益阳2020年中考数学试卷(含答案解析)
2020年湖南省益阳市中考数学试卷(含答案解析)

2020年湖南省益阳市中考数学试卷副标题题号 一 二 三 四 总分 得分一、选择题(本大题共10小题,共40.0分) 1. 四个实数1,0,√3,−3中,最大的数是( )A. 1B. 0C. √3D. −32. 将不等式组{x +2≥0,x <1的解集在数轴上表示,正确的是( )A. B. C.D.3. 如图所示的几何体的俯视图是( )A.B.C.D.4. 一组数据由4个数组成,其中3个数分别为2,3,4,且这组数据的平均数为4,则这组数据的中位数为( ) A. 7 B. 4 C. 3.5 D. 3 5. 同时满足二元一次方程x −y =9和4x +3y =1的x ,y 的值为( )A. {x =4y =−5B. {x =−4y =5C. {x =−2y =3D. {x =3y =−66. 下列因式分解正确的是( )A. a(a −b)−b(a −b)= (a −b)(a +b)B. a 2−9b 2=(a −3b)2C. a 2+4ab +4b 2=(a +2b)2D. a 2−ab +a =a(a −b)7. 一次函数y =kx +b 的图象如图所示,则下列结论正确的是( )A. k <0B. b =−1C. y 随x 的增大而减小D. 当x >2时,kx +b <08. 如图,▱ABCD 的对角线AC ,BD 交于点O ,若AC =6,BD =8,则AB 的长可能是( )A. 10B. 8C. 7D. 69. 如图,在△ABC 中,AC 的垂直平分线交AB 于点D ,DC 平分∠ACB ,若∠A =50°,则∠B 的度数为( )A. 25°B. 30°C. 35°D. 40°10. 如图,在矩形ABCD 中,E 是DC 上的一点,△ABE 是等边三角形,AC 交BE 于点F ,则下列结论不成立的是( ) A. ∠DAE =30°B. ∠BAC =45°C. EFFB =12D. AD AB =√32二、填空题(本大题共8小题,共32.0分)11. 我国北斗全球导航系统最后一颗组网卫星于2020年6月30日成功定点于距离地球36000千米的地球同步轨道.将“36000”用科学记数法表示为______. 12. 如图,AB//CD ,AB ⊥AE ,∠CAE =42°,则∠ACD 的度数为______. 13. 小明家有一个如图所示的闹钟,他观察发现圆心角∠AOB =90°,测得ACB⏜的长为36cm ,则ADB ⏜的长为______cm .14.反比例函数y=k−1的图象经过点P(−2,3),则k=______.x15.小朋友甲的口袋中有6粒弹珠,其中2粒红色,4粒绿色,他随机拿出1颗送给小朋友乙,则送出的弹珠颜色为红色的概率是______.16.若一个多边形的内角和是540°,则该多边形的边数是______.17.若计算√12×m的结果为正整数,则无理数m的值可以是______(写出一个符合条件的即可).18.某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是______元.三、计算题(本大题共1小题,共10.0分)19.沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD,高DH=12米,斜坡CD的坡度i=1:1.此处大堤的正上方有高压电线穿过,PD表示高压线上的点与堤面AD的最近距离(P、D、H在同一直线上),在点C处测得∠DCP=26°.(1)求斜坡CD的坡角α;(2)电力部门要求此处高压线离堤面AD的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin26°≈0.44,tan26°≈0.49,sin71°≈0.95,tan71°≈2.90)四、解答题(本大题共7小题,共68.0分)20.计算:(−3)2+2×(√2−1)−|−2√2|.21.先化简,再求值:(2a−1a+1−aa+1)÷a−1a,其中a=−2.22.如图,OM是⊙O的半径,过M点作⊙O的切线AB,且MA=MB,OA,OB分别交⊙O于C,D.求证:AC=BD.23.为了了解现行简化汉字的笔画画数情况,某同学随机选取语文课本的一篇文章,对其部分文字的笔画数进行统计,结果如下表:笔画数123456789101112131415字数4810161420243616141191071请解答下列问题:(1)被统计汉字笔画数的众数是多少?(2)该同学将数据进行整理,按如下方案分组统计,并制作扇形统计图:请确定上表中的、的值及扇形统计图中B组对应扇形圆心角的度数;(3)若这篇文章共有3500个汉字,估计笔画数在7~9画(C组)的字数有多少个?24.新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务?25.如图,在平面直角坐标系中,点F的坐标是(4,2),点P为一个动点,过点P作x轴的垂线PH,垂足为H,点P在运动过程中始终满足PF=PH.【提示:平面直角坐标系内点M、N的坐标分别为(x1,y1)、(x2,y2),则MN2=(x2−x1)2+(y2−y1)2】(1)判断点P在运动过程中是否经过点C(0,5);(2)设动点P的坐标为(x,y),求y关于x的函数表达式;填写下表,并在给定坐标系中画出该函数的图象;范围.26.定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE.①求BE的长;②若M、N分别是AB、AD边上的动点,求△MNC周长的最小值.答案和解析1.【答案】C【解析】解:四个实数1,0,√3,−3中,−3<0<1<√3,故最大的数是:√3.故选:C.直接利用有理数的比较大小的方法分析得出答案.此题主要考查了实数运算,正确掌握实数比较大小的方法是解题关键.2.【答案】A【解析】解:解不等式x+2≥0,得:x≥−2,又x<1,∴不等式组的解集为−2≤x<1,将不等式组的解集表示在数轴上如下:故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.【答案】D【解析】解:从上面看该几何体,选项D的图形符合题意,故选:D.从上面看该几何体所得到的图形即为该几何体的俯视图.本题考查简单几何体的三视图,俯视图是从上面看所得到的图形,也可以理解为从上面对该几何体正投影所得到的图形.4.【答案】C【解析】解:根据题意知,另外一个数为4×4−(2+3+4)=7,所以这组数据为2,3,4,7,=3.5,则这组数据的中位数为3+42故选:C.先根据算术平均数的概念求出另外一个数据,从而得出这组数据,再利用中位数的概念求解可得.本题主要考查中位数和算术平均数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.5.【答案】A【解析】解:由题意得:{x −y =9①4x +3y =1②,由①得,x =9+y③,把③代入②得,4(9+y)+3y =1,解得,y =−5,代入③得,x =9−5=4, ∴方程组的解为{x =4y =−5,故选:A .根据二元一次方程组的解法求解即可.本题考查二元一次方程组的解法,加减消元法、代入消元法是解二元一次方程组的两种基本方法. 6.【答案】C【解析】解:A 、a(a −b)−b(a −b)= (a −b)2,故此选项错误; B 、a 2−9b 2=(a −3b)(a +3b),故此选项错误; C 、a 2+4ab +4b 2=(a +2b)2,正确;D 、a 2−ab +a =a(a −b +1),故此选项错误; 故选:C .直接利用公式法以及提取公因式法分别分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键. 7.【答案】B【解析】解:如图所示:A 、图象经过第一、三、四象限,则k >0,故此选项错误; B 、图象与y 轴交于点(0,−1),故b =−1,正确; C 、k >0,y 随x 的增大而增大,故此选项错误; D 、当x >2时,kx +b >0,故此选项错误; 故选:B .直接利用一次函数的性质结合函数图象上点的坐标特点得出答案.此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键. 8.【答案】D【解析】解:∵四边形ABCD 是平行四边形, ∴OA =12AC =3,OB =12BD =4,在△AOB 中:4−3<AB <4+3, 即1<AB <7, ∴AB 的长可能为6. 故选:D .根据三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边,可得出AB 的取值范围,进而得出结论.本题考查的了平行四边形的性质和三角形的三边关系.解题时注意:平行四边形对角线互相平分;三角形中任意两边之和大于第三边,任意两边之差小于第三边. 9.【答案】B【解析】解:∵DE 垂直平分AC , ∴AD =CD , ∴∠A =∠ACD又∵CD 平分∠ACB ,∴∠ACB=2∠ACD=100°,∴∠B=180°−∠A−∠ACB=180°−50°−100°=30°,故选:B.依据线段垂直平分线的性质,即可得到∠A=∠ACD,再根据角平分线的定义,即可得出∠ACB的度数,根据三角形内角和定理,即可得到∠B的度数.本题主要考查了线段垂直平分线的性质以及三角形内角和定理,线段垂直平分线上任意一点,到线段两端点的距离相等.10.【答案】B【解析】解:∵四边形ABCD是矩形,△ABE是等边三角形,∴AB=AE=BE,∠EAB=∠EBA=60°,AD=BC,∠DAB=∠CBA=90°,AB//CD,AB=CD,∴∠DAE=∠CBE=30°,故选项A不合题意,∴cos∠DAC=√32=ADAE=ADAB,故选项D不合题意,在△ADE和△BCE中,{AD=BC∠DAE=∠CBE AE=BE,∴△ADE≌△BCE(SAS),∴DE=CE=12CD=12AB,∵AB//CD,∴△ABF∽△CEF,∴CEAB =EFBF=12,故选项C不合题意,故选:B.由矩形的性质和等边三角形的性质可得AB=AE=BE,∠EAB=∠EBA=60°,AD= BC,∠DAB=∠CBA=90°,AB//CD,AB=CD,可得∠DAE=∠CBE=30°,由锐角三角函数可求cos∠DAC=√32=ADAE=ADAB,由“SAS”可证∴△ADE≌△BCE,可得DE=CE=12CD=12AB,通过证明△ABF∽△CEF,可得CEAB=EFBF=12,通过排除法可求解.