1)用A组人数除以它所占的百分比得到m的值,然后m分别减去A、C、D、E组的人数得到a的值;(2)用640乘以D、E组的人数所占的百分比的和即可;(3)画树状图展示所有12种等可能的结果,找出一名男生和一名女生的结果数,然后根据概率公式求解.【解答】解:(1)m=12÷15%=80,a=80﹣12﹣28﹣16﹣4=20;故答案为:80;20;(2)640×=160(人),所以估计劳动时间在2≤t≤3范围的学生有160人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8,所以恰好抽到一名男生和一名女生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图.21.(7分)(2022•泸州)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?【分析】(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y 元,根据“购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,利用总价=单价×数量,结合购进A种农产品的件数不超过B种农产品件数的3倍且总价不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,设两种农产品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,依题意得:,解得:.答:每件A种农产品的价格是120元,每件B种农产品的价格是150元.(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,依题意得:,解得:20≤m≤30.设两种农产品全部售出后获得的总利润为w元,则w=(160﹣120)m+(200﹣150)(40﹣m)=﹣10m+2000.∵﹣10<0,∴w随m的增大而减小,∴当m=20时,w取得最大值,此时40﹣m=40﹣20=20.答:当购进20件A种农产品,20件B种农产品时获利最多.【点评】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.五、本大题共2个小题,每小题8分,共16分.22.(8分)(2022•泸州)如图,直线y=﹣x+b与反比例函数y=的图象相交于点A,B,已知点A的纵坐标为6.(1)求b的值;(2)若点C是x轴上一点,且△ABC的面积为3,求点C的坐标.【分析】(1)先求出点A坐标,代入解析式可求解;(2)先求出点D坐标,由面积的和差关系可求CD=2,即可求解.【解答】解:(1)∵点A在反比例函数y=上,且A的纵坐标为6,∴点A(2,6),∵直线y=﹣x+b经过点A,∴6=﹣×2+b,∴b=9;(2)如图,设直线AB与x轴的交点为D,设点C(a,0),∵直线AB与x轴的交点为D,∴点D(6,0),由题意可得:,∴,,∴点B(4,3),∵S△ACB=S△ACD﹣S△BCD,∴3=×CD×(6﹣3),∴CD=2,∴点C(4,0)或(8,0).【点评】本题是反比例函数综合题,考查一次函数的应用、反比例函数的应用等知识,解题的关键是灵活运用所学知识解决问题,学会分割法求三角形的面积.23.(8分)(2022•泸州)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).【分析】由勾股定理求出AB过D作DH⊥AB于H,分别在Rt△ADH中和Rt△BDH中,解直角三角形即可求出BD.【解答】解:由题意得,∠CAB=∠ABC=45°,BC=8nmile.∴∠C=90°,∴AB==BC=8=16(nmile),过D作DH⊥AB于H,则∠AHD=∠BHD=90°,在Rt△ADH中,∠ADH=30°,AD=10nmile,cos∠ADH=,∴AH=AD=5nmile,DH=10•cos30°=10×=5,∴BH=AB﹣AH=11nmile,在Rt△BDH中,BD===14(nmile),答:B,D间的距离是14nmile.【点评】本题主要考查了解直角三角形的应用,正确作出辅助线构造出直角三角形是解决问题的关键.六、本大题共2个小题,每小题12分,共24分.24.(12分)(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB 交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.(1)求证:FD∥AB;(2)若AC=2,BC=,求FD的长.【分析】(1)连接OD,证明DF⊥OD,AB⊥OD,可得结论;(2)过点C作CH⊥AB于点H.利用勾股定理求出AB,利用面积法求出CH,证明△CHO∽△ODF,推出=,由此求出DF即可.【解答】(1)证明:连接OD.∵DF是⊙O的切线,∴OD⊥DF,∵CD平分∠ACB,∴=,∴OD⊥AB,∴AB∥DF;(2)解:过点C作CH⊥AB于点H.∵AB是直径,∴∠ACB=90°,∵BC=,AC=2,∴AB===5,∵S△ABC=•AC•BC=•AB•CH,∴CH==2,∴BH==1,∴OH=OB﹣BH=﹣1=,∵DF∥AB,∴∠COH=∠F,∵∠CHO=∠ODF=90°,∴△CHO∽△ODF,∴=,∴=,∴DF=.【点评】本题属于圆综合题,考查了垂径定理,圆周角定理,平行线的判定,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.25.(12分)(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.【分析】(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中列方程组解出即可;(2)利用待定系数可得直线AB的解析式,再设直线DE的解析式为:y=mx,点D是直线DE和AB的交点,列方程可得点D的横坐标,根据△BDO与△OCE 的面积相等列等式可解答;(3)设P(t,﹣t2+t+4),分两种情况:作辅助线构建相似三角形,证明三角形相似或利用等角的三角函数列等式可解答.