电路分析 含耦合电感的电路分析—1

合集下载

电路第十章含有耦合电感的电路

电路第十章含有耦合电感的电路
则,自感磁通和互感磁通方感向磁通方向相反,故1,3端
.. . . .. .. . . .. 一致,故1,4是同名端,(不2是,同名端,1,4是同名端,
3也是同名i1 端) i2 (2,3也是同名端i1 ) i2
1 23 4
1 23 4
同名端只与线圈的绕向有关,与电流方向无关。 只要知道线圈的绕向,就能标出同名端。
L L1L2 M2 L1 L2 2M
M2 L1L2
M L1L2 M L1 L2
2
几何平均值(小) 算术平均值(大)
除非两电感相同,一般:几何平均值< 算术平均值
∴用几何平均值求M更严格
∴互感M必须满足 M L1L2 的要求 ∴ M的最大值 Mmax L1L2
3.耦合系数 k M M max
最大值
i(t)
••
u ( t ) L1 L2
i(t)
u(t)
L1 -
di
M
dt +
L2
+
M
di
- dt
utL1d d ti Md d ti L2d d ti Md dti
L1
L2
2Mdi
dt
L
di dt
反接时,串联电感值为
LL1L22M
电感贮能 WL 12LiL2 0
即L一定为正值
L1L22M
M L1 L2 2
实际值
M L1 L 2
0k1
k 反应了磁通相耦合的程度
k=1 k→1 k<0.5 k=0
全耦合
线圈中电流产生的磁通全部与另一个线 圈交链达到使M无法再增加
紧耦合,强耦合
松耦合,弱耦合
无耦合
4.耦合电感的T型等效

含耦合电感电路的分析

含耦合电感电路的分析

厶鲁± 鲁l
J dt

dt
(1)
1.1耦合 电感 的串联
当两耦合 电感异名端相接 (即首尾相接 )、
且流过 同一 电流时,称为耦合电感顺串。当两
耦合 电感 同名端 相接 (即 首首相 接或 尾尾 相
接)、且流过 同一电流 时,称为耦合 电感反 串。
可以证 明,其去耦等 效电感 为:
将表达式中的互感系数 M 变为 .M 即可。
126 ·电子技术与软件工程 Electronic Technology&Software Engineering
Electronic Technology· 电子技术
图 3:空芯变压 器的相 量模 型
图 7:考虑绕组 电阻和铁芯损耗的变压器等效电路
Z2:
图 4:空芯变压器去耦等效 电路
“1=+nu2 J
f2= ̄-ni,J
图 (7)中,变压 器二次侧 电阻损耗和漏
(6) 电感 已折合到一次侧
式 (6)中,当两绕组 电压正极 性端为 同 5 结语
名端 (如 图 5中所 示 )时, 电压 取 “+”号,
电流 取 “.”号; 当两绕组 电压 正极性 端为 异
式 (1)中,M 前 取 “+”号 。对 正 弦交 流 电路,式 (1)可 以用相量 形式表 示,对应 的受控源去耦等效 电路如图 1(b)所示。
(2)两端 口电流参考方 向从异 名端流入 。 此 时,是将 电路模 型 图 l(a)中 L 的同 名端标记在 下端 。同样可得 基尔霍 夫电压 方程 如式 (1)所 示, 只是 M 前 取 “一” 号。对 正 弦交流 电路 ,其对应 的受控源去耦等效电路, 只需将 图 1(b)中受控源 的极性反 向标记即可 。 用受 控源 去耦 等效 电路 求解 ,虽然 比较 直观、容易理解,但需列写复杂 电路方程 ,尤 其对于不 同连接形式 的耦合 电感 ,电路方程及 解题过程更加麻烦 。以下分析几种耦合 电感在

电工原理之含有耦合电感电路介绍课件

电工原理之含有耦合电感电路介绍课件

频率响应分析:通过分析频 率响应曲线,可以了解电路 的滤波特性、增益、相位等 参数,从而优化电路设计。
频率响应的应用:耦合电感 电路的频率响应分析在电子 技术、通信工程、电力电子 等领域具有广泛的应用。
3
耦合电感电路 的应用实例
耦合电感电路在滤波器中的应用
01 滤波器类型:低通滤波器、高通 滤波器、带通滤波器等
03
耦合电感的大小与线圈的几何形状、相对位 04
耦合电感在电路中起到能量传递、信号处
置、绕线方式等因素有关。
理等作用。
耦合电感的作用
1
耦合电感是电 路中两个或多 个电感之间的
相互影响
3Байду номын сангаас
耦合电感可以 减小电路的噪
声干扰
2
耦合电感可以 增强电路的滤
波性能
4
耦合电感可以 提高电路的功
率传输效率
耦合电感的分类
电工原理之含有 耦合电感电路介 绍课件
目录
01. 耦合电感电路的基本概念 02. 耦合电感电路的分析方法 03. 耦合电感电路的应用实例
1
耦合电感电路 的基本概念
耦合电感的定义
01
耦合电感是两个或多个电感线圈之间通过
02
耦合电感是电路中一种重要的元件,常用于
磁场相互影响的现象。
滤波、调谐、阻抗匹配等电路中。
自感耦合:两个电感线圈之 间通过磁场相互耦合
变压器耦合:两个电感线圈 之间通过变压器相互耦合
互感耦合:两个电感线圈之 间通过电流相互耦合
电容耦合:两个电感线圈之 间通过电容相互耦合
2
耦合电感电路 的分析方法
电路分析的基本方法
电路图分析:了
1 解电路的结构和 功能