本题考查了相似三角形的判定和性质,等边三角形的性质,矩形的性质,全等三角形的判定和性质,熟练运用这些性质进行推理是本题的关键.11.【答案】3.6×104【解析】解:36000=3.6×104.故答案为:3.6×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于36000有5位,所以可以确定n=5−1=4.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.12.【答案】132°【解析】解:∵AB⊥AE,∠CAE=42°,∴∠BAC=90°−42°=48°,∵AB//CD,∴∠BAC+∠ACD=180°,∴∠ACD =132°.故答案为:132°.直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数.此题主要考查了平行线的性质,正确得出∠BAC 度数是解题关键.13.【答案】12【解析】解:法一:∵ACB⏜的长为36cm , ∴270π⋅OA 180=36,∴OA =180×36270π,则ADB ⏜的长为:90π⋅OA 180=90π180×180×36270π=12(cm);法二:∵ACB⏜与ADB ⏜所对应的圆心角度数的比值为270°:90°=3:1, ∴ACB⏜与ADB ⏜的弧长之比为3:1, ∴ADB⏜的弧长为36÷3=12(cm), 答:ADB⏜的长为12cm . 故答案为:12.根据ACB⏜的长为36cm ,可得半径OA ,进而可得ADB ⏜的长. 本题考查了弧长的计算,解决本题的关键是掌握弧长公式.14.【答案】−5【解析】解:∵反比例函数y =k−1x 的图象经过点(−2,3), ∴3=k−1−2,解得k =−5.故答案是:−5.直接把点(−2,3)代入反比例函数y =k−1x 求出k 的值即可.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.【答案】13【解析】解:∵口袋中有6粒弹珠,随机拿出1颗共有6种等可能结果,其中送出的弹珠颜色为红色的有2种结果,∴送出的弹珠颜色为红色的概率是26=13,故答案为:13.用红色弹珠的数量除以球的总个数即可得.本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.16.【答案】5【解析】解:设这个多边形的边数是n ,则(n −2)⋅180°=540°,解得n=5,故答案为:5.n边形的内角和公式为(n−2)⋅180°,由此列方程求n.本题考查了多边形外角与内角.此题比较简单,只要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.17.【答案】√3(答案不唯一)【解析】解:若计算√12×m的结果为正整数,则无理数m的值可以是:√3(答案不唯一).故答案为:√3(答案不唯一).直接利用二次根式的性质得出符合题意的答案.此题主要考查了二次根式的乘除法,正确掌握二次根式的性质是解题关键.18.【答案】1800【解析】解:设日销售量y与销售天数t之间的函数关系式为y=kx,30k=60,得k=2,即日销售量y与销售天数t之间的函数关系式为y=2t,当0<t≤20时,设单件的利润w与t之间的函数关系式为w=at,20a=30,得a=1.5,即当0<t≤20时,单件的利润w与t之间的函数关系式为w=1.5t,当20<t≤30时,单件的利润w与t之间的函数关系式为w=30,设日销售利润为W元,当0<t≤20时,W=1.5t×2t=3t2,故当t=20时,W取得最大值,此时W=1200,当20<t≤30时,W=30×2t=60t,故当t=30时,W取得最大值,此时W=1800,综上所述,最大日销售利润为1800元,故答案为:1800.根据题意和函数图象中的数据,利用分类讨论的方法,可以求得最大日销售利润,从而可以解答本题.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.19.【答案】解:(1)∵斜坡CD的坡度i=1:1,∴tanα=DH:CH=1:1=1,∴α=45°.答:斜坡CD的坡角α为45°;(2)由(1)可知:CH=DH=12,α=45°.∴∠PCH=∠PCD+α=26°+45°=71°,在Rt△PCH中,∵tan∠PCH=PHCH =PD+1212≈2.90,∴PD≈22.8(米).22.8>18,答:此次改造符合电力部门的安全要求.【解析】(1)根据斜坡CD的坡度i=1:1,可得tanα=DH:CH=1:1=1,进而可得α的度数;(2)由(1)可得,CH=DH=12,α=45°.所以∠PCH=71°,再根据锐角三角函数可得PD的值,与18进行比较即可得到此次改造是否符合电力部门的安全要求.本题考查了解直角三角形的应用−坡度坡角问题,解决本题的关键是掌握坡度坡角定义.20.【答案】解:原式=9+2√2−2−2√2=7.【解析】直接利用绝对值的性质和实数混合运算法则分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:原式=a−1a+1÷a−1a=a−1a+1⋅aa−1=aa+1,当a=−2时,原式=−2−2+1=−2−1=2.【解析】先计算括号内分式的减法,再将除法转化为乘法,约分即可化简原式,最后把a的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.【答案】证明:∵OM是⊙O的半径,过M点作⊙O的切线AB,∴OM⊥AB,∵MA=MB,∴△ABO是等腰三角形,∴OA=OB,∵OC=OD,∴OA−OC=OB−OD,即:AC=BD.【解析】由切线的性质得出OM⊥AB,又MA=MB,则△ABO是等腰三角形,得出OA= OB,即可得出结论.本题考查了切线的性质、等腰三角形的判定与性质等知识;熟练掌握切线的性质是解题的关键.23.【答案】解:(1)被统计汉字笔画数的众数是8画;(2)m=16+14+20=50,n=14+11+9=34,∵被抽查的汉子个数为4+8+10+16+14+20+24+36+16+14+11+9+10+ 7+1=200(个),∴扇形统计图中B组对应扇形圆心角的度数为360°×50200=90°;(3)估计笔画数在7~9画(C组)的字数有3500×76200=1330(个).【解析】(1)根据众数的定义求解可得;(2)根据第1个表格可得m、n的值及被抽查汉字的个数,再用360°乘以B组频数占总数的比例即可得;(3)用汉字的总个数乘以样本中C组频数占样本容量的比例可得.本题主要考查扇形统计图、用样本估计总体、频数(率)分布表及众数,解题的关键是掌握利用样本估计总体思想的运用及众数的概念.24.【答案】解:(1)设原来生产防护服的工人有x人,由题意得,8008x =65010(x−7),解得:x =20.经检验,x =20是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y 天才能完成任务.8008×20=5(套),即每人每小时生产5套防护服.由题意得,10×650+20×5×10y ≥14500,解得y ≥8.答:至少还需要生产8天才能完成任务.【解析】(1)设原来生产防护服的工人有x 人,根据每人每小时完成的工作量不变列出关于x 的方程,求解即可;(2)设还需要生产y 天才能完成任务.根据前面10天完成的工作量+后面y 天完成的工作量≥14500列出关于y 的不等式,求解即可.本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.25.【答案】5 2 1 2 5【解析】解:(1)当P 与C(0,5)重合,∴PH =5,PF =√(5−2)2+42=5,∴PH =PF ,∴点P 运动过程中经过点C .(2)由题意:y 2=(x −4)2+(y −2)2,整理得,y =14x 2−2x +5,∴函数解析式为y =14x 2−2x +5,当x =0时,y =5,当x =2时,y =2,当x =4时,y =1,当x =6时,y =2,当x =8时,y =5,函数图象如图所示:故答案为5,2,1,2,5.(3)由题意C′(0,−5),F(4,2),∴直线FC′的解析式为y =74x −5,设抛物线交直线FC′于G ,K .由{y =74x −5y =14x 2−2x +5,解得{x =15+√652y =35+7√658或{x =15−√652y =35−7√658, ∴G(15−√652,35−7√658),K(15+√652,35+7√658), 观察图象可知满足条件的PF 长度的取值范围为1≤PF <35+7√658. (1)当P 与C(0,5)重合,证明PH =PF 即可解决问题.(2)根据PF 2=PH 2,根据函数关系式即可解决问题.(3)求出直线FC′的解析式,求出直线FC′与抛物线的交点坐标即可判断.本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.26.【答案】解:(1)∵四边形ABCD 是正方形,∴∠ABC =∠BAC =∠C =∠D =90°,∵将△BCE 绕B 点旋转,使BC 与BA 重合,此时点E 的对应点F 在DA 的延长线上, ∴BE =BF ,∠CBE =∠ABF ,∴∠EBF =∠ABC =90°,∴∠EBF +∠D =180°,∴四边形BEDF 为“直等补”四边形;(2)①过C 作CF ⊥BF 于点F ,如图1,则∠CFE =90°,∵四边形ABCD 是“直等补”四边形,AB =BC =5,CD =1,AD >AB ,∴∠ABC =90°,∠ABC +∠D =180°,∴∠D =90°,∵BF ⊥AD ,∴∠DEF =90°,∴四边形CDEF 是矩形,∴EF =CD =1,∵∠ABE +∠A =∠CBE +∠ABE =90°,∴∠A =∠CBF ,∵∠AEB =∠BFC =90°,AB =BC =5,∴△ABE≌△BCF(AAS),∴BE =CF ,设BE =CF =x ,则BF =x −1,∵CE 2+BF 2=BC 2,∴x 2+(x −1)2=52,解得,x =4,或x =−3(舍),∴BE =4;②如图2,延长CB 到F ,使得BF =BC ,延长CD 到G ,使得CD =DG ,连接FG ,分别与AB 、AD 交于点M 、N ,过G 作GH ⊥BC ,与BC 的延长线交于点H .