八年级下数学期末试卷
八年级下册数学期末试卷测试卷附答案

八年级下册数学期末试卷测试卷附答案 一、选择题1.2a +在实数范围内有意义,实数a 的取值范围是( )A .a >0B .a >1C .a ≥﹣2D .a >﹣1 2.下列满足条件的三角形中,不是直角三角形的是( )A .三内角之比为1∶2∶3B .三边长的平方之比为1∶2∶3C .三边长之比为3∶4∶5D .三内角之比为3∶4∶53.如图,下列条件中,能判定四边形ABCD 是平行四边形的是( )A .//AB CD ,AD BC = B .AB CD =,AD BC =C .A B ∠=∠,CD ∠=∠D .AB AD =,B D ∠=∠ 4.红河州博物馆拟招聘一名优秀讲解员,其中小华笔试、试讲、面试三轮测试得分分别为90分、94分、92分.综合成绩中笔试占30%、试讲占50%、面试占20%,那么小华的最后得分为( )A .92分B .92.4分C .90分D .94分5.下列三角形中,是直角三角形的是( ).A .三角形的三边满足关系a +b =cB .三角形的三边为9,40,41C .三角形的一边等于另一边的一半D .三角形的三边比为1∶2∶36.如图,在菱形ABCD 中,∠D =140°,则∠1的大小为( )A .15°B .20°C .25°D .30°7.如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接AP ,给出下列结论:①2PD EC =;②四边形PECF 的周长为8;③APD △一定是等腰三角形;④AP EF =;⑤EF 的最小值为22序号为( )A .①②④B .①③⑤C .②③④D .①②④⑤ 8.在平面直角坐标系中,定义:已知图形W 和直线l ,如果图形W 上存在一点Q ,使得点Q 到直线l 的距离小于或等于k ,则称图形W 与直线l “k 关联”.已知线段AB ,其中点(1,1)A ,(3,1)B .若线段AB 与直线y x b =-+“2关联”,则b 的取值范围是( ) A .-1≤b≤2 B .0≤b≤4 C .0≤b≤6 D .2≤b≤6二、填空题 9.若代数式2x x+有意义,则实数x 的取值范围是_________. 10.如果菱形的两条对角线长为10cm 与12cm ,则此菱形的面积______2cm11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.如图,在Rt △ABC 中,∠ACB =90°,D 、E 、F 分别为AB 、AC 、BC 的中点,若CD =5,则EF =___.13.在平面直角坐标中,点A (﹣3,2)、B (﹣1,2),直线y =kx (k ≠0)与线段AB 有交点,则k 的取值范围为___.14.如图,在△ABC 中,AD ,CD 分别平分∠BAC 和∠ACB ,AE ∥CD ,CE ∥AD .若从三个条件:①AB=AC ;②AB=BC ;③AC=BC 中,选择一个作为已知条件,则能使四边形ADCE 为菱形的是__(填序号).15.星期六下午,小张和小王同时从学校沿相同的路线去书店买书,小王出发4分钟后发现忘记带钱包,立即调头按原速原路回学校拿钱包,小王拿到钱包后,以比原速提高20%的速度按原路赶去书店,结果还是比小张晚4分钟到书店(小王拿钱包的时间忽略不计).在整个过程中,小张保持匀速运动,小王提速前后也分别保持匀速运动,如图所示是小张与小王之间的距离y (米)与小王出发的时间x (分钟)之间的函数图象,则学校到书店的距离为________米.16.如图,把矩形ABCD 沿直线BD 向上折叠,使点C 落在点C '的位置上,BC '交AD 于点E ,若3AB =,6BC =,则DE 的长为______.三、解答题17.计算: ①33118(3)2⨯+-; ②2(32)24-+.18.位于沈阳周边的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A 拉回点B 的位置(如图).在离水面高度为8m 的岸上点C ,工作人员用绳子拉船移动,开始时绳子AC 的长为17m ,工作人员以0.7米/秒的速度拉绳子,经过10秒后游船移动到点D 的位置,问此时游船移动的距离AD 的长是多少?19.如图,每个小正方形的边长都为1.(1)求ABC的周长;(2)判断ABC的形状.20.如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC 上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.21.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性22232232121(2)212(12)+=+⨯⨯++⨯⨯+|12|=12解决问题:①146514235+=+⨯⨯_________________=________________=_________________②根据上述思路,试将下列各式化简:28103-3 12 +22.由于持续高温和连日无雨,某水库的蓄水量y(万立方米)与干旱时间t(天)之间的关系满足一次函数y kt b=+,(k,b为常数,且k≠0),其图象如图所示.(1)由图象知k= ,其实际意义是;(2)若水库的蓄水量小于360万立方米时,将发生严重干旱警报,那么多少天后将发生严重干旱警报?(3)在(2)的条件下,照这样干旱下去,预计再持续多少天,水库将干涸?23.已知四边形ABCD是正方形,将线段CD绕点C逆时针旋转(),得到线段CE,联结BE、CE、DE. 过点B作BF⊥DE交线段DE的延长线于F.(1)如图,当BE=CE时,求旋转角的度数;(2)当旋转角的大小发生变化时,的度数是否发生变化?如果变化,请用含的代数式表示;如果不变,请求出的度数;(3)联结AF,求证:.24.【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A 作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.【模型运用】(2)如图2,直线l1:y=43x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.【模型迁移】如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P为x 轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x 轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.25.如图,在矩形 ABCD中, AB=16 , BC=18 ,点 E在边 AB 上,点 F 是边 BC 上不与点B、C 重合的一个动点,把△EBF沿 EF 折叠,点B落在点 B' 处.(I)若 AE=0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE=3 时,且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;(III)若AE=8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.【参考答案】一、选择题1.C解析:C【分析】根据二次根式有意义的条件即可求出a的取值范围.【详解】解:由题意可知:a+2≥0,∴a≥-2.故选:C.【点睛】本题考查二次根式有意义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.D解析:D【分析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.【详解】A、设三个内角的度数为n,2n,3n根据三角形内角和公式23180++=,求得n n n30n =,所以各角分别为30°,60°,90°,故此三角形是直角三角形;B 、三边符合勾股定理的逆定理,所以是直角三角形;C 、设三条边为3n ,4n ,5n ,则有()()()222345n n n +=,符合勾股定理的逆定理,所以是直角三角形;D 、设三个内角的度数为3n ,4n ,5n ,根据三角形内角和公式345180n n n ++=,求得15n =,所以各角分别为45°,60°,75°,所以此三角形不是直角三角形;故选D .【点睛】本题考查了三角形内角和定理和勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.B解析:B【解析】【分析】根据平行四边形的判定定理进行分析即可.【详解】解:根据两组对边分别相等的四边形为平行四边形,则B 选项正确,故选:B .【点睛】本题考查平行四边形的判定,熟记基本的判定方法是解题关键.4.B解析:B【解析】【分析】根据加权平均数的定义列式计算即可.【详解】解:小华的最后得分为90×30%+94×50%+92×20%=92.4(分),故选:B .【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.5.B解析:B【详解】A. 不能构成三角形,此选项错误;B.由于9²+40²=41²,是直角三角形,此选项正确;C. 不能判定是直角三角形,此选项错误;D.不能构成三角形,此选项错误.故选B.6.B解析:B【解析】【分析】由菱形的性质得到DA=DC,∠DAC=∠1,由等腰三角形的性质得到∠DAC=∠DCA=∠1,根据三角形的内角和定理求出∠DAC,即可得到∠1.【详解】解:∵四边形ABCD是菱形,∴DA=DC,∠DAC=∠1,∴∠DAC=∠DCA=∠1,在△ABD中,∵∠D=140°,∠D+∠DAC+∠DCA=180°,∴∠DAC=∠DCA=12(180°﹣∠D)=12×(180°﹣140°)=20°,故选B.【点睛】本题主要考查了菱形的性质,角平分线的性质,等腰三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解.7.D解析:D【解析】【分析】①据正方形的对角线平分对角的性质,得△PDF是等腰直角三角形,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得DP=2EC.②先证明四边形PECF为矩形,根据等腰直角三角形和矩形的性质可得其周长为2BC,则四边形PECF的周长为8;③根据P 的任意性可以判断△APD不一定是等腰三角形;④由②可知,四边形PECF为矩形,则通过正方形的轴对称性,证明AP=EF;⑤当AP最小时,EF最小,EF的最小值等于22.【详解】解:①如图,延长FP交AB与G,连PC,延长AP交EF与H,∵GF∥BC,∴∠DPF=∠DBC,∵四边形ABCD 是正方形∴∠DBC =45°∴∠DPF =∠DBC =45°,∴∠PDF =∠DPF =45°,∴PF =EC =DF ,∴在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,∴DP.故①正确;②∵PE ⊥BC ,PF ⊥CD ,∠BCD =90°,∴四边形PECF 为矩形,∴四边形PECF 的周长=2CE +2PE =2CE +2BE =2BC =8,故②正确;③∵点P 是正方形ABCD 的对角线BD 上任意一点,∠ADP =45°,∴当∠P AD =45°或67.5°或90°时,△APD 是等腰三角形,除此之外,△APD 不是等腰三角形,故③错误.④∵四边形PECF 为矩形,∴PC =EF ,由正方形为轴对称图形,∴AP =PC ,∴AP =EF ,故④正确;⑤由EF =PC =AP ,∴当AP 最小时,EF 最小,则当AP ⊥BD 时,即AP =12BD =12=EF 的最小值等于, 故⑤正确;综上所述,①②④⑤正确,故选D .【点睛】本题考查了正方形的性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题. 8.C解析:C【分析】如图(见解析),先画出图形,再根据定义求出两个临界位置时b 的值,由此即可得.【详解】如图,过点B 作直线y x b =-+的垂线,垂足为点D ,连接OA ,延长AB 交直线y x b =-+于点C由题意,有以下两个临界位置:①点A 到直线y x b =-+的距离等于2 (1,1)A22112OA ∴=+=,145∠=︒当直线y x b =-+经过原点O 时,0b =,245∠=︒2190∴∠+∠=︒OA ∴即为点A 到直线y x =-的距离,此时0b =②点B 到直线y x b =-+的距离等于2,即2BD =//AB x 轴45BCD ∴∠=︒,且点C 的纵坐标与点A 的纵坐标相同,即为1Rt BCD ∴是等腰直角三角形22BC BD ∴==∴点C 的横坐标为325+=(5,1)C ∴将点(5,1)C 代入直线y x b =-+得:51b -+=解得6b =则b 的取值范围是06b ≤≤故选:C .【点睛】本题考查了等腰直角三角形的判定与性质、一次函数的几何应用等知识点,理解新定义,求出两个临界位置时b 的值是解题关键.二、填空题9.2x ≥-且0x ≠【解析】【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x ≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.10.60【解析】【详解】分析:已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.详解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×10cm×12cm=60cm 2,故答案为60.点睛:本题考查了根据对角线计算菱形的面积的方法,根据菱形对角线求得菱形的面积是解题的关键,难度一般.11.36cm 2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm 2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键. 12.C解析:5【分析】已知CD 是Rt △ABC 斜边AB 的中线,那么AB =2CD ,EF 是△ABC 的中位线,则EF 应等于AB 的一半.【详解】△ABC 是直角三角形,CD 是斜边的中线,1,222510,CD AB AB CD ∴=∴==⨯= 又EF 是△ABC 的中位线,∴EF =12×10 =5,故答案为:5.【点睛】此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半,熟练掌握这些定理是解题关键.13.B 解析:2-2-3k ≤≤【分析】分别把B 点和A 点坐标代入y =kx (k ≠0)可计算出对应的k 的值,从而得到k 的取值范围.【详解】解:∵直线y =kx (k ≠0)与线段AB 有交点,∴当直线y =kx (k ≠0)过B (-1,2)时,k 值最小,则有-k =2,解得k =-2,当直线y =kx (k ≠0)过A (-3,2)时,k 值最大,则-3k =2,解得k =2-3, ∴k 的取值范围为2-2-3k ≤≤ 故答案为:2-2-3k ≤≤ 【点睛】本题考查了一次函数的应用和性质,解题的关键是运用数形结合的思想进行转化解题. 14.A解析:②【解析】【分析】根据②作条件,先证明四边形ADCE 是平行四边形,再利用邻边相等,得到四边形ADCE 是菱形.【详解】解:当BA=BC 时,四边形ADCE 是菱形.理由:∵AE ∥CD ,CE ∥AD ,∴四边形ADCE 是平行四边形,∵BA=BC ,∴∠BAC=∠BCA ,∵AD ,CD 分别平分∠BAC 和∠ACB ,∴∠DAC=∠DCA ,∴DA=DC ,∴四边形ADCE 是菱形.【点睛】本题考查的知识点是菱形的证明,解题关键是熟记菱形的性质.15.840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【解析:840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【详解】解:由题意可知:最后一段图象是小张到达书店后等待小王前往书店的图象, 则小王后来的速度为:336÷4=84(米/分钟),∴小王原来的速度为:84÷(1+20%)=70(米/分钟),根据第一段图象可知:v 王-v 张=40÷4=10(米/分钟),∴小张的速度为:70-10=60(米/分钟),设学校到书店的距离为x 米, 由题意得:4448460x x ⎛⎫++-= ⎪⎝⎭, 解得:x =840,答:学校到书店的距离为840米,故答案为:840.【点睛】本题考查了函数图象的实际应用,行程问题的基本关系,一元一次方程的应用,有一定的难度,求出两人的速度是解题的关键. 16.【分析】根据折叠和矩形的性质,可以得出三角形BDE 是等腰三角形,在直角三角形DEC′中,利用勾股定理可求出答案.【详解】解:由折叠得,DC =DC′=3,∠CBD =∠C′BD ,∵ABCD 是矩 解析:154【分析】根据折叠和矩形的性质,可以得出三角形BDE 是等腰三角形,在直角三角形DEC ′中,利用勾股定理可求出答案.