【解答】解:(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中得:解得:;(2)由(2)知:抛物线解析式为:y=﹣x2+x+4,设直线AB的解析式为:y=kx+b,则,解得:,∴AB的解析式为:y=2x+4,设直线DE的解析式为:y=mx,∴2x+4=mx,∴x=,当x=3时,y=3m,∴E(3,3m),∵△BDO与△OCE的面积相等,CE⊥OC,∴•3•(﹣3m)=•4•,∴9m2﹣18m﹣16=0,∴(3m+2)(3m﹣8)=0,∴m1=﹣,m2=(舍),∴直线DE的解析式为:y=﹣x;(3)存在,B,F,G,P为顶点的四边形是以BF为一边的矩形有两种情况:设P(t,﹣t2+t+4),①如图1,过点P作PH⊥y轴于H,∵四边形BPGF是矩形,∴BP=FG,∠PBF=∠BFG=90°,∴∠CFG+∠BFO=∠BFO+∠OBF=∠CFG+∠CGF=∠OBF+∠PBH=90°,∴∠PBH=∠OFB=∠CGF,∵∠PHB=∠FCG=90°,∴△PHB≌△FCG(AAS),∴PH=CF,∴CF=PH=t,OF=3﹣t,∵∠PBH=∠OFB,∴=,即=,解得:t1=0(舍),t2=1,∴F(2,0);②如图2,过点G作GN⊥y轴于N,过点P作PM⊥x轴于M,同①可得:NG=FM=3,OF=t﹣3,∵∠OFB=∠FPM,∴tan∠OFB=tan∠FPM,∴=,即=,解得:t1=,t2=(舍),∴F(,0);综上,点F的坐标为(2,0)或(,0).【点评】本题是二次函数的综合题,考查了二次函数的相关性质,一次函数的相关性质,矩形的性质和判定,三角形全等的性质和判定,三角函数,解一元二次方程等知识,第三问有难度,正确作辅助线构建直角三角形是解本题的关键.第31页(共31页)。

(立体几何基础题)(原卷版)-2020-2021学年高一数学下学期期末考试考前必刷题

(立体几何基础题)(原卷版)-2020-2021学年高一数学下学期期末考试考前必刷题

2020-2021高一下学期期末考试考前必刷题(苏教版 2019)(立体几何基础题)一、单选题1.(2021·江苏高一课时练习)已知直线a∥平面α,直线a∥平面β,α∩β=b,直线a与直线b()A.相交B.平行C.异面D.不确定2.(2021·江苏高一课时练习)已知平面与平面平行,且直线,则下列说法正确的是()A.与内所有直线平行B.与内的无数条直线平行C.与内的任何一条直线都不平行D.与内的任何一条直线平行3.(2021·江苏高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则该棱台的体积是()A.18+6B.6+C.24D.184.(2021·江苏高一课时练习)在正方体ABCD-A1B1C1D1中,截面A1BD与底面ABCD所成的二面角A1-BD-A的正切值等于()A.B.C.D.5.(2021·江苏高一课时练习)已知一个二面角的两个半平面分别平行于另一个二面角的两个半平面,若这两个二面角的平面角均为锐角,则这两个二面角的关系是()A.相等B.互补C.相等或互补D.既不相等也不互补6.(2021·江苏高一课时练习)侧面都是等腰直角三角形的正三棱锥,底面边长为a时,该三棱锥的表面积是()A.a2B.a2C.a2D.a27.(2021·江苏高一课时练习)已知长方体的表面积是24 cm2,过同一顶点的三条棱长之和是6 cm,则它的体对角线长是()A.cm B.4 cm C.cm D.cm8.(2021·江苏高一课时练习)已知平面α与平面β、γ都相交,则这三个平面可能的交线有()A.1条或2条B.2条或3条C .1条或3条D .1条或2条或3条9.(2021·江苏高一课时练习)如图所示,定点A 和B 都在平面α内,定点P∥α,PB∥α,C 是平面α内异于A 和B 的动点,且PC∥AC ,则∥ABC 为 ( )A .锐角三角形B .直角三角形C .钝角三角形D .无法确定10.(2021·江苏高一课时练习)过球面上任意两点A ,B 作大圆,可能的个数是 ( )A .有且只有一个B .一个或无穷多个C .无数个D .以上均不正确11.(2021·江苏高一课时练习)如图所示,∥A′B′C′是水平放置的∥ABC 的直观图,则在∥ABC 的三边及中线AD 中,最长的线段是 ( )A .AB B .ADC .BCD .AC12.(2021·江苏高一课时练习)将半径为1,圆心角为的扇形围成一个圆锥,则该圆锥的体积为( ) A . B . C . D .13.(2021·江苏高一课时练习)如图的正方体ABCD - A ’B ’C ’D ’中,二面角D ’-AB -D 的大小是A .300B .450C .600D .90014.(2021·江苏高一课时练习)已知S 为四边形外一点,分别为上的点,若平面,则A .//GH SAB .//GH SDC .//GH SCD .以上均有可能15.(2021·江苏高一课时练习)在三棱柱111ABC A B C 中,各棱长均相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是A .B .C .D .16.(2021·江苏高一课时练习)下列命题正确的是( )A .如果一条直线不在平面内,则这条直线就与这个平面平行B .过直线外一点,可以作无数个平面与这条直线平行C.如果一条直线与平面平行,则它与平面内的任何直线平行D.如果一条直线平行于平面内的无数条直线,则该直线与平面平行二、填空题17.(2021·江苏高一课时练习)已知三个球的表面积之比是,则这三个球的体积之比为________. 18.(2021·江苏高一课时练习)已知和是异面直线,且平面,平面,,,则平面与的位置关系是________.19.(2021·江苏高一课时练习)已知一个正四棱柱的对角线的长是9 cm,表面积等于144 cm2,则这个棱柱的侧面积为________ cm2.20.(2021·江苏高一课时练习)有一塔形空间图形由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,则该塔形空间图形的表面积(含最底层正方体的底面面积)为________.21.