则BC =BF =5,CD =DG =1,∵∠ABC =∠ADC =90°,∴CM =FM ,CN =GN ,∴△MNC 的周长=CM +MN +CN =FM +MN +GN =FG 的值最小,∵四边形ABCD 是“直等补”四边形,∴∠A +∠BCD =180°,∵∠BCD +∠HCG =180°,∴∠A =∠HCG ,∵∠AEB =∠CHG =90°,∴BE GH =AE CH =AB CG ∵AB =5,BE =4,∴AE =√AB 2−BE 2=3,∴4GH =3CH =52, ∴GH =85,CH =65,∴FH =FC +CH =565,∴FG =√FH 2+GH 2=8√2,∴△MNC 周长的最小值为8√2.【解析】(1)由旋转性质得BE=BF,再证明∠EBF=90°,∠EBF+∠D=180°便可;(2)①过点C作CF⊥BE于点F,证明△BCF≌△ABE得CF=BE,设BE=x,在Rt△BCF 中,则勾股定理列出x的方程解答便可;②延长CB到F,使得BF=BC,延长CD到G,使得CD=DG,连接FG,分别与AB、AD交于点M、N,求出FG便是△MNC的最小周长.本题是四边形的一个综合题,主要考查新定义,勾股定理,全等三角形的性质与判定,正方形的性质,矩形的性质与判定,相似三角形的性质与判定,旋转的性质,轴对称的性质,第(2)①题关键在证明全等三角形,第(2)②题关键确定M、N的位置.。
益阳市中考数学试题及答案

益阳市2020年普通初中毕业学业考试试卷数 学注意事项:1.本学科试卷分试题卷和答题卡两部分;2.请将姓名、准考证号等相关信息按要求填写在答题卡上; 3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效; 4.本学科为闭卷考试,考试时量为90分钟,卷面满分为150分; 5.考试结束后,请将试题卷和答题卡一并交回.试 题 卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列实数中,是无理数的为 AB .13C .0D .3-2.下列运算正确的是 A .236x x x ⋅=B .325()=x xC .2336()xy x y =D .632x x x ÷=3.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是姓名 准考证号图2图 1A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是2,平均数是3.84.一个几何体的三视图如图1所示,则这个几何体是 A .三棱锥 B .三棱柱 C .圆柱 D .长方体5.如图2,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法错误..的是 A .90ABC ∠=︒ B .AC BD =C .OA OB =D .OA AD =6.下列等式成立的是 A .123aba b+=+ B .212a b a b =++ C .2ab aab b a b=-- D .a aa b a b=--++ 7.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x ,根据题意可列方程为A .20(1+2x) =80B .2×20(1+x) =80图 4图3C .20(1+x 2) =80D .20(1+x)2 =808.若抛物线2()(1)y x m m =-++的顶点在第一象限,则m 的取值范围为A .1m >B .0m >C .1m ->D .10m -<<二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡...中对应题号后的横线上)928= .10.已知y 是x 的反比例函数,当x > 0时,y 随x 的增大而减小.请写出一个..满足以上条件的函数表达式 .11.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为 .12.如图3,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为1,则»AB 的长为 .13.图4是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有 根小图5图 6 棒.三、解答题(本大题共2小题,每小题8分,共16分)14.化简:2(1)(1)x x x +-+.15.如图5,直线AB ∥CD ,BC 平分∠ABD ,165∠=︒,求2∠的度数.四、解答题(本大题共3小题,每小题10分,共30分)16.如图6,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位,再向上平移2个单位得到像点P 2,点 P 2恰好在直线l 上. (1)写出点P 2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位,再向上平移6个单位得到像点P 3.请判断点P 3是否在直线l 上,并说明理由.17.2020年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,图7表示2020年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题:图8图7(1)2020年益阳市的地区生产总值为多少亿元? (2)请将条形统计图中第二产业部分补充完整; (3)求扇形统计图中第二产业对应的扇形的圆心角度数.18.如图8,在□ABCD 中,对角线AC 与BD 相交于点O ,∠CAB=∠ACB ,过点B 作BE ⊥AB 交AC 于点E . (1)求证:AC ⊥BD ;(2)若AB=14,7cos 8CAB ∠=,求线段OE 的长.五、解答题(本大题共2小题,每小题12分,共24分)19.大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3图9-2图9-1图9-3吨,则需补充原材料以保证正常生产.(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?20.已知点P 是线段AB 上与点A 不重合的一点,且AP<PB .AP 绕点A 逆时针旋转角α(090)α︒<≤︒得到AP 1,BP 绕点B 顺时针也旋转角α得到BP 2,连接PP 1、PP 2.(1)如图9-1,当90α=︒时,求12PPP ∠的度数;(2)如图9-2,当点P 2在AP 1的延长线上时,求证:21P PP △∽2P PA △; (3)如图9-3,过BP 的中点E 作l 1⊥BP ,过BP 2的中点F 作l 2⊥BP 2,l 1与l 2交于点Q ,连接PQ ,求证:P 1P ⊥PQ .图10-1图10-2六、解答题(本题满分15分)21.已知抛物线E 1:2y x =经过点A(1,m),以原点为顶点的抛物线E 2经过点B(2,2),点A 、B 关于y 轴的对称点分别为点A B ''、. (1)求m 的值及抛物线E 2所表示的二次函数的表达式;(2)如图10-1,在第一象限内,抛物线E 1上是否存在点Q ,使得以点Q 、B 、B '为顶点的三角形为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)如图10-2,P 为第一象限内的抛物线E 1上与点A 不重合的一点,连接OP并延长与抛物线E 2相交于点P ',求PAA '∆与P BB ''∆的面积之比.益阳市2020年普通初中毕业学业考试 数学参考答案及评分标准一、选择题(本大题共8小题,每小题5分,共40分).二、填空题(本大题共5小题,每小题5分,共25分).9.4;10.1y x =(不唯一);11.23;12.3π;13.51n +.三、解答题(本大题共2小题,每小题8分,共16分).14.解:原式=2221x x x x ++-- ·················· 6分=1x +. ······················ 8分15.解:∵AB ∥CD ,∴165ABC ∠=∠=︒,180ABD BDC ∠+∠=︒. ········· 4分 ∵BC ABD ∠平分,∴2130ABD ABC ∠=∠=︒, ················ 6分∴18050BDC ABD∠=︒-∠=︒,∴250BDC∠=∠=︒.··················8分四、解答题(本大题共3小题,每小题10分,共30分)16.解:(1)P2(3,3).····················3分(2)设直线l所表示的一次函数的表达式为(0)y kx b k=+≠,∵点P1(2,1),P2(3,3)在直线l上,∴2133k bk b+=⎧⎨+=⎩,,解得23kb=⎧⎨=-⎩,.∴直线l所表示的一次函数的表达式为23y x=-. ····7分(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∴2639⨯-=,∴点P3在直线l上.····························10分17.解:(1)237.519%1250÷=(亿元);··············3分(2)第二产业的增加值为1250237.5462.5550--=(亿元),画图如下:·······7分(3)扇形统计图中第二产业部分的圆心角为550360158.41250⨯︒=︒.10分 18.解:(1)∵CAB ACB ∠=∠,∴AB CB =,∴□ABCD 是菱形.∴AC BD ⊥. ···················· 3分(2)在Rt △AOB 中,7cos 8AO OAB AB ∠==,14AB =, ∴7491484AO =⨯=, 在Rt △ABE 中,7cos 8AB EAB AE ∠==,14AB =, ∴8167AE AB ==, ·················· 9分 ∴49151644OE AE AO =-=-=.