【详解】解:由折叠得,DC =DC ′=3,∠CBD =∠C ′BD ,∵ABCD 是矩形,∴AD=BC=6,AD∥BC,∴∠CBD=∠ADB=∠C′BD,∴ED=EB,设BE=ED=x,则EC′=6﹣x,在Rt△DEC′中,由勾股定理得,32+(6﹣x)2=x2,解得,x=154,即BE=154,故答案为:154.【点睛】本题考查了矩形的性质、直角三角形的勾股定理等知识,根据折叠轴对称,得出DE=BE 是解决问题的关键.三、解答题17.①0;②5【分析】(1)先运用二次根式或立方根的性质化简各个根式,再计算即可;(2)先运用完全平方公式计算,再合并同类二次根式计算即可.【详解】解:①原式=0;②原式=5.【解析:①0;②5【分析】(1)先运用二次根式或立方根的性质化简各个根式,再计算即可;(2)先运用完全平方公式计算,再合并同类二次根式计算即可.【详解】解:原式3=-33=-=0;②2原式32=+-【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则和运算顺序是解题的关键.18.游船移动的距离AD的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在中,在中,,即可求出最终结果.【详解】解:工作人员以0.7米/秒的速度拉绳子,经过10秒解析:游船移动的距离AD的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在Rt BCD中BD Rt ABC中,AB=【详解】解:工作人员以0.7米/秒的速度拉绳子,∴经过10秒拉回绳子100.7=7⨯米,开始时绳子AC的长为17m,∴拉了10秒后,绳子CD的长为17-7=10米,∴在Rt BCD中,BD===米,6在Rt ABC中,AB=米,15∴AD=15-6=9米,答:游船移动的距离AD的长是9米.【点睛】本题主要考查勾股定理的运用,属于综合题,难度一般,熟练掌握勾股定理解三角形是解决本题的关键.19.(1);(2)直角三角形【解析】【分析】(1)利用勾股定理分别运算出三角形的三边边长,即可运算周长;(2)根据勾股的逆定理即可判定的形状.【详解】(1),,的周长;(2),解析:(1)5;(2)直角三角形【解析】【分析】(1)利用勾股定理分别运算出三角形的三边边长,即可运算周长;(2)根据勾股的逆定理即可判定ABC的形状.【详解】(1)5AB==,BC=AC=∴的周长55ABC==;(2)225AC==22AB==,5252220BC==,222∴+=AC BC AB∴是直角三角形.ABC【点睛】本题主要考查了勾股定理和勾股定理的逆定理,熟悉掌握勾股定理是解题的关键.20.(1)见解析;(2)当为的中点时,四边形是矩形,见解析【分析】(1)根据等腰三角形的性质得出∠B=∠ACB,根据平移得出AB∥DE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;(2)求出解析:(1)见解析;(2)当E为BC的中点时,四边形AECD是矩形,见解析【分析】(1)根据等腰三角形的性质得出∠B=∠ACB,根据平移得出AB∥DE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;(2)求出四边形AECD是平行四边形,再求出四边形AECD是矩形即可.【详解】(1)证明:∵AB=AC,∴∠B=∠ACB,∵△ABC平移得到△DEF,∴AB ∥DE ,∴∠B =∠DEC ,∴∠ACB =∠DEC ,∴OE =OC ,即△OEC 为等腰三角形;(2)解:当E 为BC 的中点时,四边形AECD 是矩形,理由是:∵AB =AC ,E 为BC 的中点,∴AE ⊥BC ,BE =EC ,∵△ABC 平移得到△DEF ,∴BE ∥AD ,BE =AD ,∴AD ∥EC ,AD =EC ,∴四边形AECD 是平行四边形,∵AE ⊥BC ,∴四边形AECD 是矩形.【点睛】本题考查了矩形的判定、平行四边形的判定、平移的性质、等腰三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.21.①,,3+;②(1)5-;(2) .【解析】【分析】①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【详解】①===3+,故答案为,,3+;②(1)解析:()2232355+⨯⨯+35+5②(1)53(2) 132 【解析】【分析】①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【详解】3+3=5=12+=12. 【点睛】本题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.22.(1);水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可;(2)根据(1)中函数解析式,令万立方米时,解析:(1)30-;水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可; (2)根据(1)中函数解析式,令360y =万立方米时,求出对应的干旱天数t 即可; (3)根据(1)中函数解析式,令0y =万立方米时,求出对应的干旱天数t ,减去(2)中的干旱天数即为所求.【详解】解:(1)一次函数y kt b =+,(k ,b 为常数,且k ≠0),根据图像可得:900=2030040k b k b +⎧⎨=+⎩, 解得:301500k b =-⎧⎨=⎩, 所以一次函数解析式为:301500y t =-+,k 的值代表每干旱一天水库蓄水量将减少30万立方米,故答案为:-30;水库蓄水量每天减少30万立方米;(2)由(1)知一次函数解析式为:301500y t =-+,令360y =,即360301500t =-+,解得:38t =,故38天后将发生严重干旱警报;(3)由(1)知一次函数解析式为:301500y t =-+,令0y =,即0301500t =-+,解得:50t =,503812-=(天),故预计再持续12天,水库将干涸.【点睛】此题考查了函数的图像问题,一次函数的实际应用,根据图像求出一次函数的解析式是解题的关键.23.(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得=∠DCE=30°.(2)因为△CED 是等腰三角形,再利用三角形的内角解析:(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得=∠DCE=30°. (2)因为△CED 是等腰三角形,再利用三角形的内角和即可求∠BEF=.(3)过A 点与C 点添加平行线与垂线,作得四边形AGFH 是平行四边形,求得△ABG ≌△ADH.从而求得矩形AGFH 是正方形,根据正方形的性质证得△AHD ≌△DIC ,从而得出结论.【详解】(1)证明:在正方形ABCD 中, BC=CD.由旋转知,CE=CD,又∵BE=CE,∴BE=CE=BC,∴△BEC是等边三角形,∴∠BCE=60°.又∵∠BCD=90°,∴=∠DCE=30°.(2)∠BEF的度数不发生变化.在△CED中,CE=CD,∴∠CED=∠CDE=,在△CEB中,CE=CB,∠BCE=,∴∠CEB=∠CBE=,∴∠BEF=.(3)过点A作AG∥DF与BF的延长线交于点G,过点A作AH∥GF与DF交于点H,过点C作CI⊥DF于点I易知四边形AGFH是平行四边形,又∵BF⊥DF,∴平行四边形AGFH是矩形.∵∠BAD=∠BGF=90°,∠BPF=∠APD ,∴∠ABG=∠ADH.又∵∠AGB=∠AHD=90°,AB=AD,∴△ABG≌△ADH.∴AG=AH ,∴矩形AGFH是正方形.∴∠AFH=∠FAH=45°,∴AH=AF∵∠DAH+∠ADH=∠CDI+∠ADH=90°∴∠DAH=∠CDI又∵∠AHD=∠DIC=90°,AD=DC,∴△AHD≌△DIC∴AH=DI,∵DE=2DI,∴DE=2AH=AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1)见解析;(2);(3)点P坐标为(4,0)或(﹣4,0)【解析】【分析】(1)由“AAS”可证△CDA≌△BEC;(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为解析:(1)见解析;(2)3944y x=--;(3)点P坐标为(4,0)或(﹣4,0)【解析】【分析】(1)由“AAS”可证△CDA≌△BEC;(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E,由(1)可知△BOA≌△AED,可得DE=OA=3,AE=OB=4,可求点D坐标,由待定系数法可求解析式;(3)分两种情况讨论,通过证明△OAP≌△CPB,可得OP=BC=4,即可求点P坐标.【详解】(1)证明:∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°,∴∠BCE+∠CBE=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠ACD=∠CBE,又CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y =43x +4与坐标轴交于点A 、B , ∴A (﹣3,0),B (0,4),∴OA =3,OB =4,由(1)得△BOA ≌△AED ,∴DE =OA =3,AE =OB =4,∴OE =7,∴D (﹣7,3)设l 2的解析式为y =kx +b ,得3703k b k b =-+⎧⎨=-+⎩解得3494k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线l 2的函数表达式为:3944y x =-- (3)若点P 在x 轴正半轴,如图3,过点B 作BE ⊥OC ,∵BE =2,∠BCO =30°,BE ⊥OC∴BC =4,∵将线段AP 绕点P 顺时针旋转30°得到BP ,∴AP =BP ,∠APB =30°,∵∠APC =∠AOC +∠OAP =∠APB +∠BPC ,∴∠OAP =∠BPC ,且∠OAC =∠PCB =30°,AP =BP ,∴△OAP ≌△CPB (AAS )∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,∴∠APE=∠PBC,∵∠AOE=∠BCO=30°,∴∠AOP=∠BCP=150°,且∠APE=∠PBC,P A=PB∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(﹣4,0)综上所述:点P坐标为(4,0)或(﹣4,0)【点睛】本题是一道关于一次函数的综合题目,涉及到的知识点有全等三角形的判定定理及其性质、一次函数图象与坐标轴的交点、用待定系数法求一次函数解析式、旋转的性质等,掌握以上知识点是解此题的关键.25.(I) ;(II) 16或10;(III) .【解析】【分析】(I)根据已知条件直接写出答案即可.(II)分两种情况:或讨论即可.(III)根据已知条件直接写出答案即可.【详解】(I解析:(I) ;(II) 16或10;(III) .【解析】【分析】(I)根据已知条件直接写出答案即可.(II)分两种情况:或讨论即可.(III)根据已知条件直接写出答案即可.【详解】(I) ;(II)∵四边形是矩形,∴,.分两种情况讨论:(i)如图1,当时,即是以为腰的等腰三角形.(ii)如图2,当时,过点作∥,分别交与于点、.∵四边形是矩形,∴∥,.又∥,∴四边形是平行四边形,又,'⊥,∴□是矩形,∴,,即B H CD又,∴,,∵,∴,∴,在RtΔEGB'中,由勾股定理得:,∴,在中,由勾股定理得:,综上,的长为16或10.(III) . (或).【点睛】本题主要考查了四边形的动点问题.。
人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试卷一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.要使二次根式有意义,则x的取值范围是().A.B.C.D.2.下列各式中属于最简二次根式的是().A.B.C.D.3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是().A.90B.95C.100D.1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁5.下列各组数中,不能构成直角三角形的是().A.3,4,5B.6,8,10C.4,5,6D.5,12,136.点A(1,-2)在正比例函数的图象上,则k的值是().A.1B.-2C.D.7.一次函数y=3x-2的图象不经过().A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在△ABC中,点D,E分别是AB,AC的中点,若BC=6,则DE等于().A.3B.4C.5D.69.如图,□ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC10.如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为().A.B.C.D.第9题图第10题图二、填空题(本大题6小题,每小题4分,共24分)11.在新年晚会的投飞镖游戏环节中,名同学的投掷成绩(单位:环)分别是:,,,,,,,则这组数据的众数是.12.若x、y为实数,且满足,则x+y的值是.13.在直角三角形中,两条直角边分别是3cm和4cm,则斜边上的中线长是cm.14.一次函数y=(m-3)x+5的函数值y随着x的增大而减小,则m的取值范围.15.一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为.16.如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.第15题图第16题图(1)A 1B 1C 1D 1ABC D D 2A 2B 2C 2D 1C 1B 1A 1ABC D 第16题图(2)三、解答题(一)(本大题3小题,每小题6分,共18分).17.计算:.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF.四、解答题(二)(本大题3小题,每小题7分,共21分).20.一次函数y=2x-4的图像与x轴的交点为A,与y轴的交点为B.(1)A,B两点的坐标分别为A(,),B(,);(2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?五、解答题(三)(本大题3小题,每小题9分,共27分).23.观察下列各式:;;;……请你猜想:(1),;(2)计算(请写出推导过程):.(3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来..24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形;12kmCAB5km②若AB=3,AD=4,求FG的长.25.已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.第11页共11页。
数学八年级下册数学期末试卷测试卷附答案

数学八年级下册数学期末试卷测试卷附答案数学八年级下册数学期末试卷及答案一、选择题1.下列各式中,一定是二次根式的是()A。
aB。
1/a^2C。
-a^2D。
a^2+12.下列数组中,能构成直角三角形的是()A。
1.1.3B。
2.3.5C。
0.2.0.3.0.5D。
1/11.1/45.1/33.如图,在ABCD中,点E,F分别在边BC,AD上。
若从下列条件中只选择一个添加到图中的条件中,那么不能使四边形AECF是平行四边形的条件是()A。
AE//CFB。
AE=CFC。
BE=DFD。
∠BAE=∠DCF4.某次数学趣味竞赛共有10组题目,某班得分情况如下表。
全班40名学生成绩的众数是人数。
成绩(分)5.1370.6080.7390.100A。
75B。
70C。
80D。
905.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A。
AB//DCB。
AC=BDC。
AC⊥BDD。
AB=DC6.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA。
则四边形AOED的周长为()A。
9+√23B。
9+√3C。
7+√23D。
87.如图,在ABC中,D,E分别是AB,AC的中点,AC=20,F是DE上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A。
24B。
28C。
20D。
128.一个内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水。
进水管每分钟的进水量和出水量每分钟的出水量始终不变,内水量y(单位:L)与时间x(单位:min)之间的关系如图所示。