(2021·江苏高一课时练习)如图,在正方体ABCD —A1B1C1D1中,三棱锥D1—AB1C的表面积与正方体的表面积的比为________.22.(2021·江苏高一课时练习)一个正四棱台,其上、下底面均为正方形,边长分别为8 cm和18 cm,侧棱长为13 cm,则其表面积为____ cm2.23.(2021·江苏高一课时练习)下列说法正确的是________(填序号).①底面是正多边形的棱锥为正棱锥;②各侧棱都相等的棱锥为正棱锥;③各侧面都是等腰三角形的棱锥为正棱锥;④各侧面都是全等的等腰三角形的棱锥是正棱锥;⑤底面是正多边形且各侧面全等的棱锥为正棱锥.24.(2021·江苏高一课时练习)从正方体ABCD-A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:(1)矩形的4个顶点;(2)每个面都是等边三角形的四面体的4个顶点;(3)每个面都是直角三角形的四面体的4个顶点;(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.其中正确结论的个数为________.25.(2021·江苏高一课时练习)水平放置的斜二测直观图如图所示,已知,,则边上的中线的长度为______.26.(2021·江苏高一课时练习)如图,在五面体FE-ABCD中,四边形CDEF为矩形,M、N分别是BF、BC的中点,则MN与平面ADE的位置关系是_______.27.(2021·江苏高一课时练习)已知正三棱锥的棱长都为2,则侧面和底面所成二面角的余弦值为________.28.(2021·江苏高一课时练习)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的母线长为________.29.(2021·江苏高一课时练习)在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分别为棱CC1、C1D1、D1D、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.30.(2021·江苏高一课时练习)已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG是_______四边形.31.(2021·江苏高一课时练习)如图.M是棱长为2cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是______cm.32.(2021·江苏高一课时练习)三棱锥S-ABC中,G为∥ABC的重心,E在棱SA上,且AE=2ES,则EG与平面SBC的关系为________.。

2019-2020学年山西省太原市高一下学期期末数学试卷 (解析版)

2019-2020学年山西省太原市高一下学期期末数学试卷 (解析版)

2019-2020学年山西省太原市高一第二学期期末数学试卷一、选择题(共12小题).1.在等差数列{a n}中,a1=1,d=2,则a4=()A.5B.7C.8D.162.不等式x(x﹣1)>0的解集是()A.(﹣∞,0)B.(0,1)C.(1,+∞)D.(﹣∞,0)∪(1,+∞)3.已知向量=(2,1),=(﹣1,k),⊥,则实数k的值为()A.2B.﹣2C.1D.﹣14.在△ABC中,A=30°,b=,c=1,则a=()A.2B.C.D.15.已知a<b,则下列结论正确的是()A.a2<b2B.<1C.>D.2a<2b6.在等比数列{a n}中,若a1a3a5=8,则a2a4=()A.2B.4C.±2D.±47.cos45°cos15°+sin15°sin45°的值为()A.B.C.D.8.若||=1,||=2,且,的夹角为120°,则|+|的值()A.1B.C.D.29.在数列{a n}中,a1=0,a n+1=(n∈N*),则a2020=()A.0B.C.﹣D.10.已知x>0,y>0,且x+2y=1,则+的最小值是()A.+1B.3+2C.﹣1D.3﹣211.若不等式ax2+2ax﹣1<0对于一切实数x都恒成立,则实数a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,0)C.(﹣1,0]D.[0,+∞)12.已知等差数列{a n}满足a1>0,a2019+a2020>0,a2019•a2020<0.其前n项和为S n,则使S n>0成立时n最大值为()A.2020B.2019C.4040D.4038二、填空题:本大题共4个小题,每个小题3分,共12分,把答案填在横线上.13.已知扇形的半径为1,圆心角为45°,则该扇形的弧长为.14.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°处;行驶4h后,船到达C处,看到这个灯塔在北偏东15°处.这时船与灯塔的距离为km.15.已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,则+的值为.16.已知数列{a n}满足a n+1+(﹣1)n a n=2n﹣l(n∈N*),则该数列的前80项和为.三、解答题(共3小题,满分30分)17.已知等差数列{a n}中,a2=3,a4=7.等比数列{b n}满足b1=a1,b4=a14.(1)求数列{a n}通项公式a n;(2)求数列{b n}的前n项和S n.18.已知sinα=,α∈(,π).(1)求cosα,tanα;(2)求的值.19.已知△ABC中,A=60°,a=6,B=45°.(1)求b;(2)求△ABC的面积.(请同学们在甲,乙两题中任选一题作答)20.已知向量=(1,cos x),=(1+sin x,1),x∈R,函数f(x)=•﹣1,(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≥1,求x的取值范围.选做题21.已知向量=(1,cos2x),=(1+sin2x,1),x∈R,函数f(x)=•.(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≤2,求x的取值范围.(请同学们在甲、乙两题中任选一题作答)22.已知数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).