············ 10分 五、解答题(本大题共2小题,每小题12分,共24分)19.解:(1)设初期购得原材料a 吨,每天所耗费的原材料为b 吨,根据题意得:6361030a b a b -=⎧⎨-=⎩,. ··············· 3分解得451.5a b =⎧⎨=⎩,.答:初期购得原材料45吨,每天所耗费的原材料为1.5吨. 6分(2)设再生产x 天后必须补充原材料,依题意得:4516 1.5 1.5(120%)3x -⨯-+≤, ········ 9分 解得:10x ≥.答: 最多再生产10天后必须补充原材料. ······ 12分20.解:(1)由旋转的性质得:AP = AP 1,BP = BP 2.∵90α=︒,∴12PAP PBP △和△均为等腰直角三角形, ∴1245APP BPP ∠=∠=︒,∴121218090PPP APP BPP ∠=︒-∠-∠=︒.·········· 3分 (2)由旋转的性质可知12APP BPP △和△均为顶角为α的等腰三角形,∴12902APP BPP α∠=∠=︒-,∴1212180()1802(90)2PPP APP BPP αα∠=︒-∠+∠=︒-︒-=. ··· 5分 在21P PP △和2P PA △中,122PPP PAP α∠=∠=, 又212PP P AP P ∠=∠,∴21P PP △∽2P PA △. ·················· 7分(3)如图,连接QB.∵l 1,l 2分别为PB ,P 2B 的中垂线, ∴12EB BP =,212FB BP =. 又BP=BP 2,∴EB FB =. 在Rt △QBE 和Rt △QBF 中,20题解图EB FB =,QB QB =,∴Rt △QBE ≌Rt △QBF , ∴2122QBE QBF PBP α∠=∠=∠=. ············· 9分由中垂线性质得:QP QB =, ∴2QPB QBE ∠=∠=α.由(2)知1902APP α∠=︒-,∴11180180(90)9022PPQ APP QPB ∠=︒-∠-∠=︒-︒--=︒αα,即 P 1P ⊥PQ . ···················· 12分六、解答题(本题满分15分)21.解:(1)∵抛物线E 1经过点A(1,m),∴m=12=1.∵抛物线E 2的顶点在原点,可设它对应的函数表达式为2y ax =(0a ≠),又点B(2,2)在抛物线E 2上,∴222a =⨯,解得:12a =,∴抛物线E 2所对应的二次函数表达式为212y x =. ···· 3分(2)假设在第一象限内 ,抛物线E 1上存在点Q ,使得△QB B '为直角三角形,由图象可知直角顶点只能为点B 或点Q .①当点B 为直角顶点时,过B 作BQ B B '⊥交抛物线E 1于Q , 则点Q 与B 的横坐标相等且为2,将x=2代入y=x 2得y=4 , ∴点Q 的坐标为(2,4). ·············· 5分②当点Q 为直角顶点时,则有222QB QB B B ''+=,过点Q 作QG BB '⊥于G ,设点Q 的坐标为(t ,t 2)( 0t >),则有()()()()222222222224t t t t ++-+-+-=,整理得:4230t t -=,∵0t >, ∴230t -=,解得13t =,23t =-舍去),∴点Q 的坐标为33),综合①②,存在符合条件的点Q 坐标为(2,4)与33). ·· 9分(3)过点P 作PC ⊥x 轴,垂足为点C ,PC 交直线A A '于点E ,过点P '作P 'D ⊥x轴,垂足为点D ,P 'D 交直线B B '于点F ,依题意可设P(c ,c 2)、P '(d ,212d ) (c >0,1c ≠),∵tan tan POC P OD '∠=∠,∴ 2212d c c d=,∴d=2c . ······· 12分 又A A '=2,B B '=4,∴222211211122111422242222PAA P BB AA PE c c S S c BB P F d '∆''∆'⋅⨯⨯--====⨯-''⋅⨯⨯-. ····· 15分21题解图1 21题解图2。
益阳市2020年部编人教版中考数学试题有答案(word版)

益阳市2020年普通初中毕业学业考试试卷数学注意事项:1.本学科试卷分试题卷和答题卡两部分;2.请将姓名、准考证号等相关信息按要求填写在答题卡上;3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4.本学科为闭卷考试,考试时量为90分钟,卷面满分为150分;5.考试结束后,请将试题卷和答题卡一并交回。
试题卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.12016-的相反数是A.2016B.2016-C.12016D.12016-2.下列运算正确的是A.22x y xy+=B.2222x y xy⋅=C.222x x x÷=D.451x x-=-3.不等式组3,213xx-<⎧⎨-≤⎩的解集在数轴上表示正确的是A B C D4.下列判断错误..的是A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形5.小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为A.67、68 B.67、67 C.68、68 D.68、676.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是A.360°B.540°C.720°D.900°7.关于抛物线221y x x=-+,下列说法错误..的是A.开口向上B.与x轴有两个重合的交点C.对称轴是直线1x=D.当1x>时,y随x的增大而减小8.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆P A的高度与拉绳P B的长度相等.小明将PB拉到PB′的位置,测得∠PB C'α=(B C'为水平线),测角仪B D'的高度为1米,则旗杆P A 的高度为A.11sinα-B.11sinα+B'αPCD第17题图C .11cos α- D .11cos α+二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡...中对应题号后的横线上) 9.将正比例函数2y x =的图象向上平移3个单位,所得的直线不经过第 象限.10.某学习小组为了探究函数2||y x x =-的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m = . x… –2 –1.5 –1 –0.5 0 0.5 1 1.52 … y…20.75–0.25–0.25m2…11.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数3y x=-的图象上有一些整点,请写出其中一个整点的坐标 .12.下图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为 .(结果保留π)13.如图,四边形ABCD 内接于⊙O ,AB 是直径,过C 点的切线与AB 的延长线交于P 点,若∠P =40°,则∠D 的度数为 .14.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是 枚.(1) (2) (3) (4) (5)三、解答题(本大题共3小题,每小题8分,共24分)15.计算:03132(1)223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭.16.先化简,再求值:2211()111x x x x -÷+--,其中12x =-. 17.如图,在ABCD 中,AE ⊥BD 于E ,CF ⊥BD 于F , 连接AF ,CE . 求证:AF =CE .四、解答题(本大题共3小题,每小题10分,共30分)18.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题: (1)频数分布表中a = ,b = ,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?第12题图64 主视图 左视图 俯视图 第13题图(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?分 组频数 频率第一组(015x ≤<) 3 0.15 第二组(1530x ≤<) 6 a 第三组(3045x ≤<) 7 0.35 第四组(4560x ≤<) b 0.20 19.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人. (1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生? 20.在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你..按照..他们的解题思路完成解答过程..............五、解答题(本题满分12分)21.如图,顶点为(3,1)A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C , 交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.六、解答题(本题满分14分)22.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上). (1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为3时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E FG H ,将矩形1111E FG H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.