根据图象有下列说法:①进水管每分钟的进水量为5L;②4≤x≤12时,y=x+15;③当x=12时,y=30;④当y=15时,x=3,或x=17.其中正确说法的个数是()A。
1个B。
八年级下期末考试数学试卷四套试卷(含答案)

017-2018学年下学期期末考试八年级数学试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是.12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分). 17.01)-+.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.第15题图第16题图(1)1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第16题图(2)19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .四、解答题(二)(本大题3小题,每小题7分,共21分). 20.一次函数y =2x -4的图像与x 轴的交点为A ,与y 轴的交点为B . (1)A ,B 两点的坐标分别为A (,),B (,); (2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?12km CAB 5km五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想:(1=,=;(2) 计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来. .24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形; ②若AB =3,AD =4,求FG 的长.25.已知一次函数y =kx +b 的图象过P (1,4),Q (4,1)两点,且与x 轴交于A 点.(1)求此一次函数的解析式; (2)求△POQ 的面积;(3)已知点M 在x 轴上,若使MP +MQ 的值最小, 求点M 的坐标及MP +MQ 的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.2017-2018八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)要使二次根式有意义,字母的取值范围是()A.x≥B.x≤C.x>D.x<2.(3分)下列计算正确的是()A.+=B.2+=2C.=+D.﹣=03.(3分)下列四组线段中,可以构成直角三角形的是()A.1,, B.2,3,4 C.1,2,3 D.4,5,64.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元6.(3分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C. D.7.(3分)如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于()A.2 B.3 C.4 D.68.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分9.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB 的长为()A.B.2 C.D.210.(3分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)计算:=.12.(3分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是.13.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.14.(3分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是15.(3分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是.16.(3分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.17.(3分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=.18.(3分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是三、解答题(3小题,共32分)19.(20分)计算:(1)+﹣(2)2(3)(+3﹣)(4)(2﹣3)2﹣(4+3)(4﹣3)20.(6分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.21.(6分)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.四、解答题(2小题,共16分)22.(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.五、解答题(2小题,共18分)24.(9分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(9分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE 于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.2017-2018学年广东省潮州市湘桥区八年级(下)期末数学试卷参考答案一、选择题1.B ;2.D ;3.A ;4.C ;5.A ;6.D ;7.C ;8.C ;9.C ;10.B ; 二、填空题 11.﹣; 12.乙; 13.18; 14.m >; 15.x ≤2;16.89.6分; 17.22.5°; 18.4;三、解答题(3小题,共32分)19.(1)4(2)35 (3)23 (4)49-20.21.;四、解答题(2小题,共16分) 22.23、五、解答题(2小题,共18分)24、25、2017-2018学年下学期期末考试八年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的A、B、C、D四个选项中,只有一项符合题目要求.)1.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(-1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大【专题】函数及其图象.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误;故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.4.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m【专题】计算题.【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】故选:C.【点评】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,)B.(,﹣3)C.(3,) D.(,3)【分析】由矩形的性质可知AB=CD=3,AD=BC=4,【解答】解:∵四边形ABCD是长方形,∴AB=CD=3,AD=BC=4,故选:D.【点评】本题主要考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.10.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里B.海里 C.3海里D.5海里【专题】计算题.【分析】连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【解答】解:连接AC,由题意得,∠CBA=90°,故选:B.【点评】本题考查的是勾股定理的应用和方向角,掌握勾股定理、正确标注方向角是解题的关键.11.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.7【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【解答】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5-44=6(元).故选:C.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.12.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B 出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16-2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:AF=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答.二、填空题(本大题共6小题,每小题3分,共18分13.将直线y=2x+4向下平移3个单位,则得到的新直线的解析式为.【专题】一次函数及其应用.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4-3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.14.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第象限.【专题】平面直角坐标系.【分析】根据各象限内点的坐标特征,可得答案.【解答】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.【专题】计算题.【分析】根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵三角形三边分别为6,8,10,62+82=102∴该三角形为直角三角形.∵最长边即斜边为10,∴斜边上的中线长为:5.故答案为:5.【点评】此题主要考查学生对勾股定理的逆定理及直角三角形斜边上的中线的性质的理解及运用.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为,面积为.【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13.根据从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【解答】解:∵BE、CE分别平分∠ABC、∠BCD,∵AD∥BC,AB∥CD,∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在直角三角形BCE中,根据勾股定理得:BC=13cm,根据平行四边形的对边相等,得到:AB=CD,AD=BC,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm.故答案为:39cm,60cm2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.【专题】函数及其图象.【分析】由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP ⊥AB时,满足条件,由条件可证明△AOB∽△OPB,利用相似三角形的性质可求得OP的长,即可求得EF的最小值.【解答】∴A(0,4),B(-3,0).∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,O B=3,故答案为125【点评】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.18.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.【专题】分类讨论.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,3种情况进行讨论.【解答】解:如图所示:故答案是:3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(7分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【专题】常规题型.【分析】首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【解答】证明:∵DE=BF,∴DE+EF=BF+EF,即DF=BE.∴Rt△ADF≌Rt△CBE.∴AF=CE.【点评】本题主要考查的是全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.20.(8分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的表达式.(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.【专题】常规题型.【分析】(1)根据待定系数法得出解析式即可;(2)设C点坐标,根据三角形面积公式解答即可.【解答】解:(1)设直线解析式为y=kx+b,∵直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标.(2)线段BC的长为,菱形ABCD的面积等于【专题】作图题;网格型.【分析】(1)菱形要求四边相等,根据AB,BC的位置及长度可确定D点位置及坐标,如图所示;(2)在网格中,运用勾股定理求BC、对角线AC,BD的长度,再计算面积.【解答】(1)解:正确画出图(4分)D(-2,1)(5分)【点评】本题考查了菱形的性质,图形画法,菱形面积的求法及勾股定理的运用,需要形数结合,培养学生动手能力.22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.【专题】统计的应用.【分析】(2)求出70~80的人数,画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题;【解答】解:(1)30÷0.15=200,m=200×0.45=90,故答案为200,90,0.30.(2)频数直方图如图所示,故答案为54°【点评】本题考查了数据的分析,以及读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:(1)观察与猜想y与x的函数关系,并说明理由.(2)求日销售价定为30元时每日的销售利润.【专题】常规题型.【分析】(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.【解答】解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.∴y=-x+40.∴y与x的函数关系式是y=-x+40;(2)当x=30时,y=-30+40=10,每日的销售利润=(30-10)×10=200元.【点评】本题主要考查待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.24.(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.【专题】一次函数及其应用.【分析】(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【解答】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2)故答案为:(1,2),(3,2);【点评】本题主要考查正方形的性质与正比例函数的综合运用,灵活运用正方形的性质是解题的关键.25.(9分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.26.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD。
人教版八年级下学期期末考试数学试卷及答案解析(共六套)