电路学:第10章 耦合电感和变压器电路分析-1

电路学:第10章  耦合电感和变压器电路分析-1

同名端用标志‘.’或‘*’等表示。注意:同 名端不一定满足递推性,故当多个线圈时有 时必需两两标出。 在要V根C据R电中流u参M1 考 方M向ddi和t2 同到名底端取来正确还定是:取负,
当自磁链与互磁链的参考方向一致时取正号, 不一致时取负号。或者说,根据同名端,电 流在本线圈中产生的自感电压与该电流在另 一个线圈中产生的互感电压极性是相同的。
用符号 k表示,即 由于:
k 12 21 11 22
11 L1i1, 21 Mi1, 22 L2i2 , 12 Mi2
得:
k M
L1L2
k 1
当k=1时称为全耦合,此时一个线圈中电流 产生的磁通全部与另一线圈铰链,互感达到 最大值,即;
若线圈电流变化,则自磁链,互磁链也随之变 化。由电磁感应定律,线圈两端会产生感应电 压,若电压与电流采取关联参考方向,则:
耦合电感伏安关系(VCR)表达式:
u1
d1
dt
d11
dt
d12
dt
uL1
uM1
L1
di1 dt
M
di2 dt
u2
d2
dt
d22
dt
d21
dt
uL2
uM 2
L2
di2 dt
M
di1 dt
第二步:按要求(消去假设的变量)改变相 应互感电压的符号。
例 列写伏安关系式,电路模型如下图。
a-
i1
M
i2
-c
u1
uL1
uM1
L1
di1 dt
M
di2 dt
u1
b+
L*1
L *2
i u2
+d

电路分析第七章-含有耦合电感的电路

电路分析第七章-含有耦合电感的电路

* --
(a)
+
i1 +
M **
u1u12L1
i2
+
L2u21
-
u2
--
-+
(b)
解:图(a)中
u1
=
L1
di1 dt
+
u12
u12
=
−M
di2 dt
∴u1
=
L1
di1 dt
−M
di2 dt
u2
=
L2
di2 dt
+ u21
u21
=
−M
di1 dt
∴u2
=
L2
di2 dt
−M
di1 dt
图(b)中
u1
若u21
=
−M
di1 dt
线圈1 线圈2
i1 ∆1’
*1
2*’
u21+2∆
1端与2’端互为同名端 1’端与2端互为同名端
N1
Φ1
N2
Φ2
i1
i2
1‘ - u1+ 1 2‘- u2+ 2
图(a)
N1
Φ1
N2
Φ2
i1
i2
1‘ - u1+ 1 2‘+ u2 - 2
图(b)
M
*
*
L1
L2
1‘
1 2‘
2
图(a)的电路符号
图(b)
u1
=
L1
di1 dt
+
M
di2 dt
u2
=
L2
di2 dt
+
M

电路第10章---含有耦合电感的电路讲解

电路第10章---含有耦合电感的电路讲解

§10.1 互感耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。

1. 互感两个靠得很近的电感线圈之间有磁的耦合,如图10.1所示,当线圈1中通电流 i 1 时,不仅在线圈1中产生磁通f 11,同时,有部分磁通 f 21 穿过临近线圈2,同理,若在线圈2中通电流i 2 时,不仅在线圈2中产生磁通f 22,同时,有部分磁通 f 12 穿过线圈1,f 12和f 21称为互感磁通。

定义互磁链:图 10.1ψ12 = N 1φ12 ψ21 = N 2φ21当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链:互感磁通链:上式中 M 12 和 M 21 称为互感系数,单位为(H )。

当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和:需要指出的是:1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足M12 =M21 =M2)自感系数L 总为正值,互感系数 M 值有正有负。

正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。

2. 耦合因数工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义一般有:当k =1 称全耦合,没有漏磁,满足f11 = f21,f22 = f12。