根据勾股定理,利用AD 作为“桥梁”,建立方程模型求出x作AD ⊥BC 于D ,设BD = x ,用含x 的代数式表示CD利用勾股定理求出AD 的长,再计算三角形面积AC2020年普通初中毕业学业考试参考答案及评分标准数 学一、选择题(本大题共8小题,每小题5分,共40分).题号 1 2 3 4 5 6 7 8 答案CBADCDDA二、填空题(本大题共6小题,每小题5分,共30分).9.四;10.0.75;11.答案不唯一,如:(-3,1);12.24π;13.115°;14.13. 三、解答题(本大题共3小题,每小题8分,共24分).15.解:原式=1211()23-+-⨯-=1223-+=16.…………………………………8分 16.解:原式2221(1)11x x x x x --+-=⨯-2x =-. …………………………………6分 当12x =-时,原式=4. ………………………………………………8分17.证明:如图,∵四边形ABCD 是平行四边形,∴AD =BC ,∠ADB =∠CBD . …………………………………2分 又∵AE ⊥BD ,CF ⊥BD ,∴∠AED =∠CFB ,AE ∥CF . …………4分 ∴AED ∆≌CFB ∆.………………………6分 ∴AE =CF .∴四边形AECF 是平行四边形.∴AF =CE . ………………………………………………………8分四、解答题(本大题共3小题,每小题10分,共30分)18.解:(1)a =0.3,b =4 ………………………………………………………2分图①图②(备用)图③…………………………………4分(2)180(0.350.20)99⨯+=(人) …………………………………7分 (3) 甲 乙1 乙2甲1 甲2 甲3 乙 甲1 甲2 甲3 乙 甲1 甲2 甲3 乙31124p == ……………………………………………………………10分 19.解:(1)设该班男生有x 人,女生有y 人,依题意得:4223x y x y +=⎧⎨=-⎩, 解得2715x y =⎧⎨=⎩.∴该班男生有27人,女生有15人.…………………………………5分(2)设招录的男生为m 名,则招录的女生为(30)m -名,依题意得:5045(30)1460x x +-≥ ,解之得,22x ≥,答:工厂在该班至少要招录22名男生.…………………………10分20.解:如图,在△ABC 中,AB =15,BC =14,AC =13,设BD x =,∴14CD x =-. ……………………………………………2分由勾股定理得:2222215AD AB BD x =-=-,2222213(14)AD AC CD x =-=--,∴2215x -=2213(14)x --,解之得:9x =.……………………………… 7分 ∴12AD =. ………………………………………8分∴12ABC S BC AD ∆=g 11412842=⨯⨯=.…………10分五、解答题(本题满分12分)21.解:(1)∵抛物线顶点为(3,1)A ,设抛物线对应的二次函数的表达式为2(3)1y a x =-+,将原点坐标(0,0)代入表达式,得13a =-.∴抛物线对应的二次函数的表达式为:21233y x x =-+. …………3分(2)将0y = 代入21233y x x =-+中,得B 点坐标为:(23,0),设直线O A 对应的一次函数的表达式为y kx =, 将3,1)A 代入表达式y kx =中,得3k =, ∴直线OA 对应的一次函数的表达式为3y x .A C∵BD ∥AO ,设直线BD 对应的一次函数的表达式为33y x b =+, 将B (23,0)代入33y x b =+中,得2b =- , ∴直线BD 对应的一次函数的表达式为323y x =-.由232312333y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩得交点D 的坐标为(3,3)--, 将0x =代入323y x =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , 23OB OD ==.在△OAB 与△OCD 中,OA OC AB CD OB OD =⎧⎪=⎨⎪=⎩, ∴△OAB ≌△OCD .……………………8分(3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小.过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '∆∽C DQ '∆.∴PO C O DQ C Q '=',即253PO =,∴235PO =, ∴ 点P 的坐标为23(,0)5-.………………………………………………………12分 六、解答题(本题满分14分)22. 解:(1)如22题解图1,在ABC ∆中,∠ACB =90°,∠B =30°,AC =1,∴AB =2,又∵D 是AB 的中点,∴AD =1,112CD AB ==.又∵EF 是ACD ∆的中位线,∴12EF DF ==,在ACD ∆中,AD=CD, ∠A =60°, ∴∠ADC =60°.在FGD ∆中,sin GF DF =⋅60°3=, ∴矩形EFGH 的面积1332S EF GF =⋅=⨯=. ……………………………3分 (2)如22题解图2,设矩形移动的距离为,x 则102x <≤, 当矩形与△CBD 重叠部分为三角形时, 则104x <≤, 1332S x x =⋅=, ∴214x =>.(舍去). 22题解图1CADB22题解图2当矩形与△CBD 重叠部分为直角梯形时,则1142x <≤, 重叠部分的面积1124-⨯=, ∴38x =. 即矩形移动的距离为38时,矩形与△CBD.…………8分(3)如22题解图3,作2H Q AB ⊥于Q .设DQ m =,则2H Q =,又114DG =,2112H G =. 在R t △H 2QG 1中,22211)()()42m ++= ,解之得m =(负的舍去).∴1211164cos 12QG H G α+===.……………………………………14分22题解图31H 1E 1F 1G CA 2H 2E 2F D BQ。
2020年湖南省益阳市中考数学试卷(含详细解析)

○…………外…………○…………装…………学校:_________姓名:___________○…………内…………○…………装…………保密★启用前2020年湖南省益阳市中考数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 一、单选题1.四个实数1,03-中,最大的是( ) A .1B .0C D .3-2.将不等式组201x x +≥⎧⎨<⎩的解集在数轴上表示,正确的是( )A .B .C .D .3.图所示的几何体的俯视图是( )A .B .C .D .…………○……………○…………订※※请※※※※装※※订※※线※※内…………○……………○…………订则这组数据的中位数为( ) A .7B .4C .3.5D .35.同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( )A .45x y =⎧⎨=-⎩B .45x y =-⎧⎨=⎩C .23x y =-⎧⎨=⎩D .36x y =⎧⎨=-⎩6.下列因式分解正确的是( ) A .()()()()a a b b a b a b a b ---=-+ B .2229(3)a b a b -=- C .22244(2)a ab b a b ++=+ D .2()a ab a a a b -+=-7.一次函数y kx b =+的图象如图所示,则下列结论正确的是( )A .k 0<B .1b =-C .y 随x 的增大而减小D .当2x >时,0kx b +<8.如图,ABCD 的对角线AC ,BD 交于点O ,若6AC =,8BD =,则AB 的长可能是( )A .10B .8C .7D .69.如图,在ABC ∆中,AC 的垂直平分线交AB 于点D ,DC 平分ACB ∠,若50A ∠=,则B 的度数为( )……外…………○……………订…………○线…………○……学校:__:___________考号:___________……内…………○……………订…………○线…………○……A .25B .30C .35D .4010.如图,在矩形ABCD 中,E 是CD 上的一点,ABE ∆是等边三角形,AC 交BE 于点F ,则下列结论不成立的是( )A .30DAE ∠=B .45BAC ∠=C .12EF FB = D .AD AB =二、填空题11.我国北斗全球导航系统最后一颗组网卫星于2020年6月30日成功定位于距离地球36000千米的地球同步轨道,将"36000"用科学计数法表示为__________.12.如图,//AB CD ,AB AE ⊥,42CAE ∠=,则ACD ∠的度数为__________.…………○…………装………订…………○…线…………○……※※请※※不※※要※※在※※内※※答※※题※※…………○…………装………订…………○…线…………○……13.小明家有一个如图所示的闹钟,他观察圆心角AOB90∠=,测得ACB的长为36cm,则ADB的长为__________cm.14.若反比例函数y=1kx-的图象经过点(﹣2,3),则k=_____.15.时光飞逝,十五六岁的我们,童年里都少不了“弹珠”。
益阳市2020版中考数学试卷(I)卷