(1)证明:{}为等差数列;(2)设b n=(n∈N*),求数列{b n}的前n项和S n.选做题23.已知数列{a n}满足a1=5,a n+1=2a n+2n+1﹣1(n∈N*),b n=(n∈N*).(1)是否存在实数λ,使得{b n}为等差数列?若存在,求出λ的值;若不存在,请说明理由.(2)利用(1)的结论,求数列{a n}的前n项和S n.参考答案一、选择题:本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其字母标号填入下表相应位置.1.在等差数列{a n}中,a1=1,d=2,则a4=()A.5B.7C.8D.16【分析】由已知直接利用等差数列的通项公式求解.解:在等差数列{a n}中,由a1=1,d=2,得a4=a1+3d=1+3×2=7.故选:B.2.不等式x(x﹣1)>0的解集是()A.(﹣∞,0)B.(0,1)C.(1,+∞)D.(﹣∞,0)∪(1,+∞)【分析】可以先求出方程x(x﹣1)=0的根,根据一元二次不等式的解法,进行求解;解:x(x﹣1)=0,可得x=1或0,不等式x(x﹣1)>0,解得{x|x>1或x<0},故选:D.3.已知向量=(2,1),=(﹣1,k),⊥,则实数k的值为()A.2B.﹣2C.1D.﹣1【分析】根据条件便有,进行向量数量积的坐标运算便可得出k的值.解:∵;∴;∴k=2.故选:A.4.在△ABC中,A=30°,b=,c=1,则a=()A.2B.C.D.1【分析】利用余弦定理即可求出a的值.解:因为A=30°,b=,c=1,∴a2=b2+c2﹣2bc cos A==1,故a=1.故选:D.5.已知a<b,则下列结论正确的是()A.a2<b2B.<1C.>D.2a<2b【分析】通过举例利用排除法可得ABC不正确,即可得出结论.解:由a<b,取a=﹣2,b=﹣1,可知A,B不正确;取a=﹣1,b=1,可得C不正确.故选:D.6.在等比数列{a n}中,若a1a3a5=8,则a2a4=()A.2B.4C.±2D.±4【分析】根据等比数列的性质知:a1a3a5=(a2q)3=8,a2q=a3=2,a2a4=a32=4.解:设等比数列{a n}的公比为q,则a1a3a5=•a2q•a2q3=(a2q)3=8,则a2q=a3=2.又a2a4=•a3q=a32=22=4.故选:B.7.cos45°cos15°+sin15°sin45°的值为()A.B.C.D.【分析】直接利用两角差的余弦公式,求得所给式子的值.解:cos45°cos15°+sin15°sin45°=(cos45°﹣15°)=cos30°=,故选:B.8.若||=1,||=2,且,的夹角为120°,则|+|的值()A.1B.C.D.2【分析】根据向量的平方等于模的平方,利用数量积定义和数量积的性质即可得出.解:∵||=1,||=2,且,的夹角为120°,∴=1,=4,•=﹣1,∴|+|2=(+)2=+﹣2•=1+4﹣2=3,故|+|=,故选:B.9.在数列{a n}中,a1=0,a n+1=(n∈N*),则a2020=()A.0B.C.﹣D.【分析】利用数列{a n}的通项公式求出数列{a n}的前4项,得到{a n}是周期为3的周期数列,从而a2020=a1,由此能求出结果.解:在数列{a n}中,a1=0,a n+1=(n∈N*),∴=,=﹣,=0,∴{a n}是周期为3的周期数列,∵2020=673×3+1,∴a2020=a1=0.故选:A.10.已知x>0,y>0,且x+2y=1,则+的最小值是()A.+1B.3+2C.﹣1D.3﹣2【分析】利用“乘1法”与基本不等式的性质即可得出.解:因为x>0,y>0,且x+2y=1,则+=(+)(x+2y)=3+,当且仅当且x+2y=1即y==,x=时取等号,故选:B.11.若不等式ax2+2ax﹣1<0对于一切实数x都恒成立,则实数a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,0)C.(﹣1,0]D.[0,+∞)【分析】由已知对a进行分类讨论,然后结合二次不等式的性质可求.解:当a=0时,﹣1<0恒成立,当a≠0时,可得,解可得,﹣1<a<0,综上可得,﹣1<a≤0,故选:C.12.已知等差数列{a n}满足a1>0,a2019+a2020>0,a2019•a2020<0.其前n项和为S n,则使S n>0成立时n最大值为()A.2020B.2019C.4040D.4038【分析】差数列{a n}的首项a1>0,a2019+a2020>0,a2019•a2020<0,可得a2019>0,a2020<0.再利用求和公式及其性质即可得出..解:∵等差数列{a n}的首项a1>0,a2019+a2020>0,a2019•a2020<0,∴a2019>0,a2020<0.于是S4038==>0,S4039==4039•a2020<0.∴使S n>0成立的最大正整数n是4038.故选:D.二、填空题:本大题共4个小题,每个小题3分,共12分,把答案填在横线上.13.已知扇形的半径为1,圆心角为45°,则该扇形的弧长为.【分析】根据弧长公式进行计算即可.解:由题意得,扇形的半径为8cm,圆心角为45°,故此扇形的弧长为:=.故答案为:.14.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°处;行驶4h后,船到达C处,看到这个灯塔在北偏东15°处.这时船与灯塔的距离为30 km.【分析】根据题意画出相应的图形,求出∠B与∠BAC的度数,再由AC的长,利用正弦定理即可求出BC的长.解:根据题意画出图形,如图所示,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:=,即=,∴BC=30km,则这时船与灯塔的距离为30km.故答案为:3015.已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,则+的值为2.【分析】由题意可得b2=ac,2x=a+b,2y=b+c,代入要求的式子+,化简求得结果.