耦合因数k 与线圈的结构、相互几何位置、空间磁介质有关。

3. 耦合电感上的电压、电流关系当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。

根据电磁感应定律和楞次定律得每个线圈两端的电压为:即线圈两端的电压均包含自感电压和互感电压。

在正弦交流电路中,其相量形式的方程为注意:当两线圈的自感磁链和互感磁链方向一致时,称为互感的“增助”作用,互感电压取正;否则取负。

13-2含耦合电感电路分析

13-2含耦合电感电路分析

2018/10/5
9
4
方法二:去耦等效
当两个线圈存在公共端时,耦合电感可以等效为不耦合的3个电感,称为去耦等效。
同名端为公共端
12 i1 M i2
**
L1
L2
i1 i2 3
12
i1
i2
L1 M
L2 M
去耦
新结点 M
i1 i2 3
u13
L1
di1 dt
M
di2 dt
(
L1
M
)
di1 dt
M
d(i1 i2 ) dt
本讲小结
含耦合电感电路的分析,有三种思路: 网孔或回路方程; 去耦等效; 映射阻抗。
网孔或回路方程:没有应用前提,用网孔电流正确表示耦合电感 的电压是关键。
去耦等效:应用前提是 线圈有公共端,等效电路的参数与同名端 相关。
映射阻抗:应用前提是 接成电气上彼此独立的电源回路和负载回 路,映射阻抗的大小与同名端无关。
【例 1】计算正弦稳态电流 I1、I2 。 将电路转换为相量模型
L1 100 0.3 30 L2 100 0.2 20 M 100 0.1 10
100 2 cos(100t)V 1000V
列写网孔方程(即网孔的KVL方程)
20I1 ( j30I1 j10I2 ) 1000
I1
I1
消除电流 I2 负载回路KVL:
比较
U1 I1
jL1 Zr
得出
jL2 I2 jMI1 Z2 I2 0
映射阻抗与耦合类型无关 分母为负载回路总阻抗
Zr
(M )2 Z2 jL2
+
Us

+
Us

含有耦合电感的电路计算

含有耦合电感的电路计算
通过优化元件参数和拓扑结构,实现了高线 性度、低失真的信号放大器电路。
THANKS
感谢观看
互感系数
定义
互感系数是衡量两个线圈之间磁耦合强度的物理量,用符 号M表示。
计算公式
互感系数M与线圈的匝数、线圈之间的距离、线圈的相对位 置等因素有关,计算公式为M=k*sqrt(L1*L2)。
应用
互感系数在含有耦合电感的电路计算中具有重要意义,是 计算感应电动势和磁能量传递的关键参数。
02
含有耦合电感的电路分析
VS
磁路平衡方程
在含有耦合电感的电路中,磁路平衡方程 是描述磁场能量守恒的方程。对于两个串 联耦合电感,其磁路平衡方程为:$H = NPhi$,其中H是磁场强度,N是线圈匝数, $Phi$是磁通量;对于两个并联耦合电感, 其磁路平衡方程为:$B = mu H$,其中B 是磁感应强度,$mu$是磁导率,H是磁场 强度。
01 总结词
直接计算法是一种基本的电路 计算方法,适用于简单的电路 系统。
02
详细描述
直接计算法是根据电路的基本 定律(如基尔霍夫定律)和元 件的特性方程,直接求解电路 变量的方法。对于含有耦合电 感的电路,可以通过建立和解 决相应的方程组来找到电流和 电压。
03
适用范围
04
适用于耦合系数较小、电路结构 简单的系统。
ERA
在电力系统的应用
用于实现高压输电的变压器
耦合电感在电力系统中主要用于实现高压输电。通过变压器,可以将低电压转换 为高电压,以减少电流的损失,从而降低线路损耗。
在通信系统的应用
用于信号传输和接收的设备
在通信系统中,耦合电感常用于信号传输和接收设备,如无线电和电视接收器。通过调整耦合电感的参数,可以控制信号的 传输和接收质量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

U1

I1

jM
I2

U2

2 =j L 2 I 2 +j MI 1 U
jL 1
jL 2
当耦合电感线圈的相对位置和绕向不能识 别,即同名端没有标出时,可用教材图 13-4 的方法测定同名端(见 531 页) 。
例:已知 us (t ) =10 2 cos4tV,求 i 2 (t ) 。 解:由相量模型,写出 VCR 0.1H j2I1 +j0.4I 2 =10 0 i1 u s 0.5H 0.5H I I j2 2 +j0.4 1 =0
工作在正弦稳态下的耦合电感,可画出 相量模型
dt dt di 2 di 1 u 2 (t ) = L 2 +M dt dt di 1 di 2 u 1 ( t ) = L1 +M dt dt di 2 di 1 u 2 (t ) = L 2 -M dt dt
1 =j L1 I 1 +j MI 2 U