益阳市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 9的算术平方根是()A . ±3B . -3C . 3D .2. (2分)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A . 60°B . 50°C . 40°D . 30°3. (2分) (2019七下·宜昌期中) 下列说法中,正确的是()A . 不带根号的数不是无理数B . 的立方根是±2C . 绝对值等于的实数是D . 每个实数都对应数轴上一个点4. (2分)(2019·广东模拟) 由若干个相同的正方体组成的几何体如图M2-1,则这个几何体的俯视图是()A .B .C .D .5. (2分)反比例函数y=(k≠0)中自变量的范围是()A . x≠0B . x=0C . x≠1D . x=-16. (2分)如图,AB∥DE,∠ABC=25°,∠BCD=75°,则∠CDE=()A . 100°B . 70°C . 60°D . 50°7. (2分)某种商品进价为a元/件,在销售旺季,商品售价较进价高30%;销售旺季过后,商品又以7折(即原售价的70%)的价格开展促销活动,这时一件该商品的售价为()A . a元B . 0.7a元C . 0.91a元D . 1.03a元8. (2分)如图是甲、乙两地某年财政经费支出情况统计图,阴影部分表示教育经费支出.从中可以看出()A . 甲地教育经费占财政经费支出比率较高B . 甲地教育经费支出比较多C . 甲地教育经费支出增幅比较大D . 甲地财政经费支出总额比较小9. (2分)(2011·衢州) 小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1 , v2 , v3 , v1<v2<v3 ,则小亮同学骑车上学时,离家的路程s与所用时间t 的函数关系图象可能是()A .B .C .D .10. (2分)下列语句叙述正确的有()个.①横坐标与纵坐标互为相反数的点在直线y=﹣x上,②直线y=﹣x+2不经过第三象限,③除了用有序实数对,我们也可以用方向和距离来确定物体的位置,④若点P的坐标为(a,b),且ab=0,则P点是坐标原点,⑤函数中y的值随x的增大而增大.⑥已知点P(x,y)在函数的图象上,那么点P应在平面直角坐标系中的第二象限.A . 2B . 3C . 4D . 5二、填空题 (共8题;共9分)11. (1分) (2019九下·建湖期中) 因式分解:-2x2+12x-18=________.12. (1分)到去年年底,全国的共产党员人数已超过80300000,这个数用科学记数法可表示为________.13. (1分)(2017·松江模拟) 已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是________.14. (1分)直角三角斜边为,周长是3+ ,则三角形面积为________.15. (1分)(2016·镇江) 正五边形每个外角的度数是________.16. (1分)(2020·长春模拟) 在数学课上,老师提出如下问题老师说:“小华的作法符合题意”请回答:小华第二步作图的依据是________.17. (1分)(2017·香坊模拟) 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是________.18. (2分)如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,一辆小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?________;(填“是”或“否”)请简述你的理由________.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)三、解答题 (共8题;共82分)19. (5分) (2019九下·常德期中) 计算:20. (10分)(2013·南京) 如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.21. (5分)先化简,再求值:(x+y)(x﹣y)﹣(4x3y﹣8xy3)÷2xy,其中x=﹣1,y=.22. (12分)(2016·海宁模拟) 某市为了了解高峰时段16路车从总站乘该路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:14,23,16,25,23,28,26,27,23,25(1)这组数据的众数为________,中位数为________;(2)计算这10个班次乘车人数的平均数;(3)如果16路车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少?23. (10分)根据题意列出方程组(1)甲、乙两人在一环形场地上从点A同时同向匀速跑步,甲的速度是乙的速度的2.5倍,4min后两人首次相遇,此时乙还需要跑300m跑完第一圈.求甲、乙两人的速度及环形场地的周长.(2)将若干只鸡放人若干笼中,若每个笼中放4只.则有一鸡无笼可放;若每个笼里放5只.则有一笼无鸡可放,问有多少只鸡,多少个笼?24. (10分)(2017·长春模拟) 如图AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PC=2PB.(1)探究线段PB,AB之间的数量关系,并说明理由;(2)若AD=3,求AB长.25. (15分)(2011·杭州) 在直角梯形ABCD中,AB∥C D,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F.(1)求证:△FOE≌△DOC;(2)求sin∠OEF的值;(3)若直线EF与线段AD,BC分别相交于点G,H,求的值.26. (15分)(2018·南山模拟) 已知,如图1,抛物线y=ax2+bx+3与x轴交于点B、C,与y轴交于点A,且AO=CO,BC=4.(1)求抛物线解析式;(2)如图2,点P是抛物线第一象限上一点,连接PB交y轴于点Q,设点P的横坐标为t,线段OQ长为d,求d与t之间的函数关系式;(3)在(2)的条件下,过点Q作直线l⊥y轴,在l上取一点M(点M在第二象限),连接AM,使AM=PQ,连接CP并延长CP交y轴于点K,过点P作PN⊥l于点N,连接KN、CN、CM.若∠MCN+∠NKQ=45°时,求t值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共82分)19-1、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
湖南省益阳市2020年中考数学试卷(I)卷

湖南省益阳市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七下·颍州期末) 若满足方程组的x与y互为相反数,则m的值为()A . 1B . -1C . 11D . -112. (2分) (2017八下·揭西期末) 使分式有意义的条件是()A . x≠2B . x≠-2C . x>2D . x<23. (2分)(2020·龙岩模拟) 我国珠港澳大桥闻名世界,它东起香港国际机场附近的香港口岸人工岛,向西横跨南海伶仃洋水域接珠海和澳门人工岛,止于珠海洪湾立交,工程项目总投资1269亿元.用科学记数法表示1269亿正确的是()A .B .C .D .4. (2分)将几张纸片分别制成圆形、等腰梯形、菱形、平行四边形、正方形纸片后放置在不透明的袋子中,从中随机抽取两个图形,则抽到的图形都呈中心对称的概率是()A .B .C .D .5. (2分)(2019·湘西) 下列运算中,正确的是()A . 2a+3a=5aB . a6÷a3=a2C . (a﹣b)2=a2﹣b2D .6. (2分)(2017·潮南模拟) 如图,直线l1//l2 ,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A . 35°B . 30°C . 25°D . 20°7. (2分)(2020·成都模拟) 在中考体育加试中,某班 30 名男生的跳远成绩如下表:这些男生跳远成绩的众数、中位数分别是()成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853A . 2.10,2.05B . 2.10,2.10C . 2.05,2.05D . 2.05,2.108. (2分)到三角形三个顶点距离相等的点是().A . 三条高线的交点B . 三个内角平分线的交点C . 三条中线的交点D . 三边垂直平分线的交点9. (2分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A .B .C .D .10. (2分)某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品y与x的函数关系是()A . y=20(1﹣x)2B . y=20+2xC . y=20(1+x)2D . y=20+20x2+20x11. (2分) (2019九上·荔湾期末) 当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A .B .C .D .12. (2分) (2019八上·重庆月考) 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,则下列结论成立的是()A . EC=EFB . FE=FCC . CE=CFD . CE=CF=EF二、填空题 (共6题;共6分)13. (1分)请你写一个能先提公因式,再运用完全平方公式来分解因式的三次三项式,并写出分解因式的结果________.14. (1分) 2017参加杭州市体育中考的学生需从耐力类(游泳和男生1000米或女生800米)、力量类(实心球和男生引体向上或女生仰卧起坐)、跳跃类(立定跳远和一分钟跳绳)三大类中各选一项作为考试项目,小明已经选了耐力类游泳,则他在力量类和跳跃类中,选“实心球和立定跳远”这两项的概率是________.15. (1分)计算:(+π)0﹣2|1﹣s in30°|+()﹣1= ________16. (1分)(2017·岳阳模拟) 计算: =________.17. (1分) (2020九上·普陀期末) 如图,斜坡长为100米,坡角,现因“改小坡度”工程的需要,将斜坡改造成坡度的斜坡(、、三点在地面的同一条垂线上),那么由点到点下降了________米(结果保留根号)18. (1分) (2019八上·重庆月考) 在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2 ,点A2的伴随点为A3 ,点A3的伴随点为A4 ,…,这样依次得点A1 , A2 ,A3…,An ,…若点A1的坐标为(3,1),则点A2019的坐标为________.