解:∵已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,可得b2=ac,2x=a+b,2y=b+c,∴+=+===2,故答案为2.16.已知数列{a n}满足a n+1+(﹣1)n a n=2n﹣l(n∈N*),则该数列的前80项和为3240.【分析】由数列递推式判断数列的特征,4项一组,求和后得到一个等差数列,然后求和即可.解:设a1=a,由a n+1+(﹣1)n a n=2n﹣l,得a2=a+1,a3=2﹣a,a4=7﹣a,a5=a,a6=a+9,a7=2﹣a,a8=15﹣a,a9=a,a10=a+17,a11=2﹣a,a12=23﹣a.可知:a1+a2+a3+a4=10,a5+a6+a7+a8=26,a9+a10+a11+a12=42,…10,26,42,…是等差数列,公差为16,∴数列{a n}的前80项和为:20×10+×16=3240.故答案为:3240.三、解答题(共3小题,满分30分)17.已知等差数列{a n}中,a2=3,a4=7.等比数列{b n}满足b1=a1,b4=a14.(1)求数列{a n}通项公式a n;(2)求数列{b n}的前n项和S n.【分析】(1)设等差数列{a n}的公差为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;(2)设等比数列{b n}的公比为q,运用等比数列的通项公式,解方程可得公比,进而得到所求和.解:(1)设等差数列{a n}的公差为d,由a2=3,a4=7,可得a1+d=3,a1+3d=7,解得a1=1,d=2,则a n=1+2(n﹣1)=2n﹣1,n∈N*;(2)设等比数列{b n}的公比为q,由b1=a1=1,b4=a14=q3=27,解得q=3,数列{b n}的前n项和S n==(3n﹣1).18.已知sinα=,α∈(,π).(1)求cosα,tanα;(2)求的值.【分析】(1)由题意利用同角三角函数的基本关系,求得结果.(2)由题意利用诱导公式,求得结果.解:(1)∴已知sinα=,α∈(,π),∴cosα=﹣=﹣,∴tanα==﹣.(2)==﹣cos2α=﹣.19.已知△ABC中,A=60°,a=6,B=45°.(1)求b;(2)求△ABC的面积.【分析】(1)由已知利用正弦定理可得b的值.(2)由已知利用两角和的正弦函数公式可求sin C的值,进而根据三角形的面积公式即可求解.解:(1)∵△ABC中,A=60°,a=6,B=45°.∴由正弦定理,可得b===2.(2)∵A+B+C=180°,A=60°,B=45°.∴sin C=sin(A+B)=sin A cos B+cos A sin B=+=,∴S△ABC=ab sin C=×=9+3.(请同学们在甲,乙两题中任选一题作答)20.已知向量=(1,cos x),=(1+sin x,1),x∈R,函数f(x)=•﹣1,(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≥1,求x的取值范围.【分析】(1)写出f(x)解析式,根据正弦函数的周期及对称中心可得答案;(2)条件等价于sin(x+)≥,解之即可解:由题可得f(x)==1+sin x+cos x﹣1=sin(x+),(1)由f(x)解析式可得其最小正周期T=2π,令x+=kπ,则x=kπ﹣,k∈Z,即f(x)的对称中心为(kπ﹣,0),k∈Z;(2)由f(x)≥1得sin(x+)≥,解得2kπ+≤x+≤2kπ+π,k∈Z,则2kπ≤x≤2kπ+,k∈Z,所以x的取值范围为[2kπ,2kπ+](k∈Z).选做题21.已知向量=(1,cos2x),=(1+sin2x,1),x∈R,函数f(x)=•.(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≤2,求x的取值范围.【分析】(1)根据平面向量数量积的运算得到f(x)解析式,结合正弦函数性质即可得到答案;(2)由f(x)≤2得到sin(2x+)≤,解之即可解:由题得f(x)==1+sin2x+cos2x=1+sin(2x+)(1)则函数f(x)的最小正周期为T==π,令2x+=kπ,解得x=(k∈Z),即函数的对称中心为(,1)(k∈Z);(2)当f(x)≤2时,即1+sin(2x+)≤2,所以sin(2x+)≤,则﹣+2kπ≤2x+≤+2kπ,解得﹣+kπ≤x≤kπ(k∈Z),即x的取值范围是[﹣+kπ,kπ](k∈Z)(请同学们在甲、乙两题中任选一题作答)22.已知数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).(1)证明:{}为等差数列;(2)设b n=(n∈N*),求数列{b n}的前n项和S n.【分析】(1)直接利用定义的应用求出结果.(2)利用(1)的应用求出数列的通项公式,进一步利用裂项相消法在数列求和中的应用求出结果.【解答】证明:(1)数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).整理得:(常数),所以数列{}是以为首项,1为公差的等差数列.解:(2)由(1)得:,解得:a n=n(n+2).所以.所以:==选做题23.已知数列{a n}满足a1=5,a n+1=2a n+2n+1﹣1(n∈N*),b n=(n∈N*).(1)是否存在实数λ,使得{b n}为等差数列?若存在,求出λ的值;若不存在,请说明理由.(2)利用(1)的结论,求数列{a n}的前n项和S n.【分析】(1)由a n+1=2a n+2n+1﹣1,得,然后利用累加法求得数列{a n}的通项公式,再由等差数列的定义求使{b n}为等差数列的λ值;(2)由(1)知,,令{(n+1)•2n}的前n项和为T n,利用错位相减法求得T n,进一步求得数列{a n}的前n项和S n.解:由a n+1=2a n+2n+1﹣1,得,∴,得,,,…(n≥2).累加得:==.∴(n≥2).a1=5适合上式,∴.则b n==.=.若{b n}为等差数列,则λ﹣1=0,即λ=1.故存在实数λ=1,使得{b n}为等差数列;(2)由(1)知,.令{(n+1)•2n}的前n项和为T n,则,.∴=,得.∴数列{a n}的前n项和S n=n•2n+1+n.