人教版八年级下学期期末考试数学试卷(一)一、选择题1、下列二次根式中,是最简二次根式的是()A、B、C、D、2、平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A、120°B、60°C、30°D、15°3、甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示A、甲B、乙C、丙D、丁4、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是()A、y1<y2B、y1=y2D、无法确定5、如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为()A、16B、24C、4D、86、下列命题中,正确的是()A、有一组邻边相等的四边形是菱形B、对角线互相平分且垂直的四边形是矩形C、两组邻角相等的四边形是平行四边形D、对角线互相垂直且相等的平行四边形是正方形7、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A、22.5°B、60°C、67.5°D、75°8、关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A、k≤1C、k=1D、k≥19、已知正比例函数y=kx的图象与反比例函数y= 的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A、x1=﹣1,x2=1B、x1=﹣1,x2=2C、x1=﹣2,x2=1D、x1=﹣2,x2=210、中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S1, S2, S3,若S 1+S2+S3=18,则正方形EFGH的面积为()A、9B、6C、5D、二、填空题11、关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为________.12、如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为________.13、某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是________.14、将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=________15、反比例函数y= 在第一象限的图象如图,请写出一个满足条件的k值,k=________16、如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE的长为________.17、如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为________ m.18、如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB 的长为________,线段BC的长为________.三、解答题19、计算:(1)﹣+(+1)(﹣1)(2)× ÷ .20、解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.四、解答题21、如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN是菱形.22、为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生________人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?23、已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.24、如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.25、在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标为(4,3),反比例函数y= 的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y= 的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y= (x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y= (x>0)交于点Q,与x轴交于点H,若QH= OP,求k的值.五、填空题26、如图,在数轴上点A表示的实数是________.27、我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t的反比例函数,其函数关系式可以写为:v= (s为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:________;并写出这两个变量之间的函数解析式:________.六、解答题28、已知:关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1, x2(用含m的代数式表示);①求方程的两个实数根x1, x2(用含m的代数式表示);②若mx1<8﹣4x2,直接写出m的取值范围.29、四边形ABCD是正方形,对角线AC,BD相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)答案解析部分一、选择题1、【答案】A【考点】最简二次根式【解析】【解答】解:A、为最简二次根式,符合题意;B、=2 ,不合题意;C、= ,不合题意;D、=2,不合题意,故选A【分析】利用最简二次根式的定义判断即可.2、【答案】B【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故选B.【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A 可求出∠A的度数,进而可求出∠C的度数.3、【答案】D【考点】方差【解析】【解答】解:∵0.60>0.56>0.50>0.45,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.【分析】先比较四个选手的方差的大小,根据方差的性质解答即可.4、【答案】C【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,∴1•y1=1,2•y2=1,解得:y1=1,y2= ,∵1>,∴y1>y2.故选C.【分析】根据反比例函数图象上点的坐标特征结合点A、B的横坐标,求出y1、y2的值,二者进行比较即可得出结论.5、【答案】C【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴BO=OD= AC=2,AO=OC= BD=3,AC⊥BD,∴AB= = ,∴菱形的周长为4 .故选:C.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.6、【答案】D【考点】命题与定理【解析】【解答】解:A、有一组邻边相等的平行四边形是菱形,故本选项错误;B、对角线互相平分且垂直的四边形是菱形,故本选项错误;C、两组对角相等的四边形是平行四边形,故本选项错误;D、对角线互相垂直且相等的平行四边形是正方形,故本选项正确.故选D.【分析】分别根据菱形、矩形、正方形及平行四边形的判定定理对各选项进行逐一分析即可.7、【答案】C【考点】正方形的性质【解析】【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠D BC=45°,∵BE=CD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,故选C.【分析】由正方形的性质得到BC=CD,∠DBC=45°,证出BE=BC,根据三角形的内角和定理求出∠BEC=∠BCE=67.5°即可.8、【答案】A【考点】根的判别式【解析】【解答】解:∵a=1,b=﹣2,c=k,而方程有两个实数根,∴△=b2﹣4ac=4﹣4k≥0,∴k≤1;故选A.【分析】根据所给的方程找出a,b,c的值,再根据关于x的一元二次方程x2﹣2x+k=0有两个实数根,得出△=b2﹣4ac≥0,从而求出k的取值范围.9、【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】解:∵正比例函数图象关于原点对称,反比例函数图象关于原点对称,∴两函数的交点A、B关于原点对称,∵点A的坐标为(﹣2,1),∴点B的坐标为(2,﹣1).∴关于x的方程=kx的两个实数根分别为﹣2、2.故选D.【分析】根据正、反比例函数图象的对称性可得出点A、B关于原点对称,由点A的坐标即可得出点B的坐标,结合A、B点的横坐标即可得出结论.10、【答案】B【考点】勾股定理的证明【解析】【解答】解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1, S2, S3,S 1+S2+S3=18,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=18,故3x+12y=18,x+4y=6,所以S2=x+4y=6,即正方形EFGH的面积为6.故选:B.【分析】据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1, S2, S3,得出答案即可.二、<b >填空题</b>11、【答案】8【考点】一元二次方程的解【解析】【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有一个根为2,∴22﹣6×2+m=0,解得,m=8,故答案为:8.【分析】根据关于x的一元二次方程x2﹣6x+m=0有一个根为2,可以求得m的值.12、【答案】5【考点】直角三角形斜边上的中线,三角形中位线定理【解析】【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD= AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF= ×10=5cm.故答案为:5.【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.13、【答案】23【考点】折线统计图【解析】【解答】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即=23,故答案为:23.【分析】根据中位数的定义求解即可.14、【答案】5【考点】解一元二次方程-配方法【解析】【解答】解:方程x2+4x+1=0,移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3,∴a=2,b=3,则a+b=5,故答案为:5【分析】方程配方得到结果,确定出a与b的值,即可求出a+b的值.15、【答案】3【考点】反比例函数的性质【解析】【解答】解:∵反比例函数y= 的图象在第一象限,∴k>0,∴k=3,故答案为:3.【分析】根据反比例函数y= 的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得答案.16、【答案】【考点】勾股定理,矩形的性质,翻折变换(折叠问题)【解析】【解答】解:由折叠得,∠CBD=∠EBD,由AD∥BC得,∠CBD=∠EDB,∴∠EBD=∠EDB,∴DE=BE,设DE=BE=x,则AE=4﹣x,在直角三角形ABE中,AE2+AB2=BE2,即(4﹣x)2+32=x2,解得x= ,∴DE的长为.故答案为:【分析】先根据等角对等边,得出DE=BE,再设DE=BE=x,在直角三角形ABE中,根据勾股定理列出关于x的方程,求得x的值即可.17、【答案】500【考点】勾股定理的应用【解析】【解答】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC= =500m,∴CE=AC﹣AE=200m,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故答案是:500.【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.18、【答案】2;2【考点】勾股定理【解析】【解答】解:如图1中,作BE⊥AC于E.由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE中,∵∠AEB=90°,∴BE= = = ,在Rt△BEC中,BC= = =2 .故答案分别为2,2 .【分析】如图1中,作BE⊥AC于E,由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE,Rt△BEC中利用勾股定理即可解决问题.三、<b >解答题</b>19、【答案】(1)解:原式=3 ﹣2 +3﹣1= +2(2)解:原式=2 × ×=8【考点】二次根式的混合运算【解析】【分析】(1)先化简二次根式、根据平方差公式去括号,再合并同类二次根式可得;(2)先化简,再计算乘除法可得.20、【答案】(1)解:x2﹣6x+5=0,(x﹣5)(x﹣1)=0,x﹣5=0,x﹣1=0,x 1=5,x2=1(2)解:2x2﹣3x﹣1=0,b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=17,x= ,x 1= ,x2=【考点】解一元二次方程-公式法,解一元二次方程-因式分解法【解析】【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.四、<b >解答题</b>21、【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵ND=BF,∴AD﹣ND=BC﹣BF,即AN=CF,在△AEN和△CMF中,∴△AEN≌△CMF(SAS)(2)证明:如图:由(1)△AEN≌△CMF,故EN=FM,同理可得:△EBF≌△MDN,∴EF=MN,∵EN=FM,EF=MN,∴四边形EFMN是平行四边形,∵EM⊥FN,∴四边形EFMN是菱形.【考点】全等三角形的判定与性质,平行四边形的性质,菱形的判定【解析】【分析】(1)直接利用平行四边形的性质得出AN=CF,再利用全等三角形的判定方法得出答案;(2)直接利用全等三角形的判定与性质得出EN=FM,EF=MN,再结合菱形的判定方法得出答案.22、【答案】(1)25(2)解:男生得7分的人数为:45﹣25﹣1﹣2﹣3﹣5﹣3=6,故补全的统计图如右图所示(3)解:男生得平均分是:=7.9(分),女生的众数是:8,故答案为:7.9,8(4)解:女生队表现更突出一些,理由:从众数看,女生好于男生(5)解:由题意可得,女生需增加的人数为:45×60%﹣(20×40%+6)﹣(25×36%)=4(人),即女生优秀人数再增加4人才能完成康老师提出的目标【考点】统计表,扇形统计图,条形统计图,方差【解析】【解答】解:(1)∵在这次测试中,该班女生得10分的人数为4人,∴这个班共有女生:4÷16%=25(人),故答案为:25;【分析】(1)根据扇形统计图可以得到这个班的女生人数;(2)根据本班有45人和(1)中求得得女生人数可以得到男生人数,从而可以得到得7分的男生人数,进而将统计图补充完整;(3)根据表格中的数据可以求得男生得平均成绩和女生的众数;(4)答案不唯一,只要从某一方面能说明理由即可;(5)根据题意可以求得女生优秀人数再增加多少人才能完成康老师提出的目标.23、【答案】解:∵∠B=90°,AB=BC=2,∴AC= =2 ,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.【考点】勾股定理,勾股定理的逆定理【解析】【分析】由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD.24、【答案】(1)解:如图所示:(2)证明:∵点E,F分别为OA,OB的中点,∴EF∥AB,EF= AB,同理:NM∥CD,MN= DC,∵四边形ABCD是矩形,∴AB∥DC,AB=DC,AC=BD,∴EF∥NM,EF=MN,∴四边形EFMN是平行四边形,∵点E,F,M,N分别为OA,OB,OC,OD的中点,∴EO= AO,MO= CO,在矩形ABCD中,AO=CO= AC,BO=DO= BD,∴EM=EO+MO= AC,同理可证FN= BD,∴EM=FN,∴四边形EFMN是矩形(3)解:∵DM⊥AC于点M,由(2)MO= CO,∴DO=CD,在矩形ABCD中,AO=CO= AC,BO=DO= BD,AC=BD,∴AO=BO=CO=DO,∴△COD是等边三角形,∴∠ODC=60°,∵MN∥DC,∴∠FNM=∠ODC=60°,在矩形EFMN中,∠FMN=90°.