三、解答题 (共8题;共86分)19. (5分) (2019七上·右玉月考) 用适当的方法计算:(1) 0.36+(-7.4)+0.5+(-0.6)+0.14;(2) (-2.125)++(-3.2);(3) .(4) |-0.75|+(-3)-(-0.25)+ .(5)20. (11分) (2017七下·建昌期末) 将七年级两个班男生掷实心球的成绩进行整理,并绘制出频数分布表、扇形统计图和频数分布直方图(不完整).(x表示成绩,且规定x≥6.25为合格,x≥9.25为优秀)组别成绩(米)频数A 5.25≤x<6.255B 6.25≤x<7.2510C7.25≤x<8.25aD8.25≤x<9.2515E9.25≤x<10.25b(1)频数分布表中,a= ,b= ,其中成绩合格的有人,请补全频数分布直方图;(2)扇形统计图中E组对应的圆心角是________°;21. (10分) (2017九上·汉阳期中) 关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1 ,x2.(1)求实数k的取值范围;(2)若方程两实根x1 , x2满足|x1|+|x2|=x1·x2 ,求k的值.22. (5分)(2019·秦安模拟) 如图,河堤横断面为梯形,上底为,堤高为,斜坡的坡比为,斜坡的坡角为 .求:河堤横截面的面积.23. (10分)(2017·广陵模拟) 如图,已知线段AC为⊙O的直径,PA为⊙O的切线,切点为A,B为⊙O上一点,且BC∥PO.(1)求证:PB为⊙O的切线;(2)若⊙O的半径为1,PA=3,求BC的长.24. (10分)某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为80 m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如下图所示:(1)从上述统计图中可知:每人每分能擦课桌椅________m2;擦玻璃、擦课桌椅、扫地拖地的面积分别是________m2、________m2、________m2;(2)如果x人每分钟擦玻璃的面积是y m2 ,那么y关于x的函数关系式是________;(3)他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅.如果你是卫生委员,该如何分配这两组的人数才能最快地完成任务?25. (15分)(2019·毕节) 已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为________,抛物线的顶点坐标为________;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.26. (20分) (2019九上·海淀期中) 如图,在等腰△ABC中,AB=AC,,将点C关于直线AB对称得到点D,作射线BD与CA的延长线交于点E,在CB的延长线上取点F,使得BF=DE,连接AF.备用图(1)依题意补全图形;(2)求证:AF=AE;(3)作BA的延长线与FD的延长线交于点P,写出一个∠ACB的值,使得AP=AF成立,并证明.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共86分)19-1、19-2、19-3、19-4、19-5、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、25-4、26-1、26-2、26-3、。
湖南省益阳市2020年中考数学试题及答案解析

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前湖南省益阳市2020年中考数学试题试题副标题题号 一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、单选题1.﹣6的倒数是( ) A .﹣ B .C .﹣6D .6【答案】A 【解析】解:﹣6的倒数是﹣.故选A . 2.下列运算正确的是( ) 2(2)- 2 3)2=6235=236=【答案】D 【解析】 【分析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可. 【详解】A 2(2)-=2,故本选项错误;B :3)2=12,故本选项错误;C 23不是同类二次根式,不能合并,故本选项错误;D :根据二次根式乘法运算的法则知本选项正确, 故选D .试题第2页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【点睛】本题考查的是二次根式的性质及二次根式的相关运算法则,熟练掌握是解题的关键. 3.下列几何体中,其侧面展开图为扇形的是( )A. B. C. D.【答案】C 【解析】 【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案. 【详解】A 、圆柱的侧面展开图是矩形,故A 错误;B 、三棱柱的侧面展开图是矩形,故B 错误;C 、圆锥的侧面展开图是扇形,故C 正确;D 、三棱锥的侧面展开图是三个三角形拼成的图形,故D 错误, 故选C . 【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键. 4.解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( ) A.x+2=3 B.x ﹣2=3C.x ﹣2=3(2x ﹣1)D.x+2=3(2x ﹣1)【答案】C 【解析】 【分析】最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 【详解】方程两边都乘以(2x ﹣1),得 x ﹣2=3(2x ﹣1), 故选C . 【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.下列函数中,y总随x的增大而减小的是( )A.y=4x B.y=﹣4x C.y=x﹣4 D.y=x2【答案】B【解析】【分析】结合各个选项中的函数解析式,根据相关函数的性质即可得到答案.【详解】y=4x中y随x的增大而增大,故选项A不符题意,y=﹣4x中y随x的增大而减小,故选项B符合题意,y=x﹣4中y随x的增大而增大,故选项C不符题意,y=x2中,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,故选项D不符合题意,故选B.【点睛】本题考查了二次函数的性质、一次函数的性质、正比例函数的性质,解答本题的关键是明确题意,利用一次函数和二次函数的性质解答.6.已知一组数据5,8,8,9,10,以下说法错误的是( )A.平均数是8B.众数是8C.中位数是8D.方差是8【答案】D【解析】【分析】分别计算平均数,众数,中位数,方差后进行判断即可.【详解】由平均数的公式得平均数=(5+8+8+9+10)÷5=8,方差=15[(5﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2.8,将5个数按从小到大的顺序排列为:5,8,8,9,10,第3个数为8,即中位数为8,5个数中8出现了两次,次数最多,即众数为8,故选D.【点睛】本题考查了对平均数,众数,中位数,方差,熟练掌握相关的概念以及求解方法是解题的关键.试题第4页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………7.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A.锐角三角形 B.直角三角形C.钝角三角形D.等腰三角形【答案】B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, 故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.8.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………A.asinα+asinβB.acosα+acosβC.atanα+atanβD.tan tan a aαβ+ 【答案】C 【解析】 【分析】在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可. 【详解】在Rt △ABD 和Rt △ABC 中,AB =a ,tanα=BC AB,tanβ=BD AB ,∴BC =atanα,BD =atanβ, ∴CD =BC+BD =atanα+atanβ, 故选C . 【点睛】本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键. 9.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是( )A.PA =PBB.∠BPD =∠APDC.AB ⊥PDD.AB 平分PD【答案】D 【解析】 【分析】先根据切线长定理得到PA =PB ,∠APD =∠BPD ;再根据等腰三角形的性质得OP ⊥AB ,根据菱形的性质,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,由此可判断D 不一定成立. 【详解】∵PA ,PB 是⊙O 的切线, ∴PA =PB ,所以A 成立; ∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;试题第6页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………∵PA ,PB 是⊙O 的切线, ∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立, 故选D . 【点睛】本题考查了切线长定理,垂径定理,等腰三角形的性质等,熟练掌握相关知识是解题的关键.10.已知二次函数y =ax 2+bx+c 的图象如图所示,下列结论:①ac <0,②b ﹣2a <0,③b 2﹣4ac <0,④a ﹣b+c <0,正确的是( )A.①②B.①④C.②③D.