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年四川省泸州市高一第二学期期末数学试卷一、选择题(共12小题).1.设集合A={x|x<3},B={1,2,3,4},则A∩B=()A.{0}B.{0,1}C.{1,2}D.{0,1,2}2.已知角α的顶点与平面直角坐标系的原点重合,始边与x轴的非负半轴重合,终边经过点P(),则sinα的值是()A.B.C.D.3.下列函数在定义域上是增函数的是()A.y=B.y=log x C.y=()x D.y=x34.已知向量=(2,3),=(m,4),若共线,则实数m=()A.﹣6B.C.D.65.首项为2,公比为3的等比数列{a n}的前n项和为S n,则()A.3a n=2S n﹣2B.3a n=2S n+2C.a n=2S n﹣2D.a n=3S n﹣4 6.下列命题中,错误的是()A.平行于同一条直线的两个平面平行B.平行于同一个平面的两个平面平行C.一个平面与两个平行平面相交,交线平行D.一条直线与两个平行平面中的一个相交,则必与另一个相交7.已知tanα,tanβ是一元二次方程x2+2x﹣5=0的两实根,则tan(α+β)=()A.B.C.D.8.一个几何体的三视图如图,则该几何体的体积为()A.πB.C.D.9.已知函数f(x)=(x﹣1)(ax+1)为偶函数,则m=f(log23),n=f(log25),r=f(1)的大小关系正确的是()A.m>n>r B.n>m>r C.m>r>n D.r>m>n10.关于函数f(x)=sin(2x+)(x∈R),给出下列命题:(1)函数f(x)在(,)上是增函数;(2)函数f(x)的图象关于点(,0)(k∈Z)对称;(3)为得到函数g(x)=sin2x的图象,只要把函数f(x)的图象上所有的点向右平行移动个单位长度.其中正确命题的个数是()A.0B.1C.2D.311.如图,边长为1的等边△ABC中,AD为边BC上的高,P为线段AD上的动点,则的取值范围是()A.[﹣,0]B.[0,]C.[﹣,+∞]D.[﹣,0]12.设函数f(x)的定义域为R,满足,且当x∈(0,1]时,f(x)=x(x ﹣1).若对任意x∈[m,+∞),都有,则m的最小值是()A.B.C.D.二、填空题(共4小题).13.已知sin(﹣α)=,则cos2α=.14.已知边长为2的等边△ABC中,则向量在向量方向上的投影为.15.若三棱锥S﹣ABC的三条侧棱两两垂直,且SA=2,SB=3,SA=4,则此三棱锥的外接球的表面积是.16.设数列{a n}的前n项和S n满足S n﹣S n+1=S n S n+1(n∈N*),且a1=1,则a n=.三、解答题:共70分.17.设平面向量=(1,﹣2),=(3,4).(Ⅰ)求|3﹣|的值;(Ⅱ)若=(2,3)且(+t)⊥,求实数t的值.18.已知函数f(x)=2sin2x+2sin x cos x.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若x∈[0,],求函数f(x)的值域.19.在正项等比数列{a n}中,a4=16,且a2,a3的等差中项为a1+a2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=log2a2n﹣1,数列{b n}的前n项和为S n,求数列{}的前n项和T n.20.设△ABC的内角A,B,C的对边分别为a,b,c,已知2c cos C=a cos B+b cos A.(Ⅰ)求角C;(Ⅱ)若△ABC的面积为,且a+b=5,求c.21.如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=,BC=AD,Q为AD的中点,M是棱PC上的点.(Ⅰ)设平面PBQ∩平面PCD=直线l,求证:l∥BQ;(Ⅱ)若平面PAD⊥底面ABCD,PA=PD=2,BC=1,CD=,三棱锥P﹣MBQ的体积为,求的值.22.已知函数f(x)=ax2﹣2ax+1+b(a>0)在[2,3]上的最大值和最小值分别为4和1.(Ⅰ)求a,b的值;(Ⅱ)设函数g(x)=f(x)+log3(2x+1)﹣x2﹣1(x∈[1,3]),判断函数g(x)的图象与函数h(x)=﹣3x+k(其中k∈R)的图象交点个数,并说明理由.参考答案一、选择题(共12小题).1.设集合A={x|x<3},B={1,2,3,4},则A∩B=()A.{0}B.{0,1}C.{1,2}D.{0,1,2}【分析】求出集合A,B,由此能求出A∩B.解:∵集合A={x|x<3},B={1,2,3,4},∴A∩B={1,2}.故选:C.2.已知角α的顶点与平面直角坐标系的原点重合,始边与x轴的非负半轴重合,终边经过点P(),则sinα的值是()A.B.C.D.【分析】由题意利用任意角的三角函数的定义,求得sinα的值.解:角α的顶点与平面直角坐标系的原点重合,始边与x轴的非负半轴重合,终边经过点P(),则sinα=,故选:D.3.下列函数在定义域上是增函数的是()A.y=B.y=log x C.y=()x D.y=x3【分析】判断每个选项函数在其定义域上的单调性即可.解:在定义域上没有单调性,和在定义域上都是减函数,y=x3在定义域R上是增函数.故选:D.4.已知向量=(2,3),=(m,4),若共线,则实数m=()A.﹣6B.C.D.6【分析】利用向量平行的性质直接求解.解:∵向量=(2,3),=(m,4),共线,∴,解得实数m=.故选:C.5.首项为2,公比为3的等比数列{a n}的前n项和为S n,则()A.3a n=2S n﹣2B.3a n=2S n+2C.a n=2S n﹣2D.a n=3S n﹣4【分析】根据等比数列的前n项和公式进行计算.解:因为a1=2,q=3,所以S n==,所以3a n=2S n+2,故选:B.6.下列命题中,错误的是()A.平行于同一条直线的两个平面平行B.平行于同一个平面的两个平面平行C.一个平面与两个平行平面相交,交线平行D.一条直线与两个平行平面中的一个相交,则必与另一个相交【分析】平行于同一条直线的两个平面平行或相交;由面面平行的判定定理,可得结论;由面面平行的性质定理,可得结论;利用反证法,可得结论.