∴∠NFM=90°﹣∠FNM=30°,∵NO=3,∴FN=2NO=6,FM=3 ,MN=3,∵点F,M分别为OB,OC的中点,∴BC=2FM=6 ,∴矩形的面积为BC•CD=36【考点】矩形的判定与性质【解析】【分析】(1)根据题目要求画出图形即可;(2)根据三角形中位线定理可得EF∥AB,EF= AB,NM∥CD,MN= DC,再由矩形的性质可得AB∥DC,AB=DC,AC=BD,进而可得四边形EFMN是矩形;(3)根据条件可得DM垂直平分OC,进而可得DO=CO,然后证明△COD是等边三角形,进而得出BC,CD的长,进而得出答案.25、【答案】(1)解:∵反比例函数y= 的图象经过点B(4,3),∴=3,∴m=12,∴反比例函数解析式为y=(2)解:∵四边形OABC是矩形,点B(4,3),∴A(0,3),C(4,0),∵一次函数y=ax﹣1的图象与y轴交于点D,∴点D(0,﹣1),AD=4,设点E(xE , yE),∵△ADE的面积=6,∴•AD•|xE|=6,∴xE=±3,∵点E在反比例函数y= 图象上,∴E(3,4),或(﹣3,﹣4),当E(3,4)在一次函数y=ax﹣1上时,4=3a﹣1,∴a= ,∴一次函数解析式为y= x﹣1,当点(﹣3,﹣4)在一次函数y=ax﹣1上时,﹣4=﹣3a﹣1,∴a=1,∴一次函数解析式为y=x﹣1,综上所述一次函数解析式为y=x﹣1或y= x﹣1(3)解:由(2)可知,直线OE解析式为y= x,设点P(xP , yP),取OP中点M,则OM= OP,∴M(xP ,xP),∴Q(xP + ,xP),∴H(,0),∵点P、Q在反比例函数y= 图象上,∴xP • xP=(xP+ )xP,∴xP= ,∴P(,),∴k= .【考点】反比例函数与一次函数的交点问题,矩形的性质,坐标与图形变化-平移【解析】【分析】(1)利用待定系数法即可解决.(2)设点E(xE , yE),由△ADE的面积=6,得•AD•|xE |=6,列出方程即可解决.(3)设点P(xP,y P ),取OP中点M,则OM= OP,则M(xP,xP),Q(xP+ ,xP),列出方程求出xP即可解决问题.五、<b >填空题</b>26、【答案】【考点】实数与数轴【解析】【解答】解:OB= = ,∵OB=OA,∴点A表示的实数是,故答案为:.【分析】首先利用勾股定理计算出BO的长,然后再根据AO=BO可得答案.27、【答案】矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S 为常数,且S≠0)【考点】反比例函数的应用【解析】【解答】解:矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数,这两个变量之间的函数解析式为:a= (S为常数,且S≠0).故答案为:矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S为常数,且S≠0).【分析】根据矩形的面积公式S=ab,即可得知:当面积S固定时,矩形的长a 是矩形的宽b的反比例函数,由此即可得出结论.六、<b >解答题</b>28、【答案】(1)证明:∵mx2﹣3(m﹣1)x+2m﹣3=0(m>3)是关于x的一元二次方程,∴△=[(﹣3(m﹣1)]2﹣4m(2m﹣3)=m2﹣6m+9=(m﹣3)2,∵m>3,∴(m﹣3)2>0,即△>0,∴方程总有两个不相等的实数根(2)①由求根公式得x= ,∴x=1,或x= ,∵m>3,∴>3,当x1<x2,∴x1=1,x2=2﹣;当x1>x2,这种情况不存在;∴x1=1,x2=2﹣;②∵mx1<8﹣4x2,∴m<8﹣4(2﹣),解得:3<m<2 .【考点】根的判别式,根与系数的关系【解析】【分析】(1)由于m>3,此方程为关于x的一元二次方程,再计算出判别式△=(m﹣3)2,然后根据判别式的意义即可得到结论;(2)②由求根公式得到x=1,或x= ,即可得到结论;②根据mx1<8﹣4x2,即可得到结果.29、【答案】(1)解:①补全图形如图1所示,②结论:AP=BN,AP⊥BN.理由:延长NB交AP于H,交OP于K.∵四边形ABCD是正方形,∴OA=OB,AO⊥BO,∴∠1+∠2=90°,∵四边形OPMN是正方形,∴OP=ON,∠PON=90°,∴∠2+∠3=90°,∴∠1=∠3,在△APO和△BNO中,,∴△APO≌△BNO,∴AP=BN,∴∠4=∠5,在△OKN中,∠5+∠6=90°,∵∠7=∠6,∴∠4+∠7=90°,∴∠PHK=90°,∴AP⊥BN.(2)解:解题思路如下:a.首先证明△APO≌△BNO,AP=BN,∠OPA=ONB.b.作OT⊥AB于T,MS⊥BC于S,由题意可知AT=TB=1,c.由∠APO=30°,可得PT= ,BN=AP= +1,可得∠POT=∠MNS=60°.d.由∠POT=∠MNS=60°,OP=MN,可证,△OTP≌△NSM,∴PT=MS= ,∴CN=BN﹣BC= ﹣1,∴SC=SN﹣CN=2﹣,在RT△MSC中,CM2=MS2+SC2,∴MC的长可求.【考点】正方形的性质【解析】【分析】(1)①根据题意作出图形即可.②结论:AP=BN,AP⊥BN,只要证明△APO≌△BNO即可.(2)在RT△CMS中,求出SM,SC即可解决问题.人教版八年级下学期期末考试数学试卷(二)一、选择题1、计算的结果是()A、1B、﹣1C、±1D、﹣22、下列二次根式中,能与合并的是()A、B、C、D、3、下列说法正确的是()A、已知a、b、c是三角形的三边长,则a2+b2=c2B、在直角三角形中,两边的平方和等于第三边的平方C、在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2D、在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c24、已知四边形ABCD是平行四边形,下列结论中不正确的是()A、当∠ABC=90°时,它是矩形B、当AC=BD时,它是正方形C、当AB=BC时,它是菱形D、当AC⊥BD时,它是菱形5、矩形的面积是48cm2,一边与一条对角线的比是4:5,则该矩形的对角线长是()A、6cmB、8cmC、10cmD、24cm6、一个长方形的面积是10cm2,其长是acm,宽是bcm,下列判断错误的是()A、10是常量B、10是变量C、b是变量D、a是变量7、一次函数y=﹣x+1的图象不经过的象限是()A、第一象限B、第二象限C、第三象限D、第四象限8、某同学使用计算器求15个数的平均数时,错将其中一个数据15输入为45,那么由此求得的平均数与实际平均数的差是()A、2B、3C、﹣2D、﹣3二、填空题9、计算:• =________.10、若一个三角形三边的长度之比为3:4:5,且周长为60cm,则它的面积是________ cm2.11、如图,菱形ABCD中,∠A=60°,BD=3,则菱形ABCD的周长是________.12、若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1________y2(选择“>”、“<”、=”填空).13、中学生田径运动会上,参加男子跳高的15名运动员的成绩如表:14、一组数据的方差s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组数据的平均数是________.三、解答题15、计算:(+ )(﹣1)16、如图,台风过后,一所学校的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部12米处,已知旗杆原长24米,求旗杆在离底部多少米的位置断裂?17、已知:在平面直角坐标系xOy中,一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB.(1)直接写出点A、点B的坐标;(2)在所给平面直角坐标系内画一次函数的图象.18、如果三角形的三边长a,b,c满足+|12﹣b|+(a﹣13)2=0,你能确定这个三角形的形状吗?请说明理由.19、小丽上午9:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小丽离家的距离y(米)和所经过的时间x(分)之间的函数关系图象如图所示.请根据图象回答下列问题:(1)小丽去超市途中的速度是________米/分;在超市逗留了________分;(2)求小丽从超市返回家中所需要的时间?20、已知:如图,在▱ABCD中,E、F是对角线BD上的两点,且BE=DF,求证:四边形AECF是平行四边形.四、解答题21、某校八年级(1)班组织了一次朗读比赛,A队10人的比赛成绩(10分制)分别是:10、8、7、9、8、10、10、9、10、9.(1)计算A队的平均成绩和方差;(2)已知B队成绩的方差是1.4,问哪一队成绩较为整齐?22、已知:y= + + ,求﹣的值.23、已知:如图1,图2,在平面直角坐标系xOy中,A(0,4),B(0,2),点C在x轴的正半轴上,点D为OC的中点.(1)求证:BD∥AC;(2)如果OE⊥AC于点E,OE=2时,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.答案解析部分一、选择题1、【答案】A【考点】二次根式的性质与化简【解析】【解答】解:原式= =|﹣1|=1.故选A.【分析】直接把二次根式进行化简即可.2、【答案】D【考点】同类二次根式【解析】【解答】解:=3 ,A、=2 ,不能合并;B、=4 ,不能合并;C、与不能合并;D、=4 ,能合并,故选D【分析】原式各项化为最简二次根式,利用同类二次根式定义判断即可.3、【答案】C【考点】勾股定理【解析】【解答】解:A、若该三角形不是直接三角形,则等式a2+b2=c2不成立,故本选项错误;B、在直角三角形中,两直角边的平方和等于斜边的平方,故本选项错误;C、在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2,故本选项正确;D、在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则c2+a2=b2,故本选项错误;故选:C.【分析】根据勾股定理进行判断即可.4、【答案】B【考点】平行四边形的性质,菱形的判定,矩形的判定,正方形的判定【解析】【解答】解:A、当∠ABC=90°时,它是矩形,说法正确;B、当AC=BD时,它是正方形,说法错误;C、当AB=BC时,它是菱形,说法正确;D、当AC⊥BD时,它是菱形,说法正确;故选:B.【分析】根据有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形进行分析即可.5、【答案】C【考点】矩形的性质【解析】【解答】解:如图:设AB=4x,则AC=5x,由勾股定理得:BC=3x,矩形的面积=AB×BC=4x×3x=48,解得:x=:±2(舍去负值),∴x=2.∴矩形的对角线长是5×2=10(cm).故选:C.【分析】设AB=4x,则AC=5x,由勾股定理可知BC=3x,由勾股定理求出BC=3x,根据面积得出方程,即可得出对角线的长.6、【答案】B【考点】常量与变量【解析】【解答】解:由题意得:10=ab,则10是常量,a和b是变量;故选B.【分析】根据长方形面积公式得:10=ab,10不发生变化是常量,a、b发生变化是变量.7、【答案】C【考点】一次函数的图象【解析】【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象经过的象限,进而可得出结论.8、【答案】A【考点】算术平均数【解析】【解答】解:求15个数的平均数时,错将其中一个数据15输入为45,即使总和增加了30;那么由此求出的这组数据的平均数与实际平均数的差是30÷15=2.故选:A.【分析】利用平均数的定义可得.将其中一个数据15输入为45,也就是数据的和多了30,其平均数就少了30除以15.二、<b >填空题</b>9、【答案】4x【考点】二次根式的乘除法【解析】【解答】解:原式==4x .故答案为:4x .【分析】先进行二次根式的乘法计算,再进行二次根式的化简求解即可.10、【答案】150【考点】勾股定理的逆定理【解析】【解答】解:∵一个三角形三边的长度之比为3:4:5,且周长为60cm,∴三角形三边为15cm,20cm,25cm,且三角形为直角三角形,∴三角形的面积为:×15cm×20cm=150cm2,故答案为:150.【分析】根据已知求出三角形的三边长,根据定勾股理的逆定理得出三角形是直角三角形,根据面积公式求出即可.11、【答案】12【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AD=AB=BC=CD,∵∠A=60°,∴△ABD是等边三角形,即AD=AB=BD=3,∴菱形ABCD的周长为:3×4=12.故答案为:12.【分析】由四边形ABCD是菱形,可得AD=AB=BC=CD,又由∠A=60°,则可证得△ABD是等边三角形,继而求得答案.12、【答案】>【考点】一次函数的图象【解析】【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.13、【答案】1.70m【考点】中位数、众数【解析】【解答】解:由表可知,跳高成绩为1.70m的运动员人数最多,故这些运动员跳高成绩的众数为:1.70m.故答案为:1.70m.【分析】根据众数的概念找出该组数据中出现次数最多的数据即可.14、【答案】3【考点】算术平均数,方差【解析】【解答】解:∵S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],为平均数,∴s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组数据的平均数是3;故答案为:3.【分析】由方差的公式:S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],可得平均数为,从而得出答案.三、<b >解答题</b>15、【答案】解:(+ )(﹣1)== .【考点】二次根式的混合运算【解析】【分析】根据多项式乘以多项式进行计算即可解答本题.16、【答案】解:由题意得:BC=12米,设AC=x米,则AB=(24﹣x)米,x2+122=(24﹣x)2,解得:x=9,答:旗杆在离底部9米的位置断裂.【考点】勾股定理的应用【解析】【分析】首先设AC=x米,则AB=(24﹣x)米,根据勾股定理可得方程x2+122=(24﹣x)2,再解方程即可.17、【答案】(1)解:点A的坐标为(0,2),点B的坐标为(1,0)(2)解:过点A(0,2)、B(1,0)作如图所示的直线,则该直线为y=kx+2的图象.【考点】一次函数的图象【解析】【分析】(1)根据一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB,直接写出点A、B的坐标即可;(2)过点A(0,2)、B(1,0),作图即可.18、【答案】解:这个三角形的形是直角三角形,。
八年级数学下期末试题

八年级数学下期末试题八年级数学下期末试题八年级(下)期末考试数学试卷一、选择题:本大题共12小题,每小题3分,共36分.1.下列各图能表示y是x的函数是()2.下列各式中正确的是()A.=±4 B.=2 C.=3 D.=3.在端午节到来之前,学校食堂推举了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以打算最终向哪家店选购,下面的统计量中最值得关注的是()A.方差B.平均数C.众数D.中位数4.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.其次象限C.第三象限D.第四象限5.下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.4,5,6 B.2,3,4 C.11,12,13 D.8,15,176.将一次函数y=﹣2x+4的图象平移得到图象的函数关系式为y=﹣2x,则移动方法为()A.向上平移4个单位B.向下平移4个单位C.向左平移4个单位D.向右平移4个单位7.如图,在ABCD中,对角线AC、BD交于点O,点E 是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm8.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=﹣x+3 B.y=-2x+3 C.y=2x﹣3 D.y=-x-39.如图,在数轴上点A表示的数为a,则a的值为()A.B.﹣C.1﹣D.﹣1+10.如图象中所反映的过程是:张强从家跑步去体育场,在那里熬炼了一阵后,又去早餐店吃早餐,然后漫步走回家,其中x表示时间,y表示张强离家的距离.依据图象供应的信息,以下四个说法错误的是()A.体育场离张强家3.5千米B.张强在体育场熬炼了15分钟C.体育场离早餐店1.5千米D.张强从早餐店回家的平均速度是3千米/小时11.如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,有下列结论:∠AE=BF;∠∠DEF是等边三角形;∠∠BEF是等腰三角形;∠∠ADE=∠BEF,其中结论正确的个数是()A.3 B.4 C.1 D.212.将2×2的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上.若直线y=kx(k≠0)与正方形ABCD有公共点,则k的取值范围是()A.k≤2 B.C.D.二、填空题:共8小题,每小题3分,共24分.13.假如有意义,那么字母x的取值范围是.14.点(﹣1,y1)、(2,y2)是直线y=2x+1上的两点,则y1 y2(填“>”或“=”或“<”).15.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.16.