i2
I 90 解得 2 =1.04 A i 2 (t ) =1.04 2 cos(4t+90 )A

I1
j2 Us

j0.4
100 V

j2
2 I
作业:(549页) 13-1、13-2
§ 13-2 耦合电感的串联和并联 M 一、 串联 i _ u2 顺接串联的等效电感: a _1 L1 u di di ub 加 i 求 u=u 1 +u 2 =L1 +M
耦合电感是用三个参数(L1, L2, M) L1 L2 来描述的元件。 y 21 2.耦合电感的VCR y
11
12
1 线圈1和2的磁链分别为 y 1 = y 11 + y 12 = L 1 i 1 ( t ) +M i 2 ( t ) y 2 = y 22 + y 21 = L 2 i 2 ( t ) +M i 1 ( t )
用同名端和电流的参考方向来确定互感电 di1 di 2 压的极性:互感电压 M (或 M )的正端
dt dt
与i1 (或i 2 )的流入对同名端保持一致。 i1 M i di 1 di 2 2 u 1 ( t ) = L1 +M
u1
L1
L2
M
u2
u1
i1
L1
L2 u i2 2
y 2 = y 22 + y 21 = L 2 i 2 ( t ) +M i 1 ( t )
如果各线圈u, i均用关联参考方向,则
di1 di 2 u1 (t ) =dy1 dt =L1 +M dt dt di 2 di1 u 2 (t ) =dy 2 dt =L 2 +M dt dt
自感电压
y
L1 L2 di1 di 2 y11 y 21 -M u1 ( t ) = L1 dt dt y 12 y 22 di 2 di 1 i2 i1 u 2 (t )=L 2 -M u1 u 2 dt dt L1 L2 di1 di 2 y 21 u1 (t ) =dy1 dt =L1 +M y dt dt y 22 i i di 2 di1 u2 u y u 2 (t ) =d 2 dt =L 2 +M dt dt
L2
L ab L1 L 2 2M
反接串联的等效电感:
di di di +L 2 +M =(L1 +L 2 +2M) dt dt dt
dt
dt

M

i
a b


同理可得
L ab L1 L 2 2M
u

u2 u 1 L1 L2
L1
1 2
L2
11
y 21
12
y 22 i i u2 u
1
互感电压
这就是上图所示耦合电感的电压电流关 系式。 自感电压和互感电压都有取正取负的选 择:
自感电压u11和u22的正负取决于u1与i1, u2与i2是否关联,关联取正,非关联取 负。 互感电压uM1,uM2的正负取决于互感磁 通与自感磁通方向是否一致,他们的方 向是否一致又取决于两线圈的相对位置 、绕向和电流的参考方向。 例如,图示耦合线圈是上图中将L2绕向 反绕,因为互感磁通与自感磁通相消, 所以VCR为
含耦合电感电路的分析
§13-1 耦合电感的电压电流关系 L1 L2 1. 互感M y 21 11 两个线圈靠在一起将 y 12 y 22 存在磁耦合。 i1 i2 u2 u1 加 i1,在 L1中引起自感 磁链y11,在L 2中有互感磁链y 21 ,同理,加i 2 在 L 2 中引起自感磁链 y 22 ,在 L1中有互感磁 链 y12 。 自感磁链 y11 L1i1 , y 22 L 2i 2 互感磁链 y12 M12i 2 , y 21 M 21i1
式中M12, M21称为互感,单位亨(H), 且 M12=M21=M 互感也是一种电感,它是联系互感磁 链 y 12 (或 y 21 )与引起它的电流 i2(或 i1 )之间关系的参量。因此,互感 M 具有 自电感 L 相同的特性(动态特性和储藏 磁场能量的特性)。
将一对具有互感特性(即磁链相互交 链)的理想线圈称为耦合电感元件。

y 22 i i u2 u1
2
注意, y 12 和 y 21 前取正,是因为它们分 别与 y 11 和 y 22 的参考方向一致(磁通彼 此增强),如果方向相反(磁通彼此相 消),则互感磁链前应取负。
y 1 = y 11 + y 12 = L 1 i 1 ( t ) +M i 2 ( t )
11
12
1
2
1
但在实际工程中,线圈是密封的,要判 断线圈的绕向,位置是不现实的。工程 上是采用“同名端”来代表线圈的绕向和 位置的信息。
但在实际工程中,线圈是密封的,要判断 线圈的绕向,位置是不现实的。工程上是采 用“同名端”来代表线圈的绕向和位置的信 息。 3. 耦合电感的图示符号和同名端
图中已不再有画出线圈的 M 2 1 绕向和位置的示意图,而 L1 L2 是用两个圆点表示这两个 1' 2' 信息。 图中 1 和 2 是一对同名端,同样 1’和 2’是 一对同名端。而 1 与 2’,2 与 1’是异名端。
相关文档
最新文档