解:平行于同一条直线的两个平面平行或相交,即A不正确;由面面平行的判定定理,可得平行于同一个平面的两个平面平行,即B正确;由面面平行的性质定理,可得一个平面与两个平行平面相交,交线平行,即C正确;利用反证法,可得一条直线与两个平行平面中的一个相交,则必与另一个相交,即D正确.故选:A.7.已知tanα,tanβ是一元二次方程x2+2x﹣5=0的两实根,则tan(α+β)=()A.B.C.D.【分析】直接利用一元二次方程根和系数关系式的应用和和角公式的运用求出结果.解:tanα,tanβ是一元二次方程x2+2x﹣5=0的两实根,则:tanα+tanβ=﹣2,tanα•tanβ=﹣5,故=.故选:D.8.一个几何体的三视图如图,则该几何体的体积为()A.πB.C.D.【分析】由已知的三视图可得:该几何体是一个以俯视图为底面的半圆锥,代入锥体体积公式,可得答案.解:由已知的三视图可得:该几何体是一个以俯视图为底面的半圆锥,其底面面积S==,高h=1,故半圆锥的体积V==,故选:D.9.已知函数f(x)=(x﹣1)(ax+1)为偶函数,则m=f(log23),n=f(log25),r=f(1)的大小关系正确的是()A.m>n>r B.n>m>r C.m>r>n D.r>m>n【分析】根据题意,由偶函数的定义可得f(﹣x)=f(x),即(﹣x﹣1)(﹣ax+1)=(x﹣1)(ax+1),变形分析可得a的值,结合二次函数的性质可得f(x)在区间(0,+∞)上为增函数,据此分析可得答案.解:根据题意,函数f(x)=(x﹣1)(ax+1)为偶函数,则f(﹣x)=f(x),即(﹣x﹣1)(﹣ax+1)=(x﹣1)(ax+1),变形可得:(a﹣1)x=0,则有a=1,则f(x)=(x﹣1)(x+1)=x2﹣1,为开口向上的二次函数,在区间(0,+∞)上为增函数,又由log25>log23>1,则有n>m>r,故选:B.10.关于函数f(x)=sin(2x+)(x∈R),给出下列命题:(1)函数f(x)在(,)上是增函数;(2)函数f(x)的图象关于点(,0)(k∈Z)对称;(3)为得到函数g(x)=sin2x的图象,只要把函数f(x)的图象上所有的点向右平行移动个单位长度.其中正确命题的个数是()A.0B.1C.2D.3【分析】(1),由x∈(,)时,可得2x+,由y=sin x 的单调性即可判断;(2),由2x+=kπ可得x=,k∈Z,即可判断;(3),根据函数f(x)的图象平行移动规则即可判断.解:对于(1),x∈(,)时,2x+,y=sin x在(﹣,)上不是增函数,故错;对于(2),由2x+=kπ可得x=,k∈Z,可得函数f(x)的图象关于点(,0)(k∈Z)对称,故正确;对于(3),函数f(x)的图象上所有的点向右平行移动个单位长度可得sin[2(x﹣)+]=sin2x,故正确;故选:C.11.如图,边长为1的等边△ABC中,AD为边BC上的高,P为线段AD上的动点,则的取值范围是()A.[﹣,0]B.[0,]C.[﹣,+∞]D.[﹣,0]【分析】可设,且,它们的夹角为60°,然后设=λ,λ∈[0,1],然后结合向量的加减法运算,将表示为关于λ的函数的形式,问题即可解决.解:由已知设,则,且<>=60°,由等边三角形的性质可知:,故可设,所以=(),所以==,λ∈[0,1].易知时,原式取最小值;λ=0或1时,原式取最大值0.故则的取值范围是.故选:A.12.设函数f(x)的定义域为R,满足,且当x∈(0,1]时,f(x)=x(x ﹣1).若对任意x∈[m,+∞),都有,则m的最小值是()A.B.C.D.【分析】,∴f(x)=2f(x+1),进而求解.解:∵,∴f(x)=2f(x+1)当x∈(0,1]时,f(x)=x(x﹣1)∈[,0],x∈(﹣1,0]时,x+1∈(0,1],f(x)=2f(x+1)=2(x+1)x∈[,0],x∈(﹣2,﹣1]时,x+1∈(﹣1,0],f(x)=2f(x+1)=4(x+2)(x+1)∈[﹣1,0],将函数大致图象在数值上画出,如图x∈(﹣2,﹣1]时,令4(x+2)(x+1)=﹣,解得:x1=,x2=﹣,若对任意x∈[m,+∞),都有f(x)≥﹣,所以m≥﹣,故选:A.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题纸上.13.已知sin(﹣α)=,则cos2α=﹣.【分析】由已知利用诱导公式可求cosα=,进而根据二倍角的余弦函数公式即可求解.解:∵sin(﹣α)=cosα=,∴cos2α=2cos2α﹣1=2×()2﹣1=﹣.故答案为:﹣.14.已知边长为2的等边△ABC中,则向量在向量方向上的投影为﹣1.【分析】可求出向量AB,BC的数量积,由向量在向量方向上的投影为,计算即可.解:∵=||||•cos(π﹣A)=2×2×(﹣cos)=﹣2,∴向量在向量方向上的投影为==﹣1.故答案为:﹣1.15.若三棱锥S﹣ABC的三条侧棱两两垂直,且SA=2,SB=3,SA=4,则此三棱锥的外接球的表面积是29π.【分析】将此三棱锥放在长方体中,由长方体的对角线等于其外接球的直径可得外接球的半径,再由球的表面积公式可得球的表面积.解:由题意可得将该三棱锥放在长方体中,且长方体的长宽高分别为SA=2,SB=3,SA=4,设外接球的半径为R,再由长方体的对角线等于其外接球的直径可得(2R)2=22+32+42=29,所以4R2=29,所以外接球的表面积S=4πR2=29π,故答案为:29π.16.设数列{a n}的前n项和S n满足S n﹣S n+1=S n S n+1(n∈N*),且a1=1,则a n=.【分析】利用已知条件推出是等差数列,然后求解通项公式,即可求解a n.解:数列{a n}的前n项和S n满足S n﹣S n+1=S n S n+1(n∈N*),可得=1,所以是等差数列,首项为1,公差为1,所以=n,S n=,a n==,n≥2,(n∈N*),所以a n=,故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.设平面向量=(1,﹣2),=(3,4).(Ⅰ)求|3﹣|的值;(Ⅱ)若=(2,3)且(+t)⊥,求实数t的值.【分析】(Ⅰ)由题意利用两个向量坐标形式的运算法则,求得3﹣的坐标,可得它的模.(Ⅱ)由题意利用两个向量垂直的性质,两个向量的数量积公式,求得t的值.