已知两条线段的长分别为cm、cm,那么能与它们组成直角三角形的第三条线段的长是.17.如图,∠ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则∠EBF的.周长为cm.18.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:∠k<0;∠a>0;∠关于x的方程kx﹣x=a﹣b的解是x=3;∠当x<3时,y1<y2中.则正确的序号有.19.如图,矩形纸片ABCD中,AD=1,将纸片折叠,使顶点A与CD边上的点E重合,折痕FG分别与AD、AB交于点F、G,若DE= ,则EF的长为.20.在∠ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE∠AB于E,PF∠AC于F,M为EF中点,则AM的最小值为.三、解答题:共6小题,共60分.21.(8分)计算:(2 ﹣)2+(+2 )÷ .22.(8分)某校为了备战2022体育中考,因此在八年级抽取了50名女同学进行“一分钟仰卧起坐”测试,测试的状况绘制成表格如下:个数16 22 25 28 29 30 35 37 40 42 45 46人数2 1 7 18 1 9 5 2 1 1 1 2(1)通过计算算得出这50名女同学进行“一分钟仰卧起坐”的平均数是,请写出这50名女同学进行“一分钟仰卧起坐”的众数和中位数,它们分别是、.(2)学校依据测试数据规定八年级女同学“一分钟仰卧起坐”的合格标准为28次,已知该校五年级有女生250名,试估量该校五年级女生“一分钟仰卧起坐”的合格人数是多少?23.(10分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第一象限,斜靠在两条坐标轴上,且点A(0,2),点C (1,0),BE∠x轴于点E,一次函数y=x+b经过点B,交y轴于点D.(1)求证:∠AOC∠∠CEB;(2)求∠ABD的面积.24.(12分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:∠ABM∠∠DCM;(2)推断四边形MENF是什么特别四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).25.(10分)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?26.(12分)如图∠,∠ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在AD、AF上,此时BD=CF,BD∠CF成立.(1)如图∠,i)当∠ABC绕点A逆时针旋转θ(0°<θ<90°)时,线段BD与线段CF的数量关系是;直线BD与直线CF的位置关系是.ii)请利用图∠证明上述结论.(2)如图∠,当∠ABC绕点A逆时针旋转45°时,延长DB 交CF于点H,若AB= ,AD=3时,求线段FC的长.。
人教新版八年级下册数学期末试卷和答案详解(PDF可打印)

2020-2021学年内蒙古乌海市八年级(下)期末数学试卷一、单选题(共12小题,每小题3分,共计36分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.92.(3分)若代数式有意义,则x的取值范围是()A.x≠2B.x≤C.x≤且x≠2D.x≥且x≠2 3.(3分)下列四组线段中,其中能够构成直角三角形的是()A.32,42,52B.7,24,25C.8,13,17D.10,15,20 4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间5.(3分)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<6 6.(3分)快递公司快递员小张一周内投递快递物品件数情况为:有4天是每天投递65件,有2天是每天投递70件,有1天是90件,这一周小张平均每天投递物品的件数为()A.80件B.75件C.70件D.65件7.(3分)下列命题:①若=a,则a>0;②的算术平方根是2;③对角线相等的四边形是矩形;④一组数据5,6,7,8,9的中位数和众数都是7,其中真命题的个数是()A.0B.1C.2D.38.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°9.(3分)四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种10.(3分)若关于x的函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.211.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1D.m<112.(3分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.6二、填空题(共8小题,每小题3分,共计24分)13.(3分)一组数据3,4,3,a,8的平均数为5,则这组数据的方差是.14.(3分)已知y=,则x y的值为.15.(3分)已知P(a,b)是直线y=x﹣2上的点,则6b﹣2a+3的值是.16.(3分)如图,在平行四边形ABCD中,∠D=50°.以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则∠AEB=.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC=12,则EF的长为.18.(3分)如图,将矩形纸片ABCD沿MN折叠,使点B与点D重合,再将△CDN沿DN 折叠.使点C恰好落在MN上的点F处.若MN=5,则AD的长为.19.(3分)如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b﹣kx+1>0的解集为.20.(3分)如图,平行四边形ABCD中,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE,BF相交于点H,BF与AD的延长线相交于点G.下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△GDF,其中正确的结论是.三、解答题(共计60分)21.(8分)计算:(1)(﹣2)2++6;(2)(3﹣2+)÷2.22.(8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:0≤x<4040≤x<8080≤x<120120≤x<160课外阅读时间x(min)等级D C B A人数38分析数据:补全下列表格中的统计量:平均数中位数众数80得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?23.(10分)学校要在教学楼侧面悬挂社会主义核心价值观的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为60°,点C的仰角为45°,求标语牌的宽度BC.(结果保留根号)24.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明.25.(12分)2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元.(1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a(个),售完这两批盲盒所获总利润为w(元),请写出w与a之间的函数关系式;②商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?26.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)求出点A的坐标.(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.2020-2021学年内蒙古乌海市八年级(下)期末数学试卷参考答案与试题解析一、单选题(共12小题,每小题3分,共计36分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.9【考点】二次根式的性质与化简.【分析】直接根据=|a|进行计算即可.【解答】解:原式=|﹣3|=3.故选:A.2.(3分)若代数式有意义,则x的取值范围是()A.x≠2B.x≤C.x≤且x≠2D.x≥且x≠2【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式及分式有意义的条件即可求出答案.【解答】解:由题意可知:,解得:x≤.故选:B.3.(3分)下列四组线段中,其中能够构成直角三角形的是()A.32,42,52B.7,24,25C.8,13,17D.10,15,20【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理,进行计算即可解答.【解答】解:A、∵(32)2+(42)2=337,(52)2=625,∴(32)2+(42)2≠(52)2,∴以32,42,52不能构成直角三角形,故A不符合题意;B、∵72+242=625,252=625,∴72+242=252,∴以7,24,25能构成直角三角形,故B符合题意;C、∵82+132=233,172=289,∴82+132≠172,∴以8,13,17不能构成直角三角形,故C不符合题意;D、∵102+152=325,202=400,∴102+152≠202,∴以10,15,20不能构成直角三角形,故D不符合题意;故选:B.4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间【考点】勾股定理;坐标与图形性质.【分析】根据点P的坐标为(﹣2,3),勾股定理求出OP的长,得出点A的坐标,再判定出3<<4,即可得出﹣的范围.【解答】解:∵点P的坐标为(﹣2,3),∴OP=,∴A(﹣,0),∵9<13<16,∴3<<4,∴﹣4<,故选:A.5.(3分)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<6【考点】平行四边形的性质;三角形三边关系.【分析】平行四边形的两条对角线相交于平行四边形的两边构成三角形,这个三角形的两条边是3,5,第三条边就是平行四边形的一条边x,即满足,解得即可.【解答】解:∵平行四边形ABCD∴OA=OC=3,OB=OD=5∴在△AOB中,OB﹣OA<x<OB+OA即:2<x<8故选:B.6.(3分)快递公司快递员小张一周内投递快递物品件数情况为:有4天是每天投递65件,有2天是每天投递70件,有1天是90件,这一周小张平均每天投递物品的件数为()A.80件B.75件C.70件D.65件【考点】加权平均数.【分析】直接利用加权平均数求法进而分析得出答案.【解答】解:由题意可得,这一周小张平均每天投递物品的件数为:=(件),故选:C.7.(3分)下列命题:①若=a,则a>0;②的算术平方根是2;③对角线相等的四边形是矩形;④一组数据5,6,7,8,9的中位数和众数都是7,其中真命题的个数是()A.0B.1C.2D.3【考点】命题与定理.【分析】根据矩形的判定、中位数和众数的判定、算术平方根的性质判断即可.【解答】解:①若=a,则a≥0,原命题是假命题;②的算术平方根是2,是真命题;③对角线相等的平行四边形是矩形,原命题是假命题;④一组数据5,6,7,8,9的中位数是7,但众数不是7,原命题是假命题;故选:B.8.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°【考点】菱形的性质.【分析】先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH ⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数【解答】解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选:A.9.(3分)四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种【考点】菱形的判定.【分析】由平行四边形的判定方法和菱形的判定方法得出能使四边形ABCD是菱形的选法有4种,即可得出结论.【解答】解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①②③能使四边形ABCD是菱形;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①③⑤能使四边形ABCD是菱形;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴③④⑤能使四边形ABCD是菱形;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴②③④能使四边形ABCD是菱形;∴能使四边形ABCD是菱形的选法有4种.故选:D.10.(3分)若关于x的函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.2【考点】一次函数的定义.【分析】直接利用一次函数的定义得出m的值进而得出答案.【解答】解:∵关于x的函数y=(m﹣1)x|m|﹣5是一次函数,∴|m|=1,m﹣1≠0,解得:m=﹣1.故选:B.11.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1D.m<1【考点】一次函数图象上点的坐标特征.【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m 的取值范围.【解答】解:∵点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,∴当﹣1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m﹣1<0,解得m<,故选:A.12.(3分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.6【考点】轴对称﹣最短路线问题;正方形的性质.【分析】连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.【解答】解:连接AC、CE,CE交BD于P,连接AP、PE,∵四边形ABCD是正方形,∴OA=OC,AC⊥BD,即A和C关于BD对称,∴AP=CP,即AP+PE=CE,此时AP+PE的值最小,所以此时△PAE周长的值最小,∵正方形ABCD的边长为4,点E在边AB上,AE=1,∴∠ABC=90°,BE=4﹣1=3,由勾股定理得:CE=5,∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,故选:D.二、填空题(共8小题,每小题3分,共计24分)13.(3分)一组数据3,4,3,a,8的平均数为5,则这组数据的方差是 4.4.【考点】方差;算术平均数.【分析】先根据平均数是5,求出a的值,然后利用方差的计算公式求解即可.【解答】解:因为3、4、3、a、8的平均数是5,所以3+4+3+a+8=25,解得a=7,故这组数据为3,4,3,7,8,所以这组数据的方差为×[(3﹣5)2+(4﹣5)2+(3﹣5)2+(7﹣5)2+(8﹣5)2]=4.4.故答案为:4.4.14.(3分)已知y=,则x y的值为.【考点】二次根式有意义的条件.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y 的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.15.(3分)已知P(a,b)是直线y=x﹣2上的点,则6b﹣2a+3的值是﹣9.【考点】一次函数图象上点的坐标特征.【分析】将点的坐标代入直线中可得出b=a﹣2,整理得到3b﹣a=﹣6,代入代数式求得即可.【解答】解:∵P(a,b)是直线y=x﹣2上的点,∴b=a﹣2,∴3b﹣a=﹣6,∴6b﹣2a+3=2×(﹣6)+3=﹣9.故答案为:﹣9.16.(3分)如图,在平行四边形ABCD中,∠D=50°.以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则∠AEB=25°.【考点】作图—复杂作图;平行四边形的性质.【分析】利用平行四边形的性质求出∠ABC=50°,再利用角平分线的定义,平行线的性质求解即可.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知BE平分∠ABC,∴∠EBC=∠ABC=25°,∴∠AEB=∠EBC=25°,故答案为:25°.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC=12,则EF的长为 2.5.【考点】三角形中位线定理.【分析】根据直角三角形斜边上的中线的性质求出DF,根据三角形中位线定理求出DE,计算即可.