解:(Ⅰ)∵向量=(1,﹣2),=(3,4),∴3﹣=(0,﹣10),∴|3﹣|==10.(Ⅱ)若=(2,3)且(+t)⊥,∵+t=(1+3t,﹣2+4t),∴(+t)•=2(1+3t)+3(﹣2+4t)=18t﹣4=0,∴实数t=.18.已知函数f(x)=2sin2x+2sin x cos x.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若x∈[0,],求函数f(x)的值域.【分析】(Ⅰ)利用三角函数的恒等变换化简函数的解析式,再利用正弦函数的周期性求得f(x)的最小正周期.(Ⅱ)利用正弦函数的定义域和值域,即可求解.解:(Ⅰ)∵f(x)=2sin2x+2sin x cos x=1﹣cos2x+sin2x=2sin(2x﹣)+1,∴函数f(x)的最小正周期T==π.(Ⅱ)∵x∈[0,],∴2x﹣∈[﹣,],∴sin(2x﹣)∈[﹣,1],∴f(x)=2sin(2x﹣)+1∈[0,3],即函数f(x)的值域为[0,3].19.在正项等比数列{a n}中,a4=16,且a2,a3的等差中项为a1+a2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=log2a2n﹣1,数列{b n}的前n项和为S n,求数列{}的前n项和T n.【分析】(Ⅰ)设正项等比数列{a n}的公比为q(q>0),由已知列关于首项与公比的方程组,求得首项与公比,则通项公式可求;(Ⅱ)把数列{a n}的通项公式代入b n=log2a2n﹣1,可得数列{b n}是等差数列,求得S n,再由裂项相消法求数列{}的前n项和T n.解:(Ⅰ)设正项等比数列{a n}的公比为q(q>0),由题意可得,解得.∴数列{a n}的通项公式为;(Ⅱ)由b n=log2a2n﹣1=log222n﹣1=2n﹣1.可得b1=1,又b n+1﹣b n=2(n+1)﹣1﹣2n+1=2,∴数列{b n}是以1为首项,以2为公差的等差数列,则.∴.则=.20.设△ABC的内角A,B,C的对边分别为a,b,c,已知2c cos C=a cos B+b cos A.(Ⅰ)求角C;(Ⅱ)若△ABC的面积为,且a+b=5,求c.【分析】(Ⅰ)根据正弦定理将已知条件中的边化为角,有2sin C cos C=sin A cos B+sin B cos A,再结合正弦的两角和公式与A+B+C=π,可知2sin C cos C=sin C,从而解得cos C=,再结合C的范围即可得解;(Ⅱ)由知,,解出ab的值后,利用平方和公式求出a2+b2,最后根据余弦定理c2=a2+b2﹣2ab cos C即可得解.解:(Ⅰ)由正弦定理知,==,因为2c cos C=a cos B+b cos A,所以2sin C cos C=sin A cos B+sin B cos A=sin(A+B)=sin C.因为sin C≠0,所以cos C=,因为C∈(0,π),所以C=.(Ⅱ)由知,,所以ab=6,又a+b=5,所以a2+b2=(a+b)2﹣2ab=52﹣2×6=13,由余弦定理知,c2=a2+b2﹣2ab cos C=13﹣2×6×=7,所以c=.21.如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=,BC=AD,Q为AD的中点,M是棱PC上的点.(Ⅰ)设平面PBQ∩平面PCD=直线l,求证:l∥BQ;(Ⅱ)若平面PAD⊥底面ABCD,PA=PD=2,BC=1,CD=,三棱锥P﹣MBQ的体积为,求的值.【分析】(Ⅰ)推导出四边形BCDQ为平行四边形,CD∥BQ,从而直线BQ∥平面PCD,由此能证明l∥BQ.(Ⅱ)推导出BC⊥QB,PQ⊥AD,PQ⊥BC,从而BC⊥平面PBQ,进而平面BCP⊥平面PQB,过M作⊥PB于E,则ME⊥平面PBQ,点M到平面PQB的距离h=ME,由三棱锥P﹣MBQ的体积为,求出h=,由此能求出.解:(Ⅰ)证明:∵AD∥BC,BC=AD,Q为AD的中点,∴四边形BCDQ为平行四边形,∴CD∥BQ,∵BQ⊄平面PCD,CD⊂平面PCD,∴直线BQ∥平面PCD,∵BQ⊂平面PBQ,且平面PBQ∩平面PCD=直线l,∴l∥BQ.(Ⅱ)解:∵∠ADC=90°,四这形BCDQ为平行四边形,∴BC⊥QB,∵PA=PD=2,Q为AD的中点,∴PQ⊥AD,∵平面PAD⊥底面ABCD,且平面PAD∩底面ABCD=AD,PQ⊂平面PAD,∴PQ⊥平面PAD,∴PQ⊥BC,∴BC⊥平面PBQ,∵BC⊂平面MQB,∴平面BCP⊥平面PQB,过M作ME⊥PB于E,则ME⊥平面PBQ,∴点M到平面PQB的距离h=ME,∵三棱锥P﹣MBQ的体积为,∴V P﹣MBQ=V M﹣BPQ=,解得h=,∵BC∥ME,∴M为PC的中点,∴=.22.已知函数f(x)=ax2﹣2ax+1+b(a>0)在[2,3]上的最大值和最小值分别为4和1.(Ⅰ)求a,b的值;(Ⅱ)设函数g(x)=f(x)+log3(2x+1)﹣x2﹣1(x∈[1,3]),判断函数g(x)的图象与函数h(x)=﹣3x+k(其中k∈R)的图象交点个数,并说明理由.【分析】(Ⅰ)根据函数对称轴为x=1可得其在[2,3]上单调递增,即有f(2)=1,f (3)=4,解出a,b即可;(Ⅱ)由(Ⅰ)得g(x),令G(x)=g(x)﹣(﹣3x+k),证明其在[1,3]上单调递增,进而可得函数g(x)的图象与函数h(x)=﹣3x+k(其中k∈R)的图象交点个数.解:(Ⅰ)由题可得函数f(x)的对称轴为x=1,则其在[2,3]上单调递增,故f(2)=4a﹣4a+1+b=1,f(3)=9a﹣6a+1+b=4,解得a=1,b=0,故f(x)=x2﹣2x+1;(Ⅱ)由(Ⅰ)知g(x)=x2﹣2x+1+log3(2x+1)﹣x2﹣1=log3(2x+1)﹣2x,令G(x)=g(x)﹣(﹣3x+k)=log3(2x+1)+x﹣k,任取1≤x1<x2≤3,则G(x1)﹣G(x2)=﹣=+(x1﹣x2),因为x1<x2,所以0<<1,即有<0,且x1﹣x2<0,所以y=G(x)为R上的单调增函数,所以函数g(x)的图象与函数h(x)=﹣3x+k(其中k∈一、选择题)的图象最多只有一个交点.。

相关文档
最新文档