【解答】解:在Rt△AFB中,D为AB的中点,AB=7,∴DF=AB=3.5,∵DE为△ABC的中位线,BC=12,∴DE=BC=6,∴EF=DE﹣DF=2.5,故答案为:2.5.18.(3分)如图,将矩形纸片ABCD沿MN折叠,使点B与点D重合,再将△CDN沿DN折叠.使点C恰好落在MN上的点F处.若MN=5,则AD的长为.【考点】翻折变换(折叠问题);矩形的性质.【分析】根据折叠的性质可以证明△DEM≌△DCN,得DM=DN,再根据折叠可得∠BNM =∠DNM=∠DNC,可证明△DMN是等边三角形,再根据等边三角形的性质即可求出AD的长.【解答】解:由折叠可知:点B与点D重合,∴∠EDN=90°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠EDM+∠MDN=∠CDN+∠MDN,∴∠EDM=∠CDN,∵∠E=∠C=90°,DE=DC,∴△DEM≌△DCN(ASA),∴DM=DN,由折叠,∠BNM=∠DNM,∠DNC=∠DNM,∴∠BNM=∠DNM=∠DNC=180°=60°,∴△DMN是等边三角形,∴DM=MN=5,点C恰好落在MN上的点F处可知:∠DFN=90°,即DF⊥MN,∴MF=NF=MN=,∴CN=ME=AM=,∴AD=AM+DM=.故答案为.19.(3分)如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b﹣kx+1>0的解集为x>﹣1.【考点】一次函数与一元一次不等式;两条直线相交或平行问题.【分析】观察函数图象得到,当x>﹣1,函数y=x+b的图象都在函数y=kx﹣1图象的上方,于是可得到关于x的不等式x+b﹣kx+1>0的解集.【解答】解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b﹣kx+1>0的解集为x>﹣1.故答案为:x>﹣1.20.(3分)如图,平行四边形ABCD中,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE,BF相交于点H,BF与AD的延长线相交于点G.下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△GDF,其中正确的结论是①②③.【考点】平行四边形的性质;全等三角形的判定.【分析】①根据等腰直角三角形的性质即可判断;②通过三角形全等和平行四边形的性质即可判断;③根据平行四边形的性质和线段的等量代换即可判断;④通过角的关系即可求得结果;【解答】解:∵∠DBC=45°,DE⊥BC,∴BD=BE,BE=DE,∵DE⊥BC,BF⊥CD,∴∠BEH=∠DEC=90°,∵∠BHE=∠DHF,∴∠EBH=∠CDE,∴△BEH≌△DEC(SAS),∴∠BHE=∠C,BH=CD,∵四边形ABCD是平行四边形,∴∠C=∠A,AB=CD,∴∠A=∠BHE,AB=BH,∴正确的有①②③;故答案为:①②③.三、解答题(共计60分)21.(8分)计算:(1)(﹣2)2++6;(2)(3﹣2+)÷2.【考点】二次根式的混合运算.【分析】(1)先根据完全平方公式和分母有理数将式子展开,然后再合并同类项和同类二次根式即可;(2)根据二次根式的除法化简即可.【解答】解:(1)(﹣2)2++6=3﹣4+4+2+2=7;(2)(3﹣2+)÷2=﹣+===3﹣+2=4.22.(8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3584分析数据:补全下列表格中的统计量:平均数中位数众数808181得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为B;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?【考点】统计量的选择;用样本估计总体;频数(率)分布表.【分析】根据中位数、众数的定义可以填表格,利用样本和总体之间的比例关系可以估计或计算得到(1)(2)(3)结果.【解答】解:(1)根据上表统计显示:样本中位数和众数都是81,平均数是80,都是B 等级,故估计该校学生每周的用于课外阅读时间的情况等级为B.(2)∵=160∴该校现有学生400人,估计等级为“B”的学生有160名.(3)以平均数来估计:×52=26∴假设平均阅读一本课外书的时间为160分钟,以样本的平均数来估计该校学生每人一年(按52周计算)平均阅读26本课外书.故答案为:5,4,81,81,B;23.(10分)学校要在教学楼侧面悬挂社会主义核心价值观的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为60°,点C的仰角为45°,求标语牌的宽度BC.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可得DP=20米,然后分别在Rt△BDP和Rt△CDP中,利用锐角三角函数的定义求出BD,CD的长,进行计算即可解答.【解答】解:由题意得:DP=20米,在Rt△BDP中,∠BPD=60°,∴BD=DP•tan60°=20(米),在Rt△CDP中,∠CPD=45°,∴CD=DP•tan45°=20(米),∴BC=BD﹣CD=(20﹣20)米,∴标语牌的宽度BC为(20﹣20)米.24.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是FG=CE,位置关系是FG∥CE;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.【解答】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.故答案为:FG=CE,FG∥CE;(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.25.(12分)2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元.(1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a(个),售完这两批盲盒所获总利润为w(元),请写出w与a之间的函数关系式;②商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设甲种盲盒的进货单价为a元,则乙种盲盒的进货单价为(a﹣2)元,根据题意即可列出一元一次方程,即可求解.(2)①设购进甲种盲盒a个,则购进乙种盲盒(50﹣a)个,根据题意得到a的取值,再列出w关于a的一次函数.②根据一次函数的性质即可求解.【解答】解:(1)设甲种盲盒的进货单价为a元,则乙种盲盒的进货单价为(a﹣2)元,根据题意得:10a+15(a﹣2)=1570,解得:a=64,∴甲种盲盒的进货单价为64元,则乙种盲盒的进货单价为62元.(2)①设购进甲种盲盒a个,则购进乙种盲盒(50﹣a)个,依题意可得:,解得0≤a≤且x为整数,∴w=(83﹣64)(10+a)+(78﹣62)(50﹣a+15),=1230+3a,∴w与a之间的函数关系式为w=3a+1230.②∵3>0,∴w随a的增大而增大,=1230+3×33=1329(元).∴当a=33时,y最大∴购进甲种盲盒33个,购进乙种盲盒17个;才能使售完这二批盲盒获得总利润最大;最大利润是1329元.26.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)求出点A的坐标.(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)联立两直线解析式求出A的坐标即可;(2)根据D在直线OA上,设出D坐标,表示出三角形COD面积,把已知面积代入求出x的值,确定出D坐标,利用待定系数法求出CD解析式即可;(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:(i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;(ii)当四边形OP2CQ2为菱形时;(iii)当四边形OQ3P3C为菱形时;分别求出P坐标即可.【解答】解:(1)解方程组,得,∴A(6,3);(2)设D(x,x),∵△COD的面积为12,∴×6×x=12,解得:x=4,∴D(4,2),设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:,解得:,∴直线CD解析式为y=﹣x+6;(3)在直线l1:y=﹣x+6中,当x=0时,y=6,∴C(0,6),存在点P,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:(i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时OP1=OC=6,即P1(6,0);(ii)当四边形OP2CQ2为菱形时,由C坐标为(0,6),得到P2纵坐标为3,把y=3代入直线CP1的解析式y=﹣x+6中,可得3=﹣x+6,解得x=3,此时P2(3,3);(iii)当四边形OQ3P3C为菱形时,则有OQ3=OC=CP3=P3Q3=6,设P3(x,﹣x+6),∴x2+(﹣x+6﹣6)2=62,解得x=3或x=﹣3(舍去),此时P3(3,﹣3+6);综上可知存在满足条件的点的P,其坐标为(6,0)或(3,3)或(3,﹣3+6).。
最新八年级(下)期末数学试卷(五四学制)( 解析版)

一.选择题(共10小题)1.一个直角三角形的两条直角边分别是5和12,则斜边是()A.13B.12C.15D.102.下列四个图象中,不表示某一函数图象的是()A.B.C.D.3.下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1D.3x2﹣2xy﹣5y2=04.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>25.正方形具有而菱形不具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直6.已知,点(﹣2,y1)和点(﹣3,y2)在直线y=﹣3x+4图象上,则y1和y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定7.如图所示是一张直角三角形的纸片,两直角边AC=6,BC=8,现将△ABC折叠,使点B与点A重合,折痕为DE,则AD的长为()A.4B.5C.6D.8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10009.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则折痕MN的长是()A.5cmB.5cmC.4cmD.4cm10.星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路二.填空题(共10小题)11.在函数中,自变量x的取值范围是.12.已知关于x的方程x2+mx﹣6=0的一个根为2,则m=.13.如图,在平行四边形ABCD中,BC=10,AC=8,BD=14,△AOD的周长是.14.已知关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则实数k的取值范围是.15.如图,在△ABC中,D、E分别是AB和AC的中点,F是BC延长线上一点,DF平分CE于点G,CF=2,则BC=.16.如图,等边△DEC在正方形ABCD内,连接EA、EB,则∠AEB 的度数是.17.直线y=2x+b与x轴交于点A,与y轴正半轴交于点B,若△AOB的面积是12,则b=.18.有一人患流感,经过两轮传染后共有81人患了流感,则每轮传染中平均一人传染了人.19.已知△ABC中AB=4,AC=5,BC上的高为4,则BC=.20.等边三角形ABC外一点D,∠ADC=90°,BE⊥CD于E,AD =1,DE=2,则BE=.三.解答题(共7小题)21.解方程:(1)x2﹣2x﹣4=0;(2)2x2﹣7x﹣4=0.22.图1、图2分别是10×8的网格,网格中每个小正方形的边长均为1,A、B两点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形分别满足以下要求:(1)在图1中画一个△ABC,使△ABC为面积为5的直角三角形;(2)在图2中画一个△ABC,使△ABC为钝角等腰三角形.23.如图,菱形ABCD中,点E、F分别是BC、CD边的中点.求证:AE=AF.24.已知y+5与3x+4成正比例,当x=1时,y=2.(1)求y与x的函数关系式;(2)求当x=﹣1时的函数值.25.周末,小亮一家在东昌湖游玩,妈妈在湖心岛P处观看小亮与爸爸在湖中划船(如图)小船从P处出发,沿北偏东60°方向滑行150米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏东30°的方向上.(1)求点P与AB距离多少米?(2)如果小亮从A到B的速度是3米/秒,那么小亮从A到B所用的时间是多少秒?26.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示)(2)在上述条件不变,销售正常的情况下,每件商品降价多少元时,商场日盈利可达到2100元?27.如图,在平面直角坐标系中,点O为坐标原点,直线1分别交x轴、y轴于A.B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积S,点C运动的时间为t,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.参考答案与试题解析一.选择题(共10小题)1.一个直角三角形的两条直角边分别是5和12,则斜边是()A.13B.12C.15D.10【分析】此题利用勾股定理a2+b2=c2可直接得出答案.【解答】解;由一个直角三角形的两条直角边分别是5和12,利用勾股定理得斜边长为=13.故选:A.2.下列四个图象中,不表示某一函数图象的是()A.B.C.D.【分析】根据函数的定义可知:对于x的任何值y都有唯一的值与之相对应.紧扣概念,分析图象.【解答】解:根据函数的定义可知,只有D不能表示函数关系.故选:D.3.下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1D.3x2﹣2xy﹣5y2=0【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、原方程为分式方程;故A选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故B选项错误;C、由原方程,得x2+x﹣3=0,符合一元二次方程的要求;故C 选项正确;D、方程3x2﹣2xy﹣5y2=0中含有两个未知数;故D选项错误.故选:C.4.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2【分析】根据函数图象与x轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.5.正方形具有而菱形不具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直【分析】根据正方形的性质以及菱形的性质即可判断.【解答】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的对角线不一定相等,而正方形的对角线一定相等.故选:B.6.已知,点(﹣2,y1)和点(﹣3,y2)在直线y=﹣3x+4图象上,则y1和y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定【分析】利用一次函数图象上点的坐标特征可求出y1,y2的值,比较后即可得出结论.【解答】解:当x=﹣2时,y1=﹣3×(﹣2)+4=10;当x=﹣3时,y2=﹣3×(﹣3)+4=13.∵10<13,∴y1<y2.故选:A.7.如图所示是一张直角三角形的纸片,两直角边AC=6,BC=8,现将△ABC折叠,使点B与点A重合,折痕为DE,则AD的长为()A.4B.5C.6D.【分析】由折叠的性质得出AD=BD,设AD=x,则CD=8﹣x,可得出62+(8﹣x)2=x2,解得x=.则可得出答案.【解答】解:∵将△ABC折叠,使点B与点A重合,折痕为DE,∴AD=BD,设AD=x,则CD=8﹣x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8﹣x)2=x2,解得x=.∴AD=.故选:D.8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000【分析】先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.【解答】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.9.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则折痕MN的长是()A.5cmB.5cmC.4cmD.4cm【分析】如图,连接DE,过点M作MG⊥CD于点G,证明△MNG ≌△DEC,则有MN=DE.【解答】解:如图,连接DE.由题意,在Rt△DCE中,CE=4cm,CD=8cm,由勾股定理得:DE===cm.过点M作MG⊥CD于点G,则由题意可知MG=BC=CD.连接DE,交MG于点I.由折叠可知,DE⊥MN,∴∠NMG+MIE=90°,∵∠DIG+∠EDC=90°,∠MIE=∠DIG(对顶角相等),∴∠NMG=∠EDC.在△MNG与△DEC中,∴△MNG≌△DEC(ASA).∴MN=DE=cm.故选:D.10.星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路【分析】根据图象上特殊点的坐标和实际意义即可求出答案.【解答】解:小王去时的速度为:2÷20=0.1千米/分,回家的速度为:2÷(40﹣30)=0.2千米/分,所以A、C均错.小王在朋友家呆的时间为:30﹣20=10,所以B对.故选:B.二.填空题(共10小题)11.在函数中,自变量x的取值范围是x≠1 .【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣1≠0,解可得答案.【解答】解:根据题意可得x﹣1≠0;解得x≠1;故答案为x≠1.12.已知关于x的方程x2+mx﹣6=0的一个根为2,则m= 1 .【分析】把x=2代入方程x2+mx﹣6=0得到一个关于m的一元一次方程,求出方程的解即可.【解答】解:把x=2代入方程x2+mx﹣6=0,得:4+2m﹣6=0,解方程得:m=1.故答案为:1.13.如图,在平行四边形ABCD中,BC=10,AC=8,BD=14,△AOD的周长是21 .【分析】根据平行四边形的性质可得AD=BC=10,AO=CO=AC=4,BO=DO=BD=7,即可求△AOD的周长.【解答】解:∵四边形ABCD是平行四边形∴AD=BC=10,AO=CO=AC=4,BO=DO=BD=7∴△AOD的周长=AD+AO+DO=21故答案为2114.已知关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则实数k的取值范围是k>﹣1且k≠0..【分析】根据一元二次方程的定义以及根的判别式得到k≠0,且△>0,然后解两个不等式即可得到实数k的取值范围.【解答】解:根据题意得,k≠0,且△>0,即22﹣4×k×(﹣1)>0,解得k>﹣1,∴实数k的取值范围为k>﹣1且k≠0.故答案为k>﹣1且k≠0.15.如图,在△ABC中,D、E分别是AB和AC的中点,F是BC延长线上一点,DF平分CE于点G,CF=2,则BC= 4 .【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE,DE∥BC,再根据两直线平行,内错角相等可得∠DEG=∠FCG,然后利用“角边角”证明△DEG和△FCG全等,根据全等三角形对应边相等可得DE=CF,然后求解即可.【解答】解:∵D、E分别是AB和AC的中点,∴DE=BC,DE∥BC,∴∠DEG=∠FCG,∵DF平分CE于点G,∴EG=CG,∵在△DEG和△FCG中,,∴△DEG≌△FCG(ASA),∴DE=CF,∵CF=2,∴DE=2,∴BC=2DE=2×2=4.故答案是:4.16.如图,等边△DEC在正方形ABCD内,连接EA、EB,则∠AEB 的度数是150°.【分析】根据正方形的性质以及等边三角形的性质即可求出答案.【解答】解:由题意可知:AD=CD=DE=CE=CB,∴∠EDC=60°,∠ADE=30°,∴∠AED=∠BEC=75°,∴∠AEB=360°﹣2∠AED﹣∠DEC=150°,故答案为:150°17.直线y=2x+b与x轴交于点A,与y轴正半轴交于点B,若△AOB的面积是12,则b=4.【分析】利用一次函数图象上点的坐标特征,可求出点A,B的坐标,进而可得出OA,OB的长,结合△AOB的面积是12,即可得出关于b的一元二次方程,解之取其正值即可得出结论.【解答】解:当x=0时,y=2x+b=b,∴点B的坐标为(0,b),∵点B在y轴正半轴,∴b>0,OB=b.当y=0时,2x+b=0,解得:x=﹣b,∴点A的坐标为(﹣b,0),OA=b.∵S△AOB=12,即×b×b=12,解得:b=4或b=﹣4(舍去).故答案为:4.18.有一人患流感,经过两轮传染后共有81人患了流感,则每轮传染中平均一人传染了8 人.【分析】设每轮传染中平均每个人传染了x人,那么第一轮有(x+1)人患了流感,第二轮有x(x+1)人被传染,然后根据共有81人患了流感即可列出方程解题.【解答】解:设每轮传染中平均每个人传染了x人,依题意得1+x+x(1+x)=81,∴x=8或x=﹣10(不合题意,舍去).所以,每轮传染中平均一个人传染了8个人,故答案为:8.19.已知△ABC中AB=4,AC=5,BC上的高为4,则BC=7或1 .【分析】作AD⊥BC,根据勾股定理分别求出BD、CD,分两种情况计算即可.【解答】解:作AD⊥BC交直线BC于D,在Rt△ABD中,BD==4,在Rt△ACD则,CD==3,如图1,BC=BD+CD=7,如图2,BC=BD﹣CD=1,故答案为:7或1.20.等边三角形ABC外一点D,∠ADC=90°,BE⊥CD于E,AD =1,DE=2,则BE= 5 .【分析】取CD的中点F,连接AF,过C作射线CG,使∠BCG=∠ACD.CG与BE交于点G.证明△BCG≌△ACF,便可解决问题.【解答】解:取CD的中点F,连接AF,过C作射线CG,使∠BCG =∠ACD.CG与BE交于点G,如图,∵DE=2,∴DF=EF=,∵∠ADC=90°,AD=1,∴tan∠AFD=,∴∠AFD=30°,∴∠AFC=150°,AF=2AD=2,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵∠BCG=∠ACD,∴∠ACB=∠ECG=60°,∵BE⊥CD,∴∠EGC=30°,∴∠BGC=150°=∠AFC,CG=2CE,在△BCG和△ACF中,,∴△BCG≌△ACF(AAS),∴BG=AG=2,CG=CF,∵CG=2CE,∴EF=CE=,CG=2,∴EG==3,∴BE=BG+EG=2+3=5.故答案为5.三.解答题(共7小题)21.解方程:(1)x2﹣2x﹣4=0;(2)2x2﹣7x﹣4=0.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x=4,∴x2﹣2x+1=4+1,即(x﹣1)2=5,∴x﹣1=,∴x=1±;(2)∵2x2﹣7x﹣4=0,∴(x﹣4)(2x+1)=0,则x﹣4=0或2x+1=0,解得x=4或x=﹣0.5.22.图1、图2分别是10×8的网格,网格中每个小正方形的边长均为1,A、B两点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形分别满足以下要求:(1)在图1中画一个△ABC,使△ABC为面积为5的直角三角形;(2)在图2中画一个△ABC,使△ABC为钝角等腰三角形.【分析】(1)根据题意可知AB=5,要使△ABC面积为5,则只需要过点A作垂直AB的直线且长度为2即可;(2)要使△ABC为钝角等腰三角形,则必须找到和AB相等的边BC且C点必须在小正方形的顶点.【解答】解:(1)∵AB=5,∴要使△ABC面积为5,则只需要过点A作垂直AB的直线且长度为2即可,如图所示;(2)BC==5=AB,如图所示.(答案不唯一)23.如图,菱形ABCD中,点E、F分别是BC、CD边的中点.求证:AE=AF.【分析】欲证AE=AF,可以通过证△ABE≌△ADF从而推出等边,因为点E、F分别是BC、CD边的中点,再利用菱形的性质则可根据SAS得证.【解答】证明:在菱形ABCD中,AB=BC=CD=AD,∠B=∠D,…(3分)∵点E、F分别是BC、CD边的中点,∴BE=BC,DF=CD,∴BE=DF,∴△ABE≌△ADF,…(7分)∴AE=AF.…(9分)24.已知y+5与3x+4成正比例,当x=1时,y=2.(1)求y与x的函数关系式;(2)求当x=﹣1时的函数值.【分析】(1)先设出函数的解析式为y+5=k(3x+4),再将x=1,y=2代入即可求得函数的关系式.(2)把x=﹣1代入y=3x﹣1即可求得.【解答】解:(1)设函数的解析式为y+5=k(3x+4),∵把x=1,y=2代入解析式中得2+5=7k,解得k=1.∴y+5=3x+4,即:y=3x﹣1.(2)把x=﹣1代入y=3x﹣1得y=﹣3﹣1=﹣4.25.周末,小亮一家在东昌湖游玩,妈妈在湖心岛P处观看小亮与爸爸在湖中划船(如图)小船从P处出发,沿北偏东60°方向滑行150米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏东30°的方向上.(1)求点P与AB距离多少米?(2)如果小亮从A到B的速度是3米/秒,那么小亮从A到B所用的时间是多少秒?【分析】(1)作PQ⊥AB于Q,解直角三角形即可得到结论;(2)在Rt△APQ中,根据直角三角形的性质得到AQ=PA=75,在Rt△BPQ中求得BQ=PQ=225米,于是得到结论.【解答】解:(1)作PQ⊥AB于Q,根据已知,∠APQ=30°,则PQ=AP,∵AP=150,∴PQ=75,答:点P与AB距离是75米,(2)在Rt△APQ中,AQ=PA=75,在Rt△BPQ中,∵∠B=30°,∴BQ=PQ=225米,∴小亮从A到B所用的时间是==100秒.26.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元据此规律,请回答:(1)商场日销售量增加2x件,每件商品盈利(50﹣x)元(用含x的代数式表示)(2)在上述条件不变,销售正常的情况下,每件商品降价多少元时,商场日盈利可达到2100元?【分析】(1)降价1元,可多售出2件,降价x元,可多售出2x 件,盈利的钱数=原来的盈利﹣降低的钱数;(2)等量关系为:每件商品的盈利×可卖出商品的件数=2100,把相关数值代入计算得到合适的解即可.【解答】解:(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=50﹣x;故答案为:2x;(50﹣x);(2)由题意得:(50﹣x)(30+2x)=2100化简得:x2﹣35x+300=0,即(x﹣15)(x﹣20)=0解得:x1=15,x2=20由于该商场为了尽快减少库存,因此降的越多,越吸引顾客,故选x=20,答:每件商品降价20元,商场日盈利可达2100元.27.如图,在平面直角坐标系中,点O为坐标原点,直线1分别交x轴、y轴于A.B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积S,点C运动的时间为t,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.【分析】(1)x2﹣14x+48=0,则x=6或8,故点A、B的坐标分别为(6,0)、(0,8),即可求解;(2)S=×BO×CM=×8×|10﹣2t|=|10﹣2t|,即可求解;(3)分AB是菱形的边、AB是菱形的对角线两种情况,分别求解即可.【解答】解:(1)x2﹣14x+48=0,则x=6或8,故点A、B的坐标分别为(6,0)、(0,8),则AB=10;设直线AB的表达式为:y=kx+b,则,解得,故直线AB的表达式为:y=﹣x+8;(2)过点C作CM⊥y轴于点M,则,即,解得:CM=|10﹣2t|,S=×BO×CM=×8×|10﹣2t|=|10﹣2t|,故S=;(3)点A、B的坐标分别为(6,0)、(0,8),设点P、Q的坐标分别为(0,s)、(m,n),①当AB是菱形的边时,点A向上平移8个单位向左平移6个单位得到点B,同样点Q向上平移8个单位向左平移6个单位得到点P,即0﹣8=m,s+6=n且BP=BA=10,解得:m=﹣8,n=24,故点Q的坐标为(﹣8,24);②当AB是菱形的对角线时,由中点公式得:6+0=m+0,8+0=s+n且BP=BQ,即(s﹣8)2=m2+(n﹣8)2,解得:m=6,m=,故点Q的坐标为(6,);综上,点Q的坐标为(﹣8,24)或(6,).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宜丰县2008-2009学年度下学期八年级数学期末试卷
一、
填空题(10×3'=30分)
1、
如果反比例函数的图象过点(1、-2),则这个反比例函数的解析式为_______________。
2、
分式xx+1的值为0,则X=______________。
3、
若35a=b,则abb__________________。
4、
化简:11abab_______________。
5、
如图1,在四边形ABCD中AB
图3 图4
6、
如图4,在梯形ABCD中,AD直线Y=2X-1与X轴交于点A,与Y轴交于点B,则AB的长是____________。
如图5,P是反比例函数图象在第一象限的 点,且矩形PEOF的面积为3,则反比例函数表达式为
__________________
Y
P
E
O F X
图5
10、直线Y=2X-4与X轴交于点A,与Y轴交于点B,则AB的长是
二、
选择题(本大题共8小题,每小题3分,共24分。第小题只有一个正确选项,把正确选项的代号
填入题后括号内。)
11、分式13x有意义,则x的取值范围是( )
A、X>3 B、X<3 C、X≠3 D、X≠-3
12、天气预报报道宜春市今天最高气温34℃,最低气温20℃,则今天宜春市气温的极差是( )
A、54℃ B、14℃ C、-14℃ D、-62℃
13、
下列四个函数中,当X>0时,Y随X的增大而增大的是( )
A、Y=2x B、Y=-2x C、Y=-x D、Y=-2x-1
14、10名学生分虽购买如下尺码的鞋子:20,20,21,22,22,22,23,23,24.(单位:Cm),这组数据
中鞋店老板最关心的是( )
A、
平均数 B、中位数 C、众数 D、方差
15、
如图6,正比例函数Y=X与反比例函数Y=1x的图象相交于点A、C,AB┴X轴于B,CD┴X轴
于D,这四边形ABCD的面积为( )
A、1 B、2 C、32 D、52 A D
A
D
C B 图6 B E C 图7
16、
如图7,等腰梯形ABCD中,AD//BC,AE//DC,∠B=60°,BC=3,ΔABE的周长为6,则等腰梯
形ABCD的周长是( )
A、
8 B、 10 C、 12 D、16
17、将一张矩形纸片ABCD如图8那样折起,使顶点C落在C'处,其中AB=4,若∠C'ED=30°,则
折痕ED的长为( )
A C'
A、4 B、43 C、53 D、8 D
B
E C
18、如图9,在同一直角坐标系中,正比例函数y=kx+3与反比例函数y=kx的图象位置可能是( )
y y y y
x x
x
A B C D
三、
(本大题共3小题,第19题,第20题各4分,第21题5分,共13分)
19、
化简:
20、
解方程:2113224xxx┼
21、先化简,再选择你喜欢的又使原式有意义的一个x的值代入求值。
四、
(本大题共3小题,每小题各6分,共18分)
22、宜丰县蔬菜大户老李有一块正方形菜地,他准备在菜地中间空出两条笔直的交叉的小路,把菜地平
均分成面积相等的四部分进行特色种植。请你在下图中添加两条相交线,帮助老李设计三种不同的分割
方案,并简要说明作图方法。
方法一 方法二 方法三
23、如图10,已知 ABCD中,E为AD中点,CE的延长线交BA延长线于点F。求证:A 是BF
的中点
C D
E
B F
A
如图10
24、张老师要从班级里数学 成绩较优秀的甲、乙两位学生中选拔一人参加“全国初中数学 联赛”。为此,
他对两位同学进行了辅导,并在辅导期间测验了10次,测验成绩如下表:
第1次 2 3 4 5 6 7 8 9 10
甲 68 80 78 79 78 84 81 83 77 92
乙 86 80 75 83 79 80 85 80 77 75
利用表中数据,解答下列问题:(1)填空完成下表:
平均成绩 中位数 众数
甲 80
乙 80 80
(2)张老师从测验成绩表中,求得甲的方差S甲2 =,请你计算乙10次测验成绩的方差。
(3)请你根据上面的信息,运用所学统计知识,帮张老师选拔出参加“全国数学联赛”的人选,并简要说
明理由。
五、(本大题共两小题,第25题7分,第26题8分,共15分)
25、如图11,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点。
(1)利用图中条件,求反比例函数的解析式及n的值。
y
A(-2,1)
x
B(1,n)
图11
(2)求一次函数的解析式。
(3)
根据图象写出使一次函数的值大于反比例函数值的x的取值范围。
26、
如图12,菱形ABCD的边CD在菱形ECGF的边CE上,且D是CE中点。连接BE,DF。
(1)观察猜想BE与DF之间的大小关系,并证明你的结论。
(2)图中是否存在旋转能够 互相重合的两个三角形?若存在,请说明旋转过程:若不存在,请说明
理由。