②④【答案】A 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所给结论进行判断. 【详解】①图象开口向下,与y 轴交于正半轴,能得到:a <0,c >0, ∴ac <0,故①正确; ②∵对称轴x <﹣1, ∴2ba<﹣1,-2a >0, ∴b <2a ,∴b ﹣2a <0,故②正确;③图象与x 轴有2个不同的交点,依据根的判别式可知b 2﹣4ac >0,故③错误; ④当x =﹣1时,y >0,∴a ﹣b+c >0,故④错误, 故选A . 【点睛】本题考查了二次函数图象与系数的关系,解题的关键是会利用对称轴的范围求2a 与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.试题第8页,总23页第II卷(非选择题)请点击修改第II卷的文字说明二、填空题11.国家发改委发布信息,到2020年12月底,高速公路电子不停车快速收费(ETC)用户数量将突破1.8亿,将180 000 000科学记数法表示为____________.【答案】1.8×108【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】180 000 000的小数点向左移动8位得到1.8,所以180 000 000用科学记数法表示为1.8×108,故答案为:1.8×108.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若一个多边形的内角和比外角和多900,则该多边形的边数是_____.【答案】9,【解析】分析:根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.详解:设这个多边形的边数是n,则(n−2)⋅180°−360°=900°,解得n=9.故答案为:9.点睛:本题考查了多边形的内角和外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.13.不等式组103xx-⎧⎨-⎩<>的解集为____________.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】x <﹣3 【解析】 【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集. 【详解】103x x -⎧⎨-⎩<①>②, 解①得:x <1, 解②得:x <﹣3,则不等式组的解集是:x <﹣3, 故答案为:x <﹣3. 【点睛】本题考查了解一元一次不等式组,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14.如图,直线AB ∥CD ,OA ⊥OB ,若∠1=142°,则∠2=____________度.【答案】52 【解析】 【分析】根据平行线的性质可得∠OED =∠2,再根据∠O =90°,∠1=∠OED+∠O =142°,即可求得答案. 【详解】 ∵AB ∥CD , ∴∠OED =∠2, ∵OA ⊥OB , ∴∠O =90°,∵∠1=∠OED+∠O =142°,∴∠2=∠1﹣∠O =142°﹣90°=52°, 故答案为:52.试题第10页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【点睛】本题考查了平行线的性质,垂直的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.15.在如图所示的方格纸(1格长为1个单位长度)中,△ABC 的顶点都在格点上,将△ABC 绕点O 按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是____________..【答案】90° 【解析】 【分析】根据旋转角的概念找到∠BOB ′是旋转角,从图形中可求出其度数即可. 【详解】根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB ′是旋转角,且∠BOB ′=90°, 故答案为:90°. 【点睛】本题主要考查了旋转角的概念,解题的关键是根据旋转角的概念找到旋转角. 16.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是____________. 【答案】16【解析】 【分析】画出树状图得出所有情况,让从左向右恰好成上、中、下的情况数除以总情况数即为所求的概率.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………【详解】 画树状图如图:共有6个等可能的结果,从上到下的顺序恰好为“上册、中册、下册”的结果有1个, ∴从上到下的顺序恰好为“上册、中册、下册”的概率为16, 故答案为:16. 【点睛】本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 17.反比例函数ky x=的图象上有一点P(2,n),将点P 向右平移1个单位,再向下平移1个单位得到点Q ,若点Q 也在该函数的图象上,则k =____________. 【答案】6 【解析】 【分析】根据平移的特性写出点Q 的坐标,由点P 、Q 均在反比例函数ky x=的图象上,即可得出k =2n =3(n ﹣1),解出即可. 【详解】∵点P 的坐标为(2,n),则点Q 的坐标为(3,n ﹣1), 依题意得:k =2n =3(n ﹣1), 解得:n =3, ∴k =2×3=6, 故答案为:6. 【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k 的几何意义,解题的关键:由P 点坐标表示出Q 点坐标. 18.观察下列等式:试题第12页,总23页①3﹣=﹣1)2, ②5﹣=)2, ③7﹣=2, …请你根据以上规律,写出第6个等式____________. 【答案】213-= 【解析】 【分析】第n 个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n 个等式右边的式子为)2(n ≥1的整数). 【详解】∵①3﹣﹣1)2, ②5﹣=)2, ③7﹣=2, …,∴第n 个等式为:)2, ∴第6个等式为:213-=,故答案为:213-=. 【点睛】本题考查了规律题,涉及了二次根式的混合运算,通过所给等式发现等式左边与右边的变化规律是解题的关键. 三、解答题19.计算:0114sin 60(2019)()2-+--+-. 【答案】1. 【解析】 【分析】……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值. 【详解】 原式=4×3+1﹣2+23=43﹣1. 【点睛】本题考查了实数的运算,涉及了0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.20.化简:2244(4)2x x x x+--÷. 【答案】24+2x x -. 【解析】 【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算即可. 【详解】原式=2(2)2(2)(2)x xx x x -⋅+- =24+2x x -. 【点睛】本题考查分式的混合运算,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.21.已知,如图,AB =AE ,AB ∥DE ,∠ECB =70°,∠D =110°,求证:△ABC ≌△EAD .【答案】证明见解析. 【解析】 【分析】由∠ECB =70°得∠ACB =110°,再由AB ∥DE ,证得∠CAB =∠E ,再结合已知条件AB =AE ,可利用AAS 证得△ABC ≌△EAD .试题第14页,总23页【详解】由∠ECB =70°得∠ACB =110°, 又∵∠D =110°, ∴∠ACB =∠D , ∵AB ∥DE , ∴∠CAB =∠E , ∴在△ABC 和△EAD 中,==ACBD CABE AB AE ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△ABC ≌△EAD(AAS). 【点睛】本题是全等三角形证明的基础题型,在有些条件还需要证明时,应先把它们证出来,再把条件用大括号列出来,根据等三角形证明的方法判定即可.22.某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A 、B 、C 、D 、E ,由调查所得数据绘制了如图所示的不完整的统计图表.(1)求本次调查的小型汽车数量及m ,n 的值; (2)补全频数分布直方图;……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.【答案】(1)本次调查的小型汽车数量为160辆,m =0.3,n =0.1;(2)见解析;(3)估计其中每车只乘坐1人的小型汽车数量为1500辆. 【解析】 【分析】(1)由C 类别数量及其对应的频率可得总数量,再由频率=频数÷总数量可得m 、n 的值; (2)用总数量乘以B 、D 对应的频率求得其人数,从而补全图形; (3)利用样本估计总体思想求解可得. 【详解】(1)本次调查的小型汽车数量为32÷0.2=160(辆), m =48÷160=0.3,n =1﹣(0.3+0.35+0.20+0.05)=0.1;(2)B 类小汽车的数量为160×0.35=56,D 类小汽车的数量为0.1×160=16, 补全图形如下:(3)估计其中每车只乘坐1人的小型汽车数量为5000×0.3=1500(辆). 【点睛】本题考查了频数分布直方图、用样本估计总体、频数分布表,弄清题意,读懂统计图表,从中找到必要的信息是解题的关键.23.如图,在Rt △ABC 中,M 是斜边AB 的中点,以CM 为直径作圆O 交AC 于点N ,延长MN 至D ,使ND =MN ,连接AD 、CD ,CD 交圆O 于点E .试题第16页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)判断四边形AMCD 的形状,并说明理由; (2)求证:ND =NE ;(3)若DE =2,EC =3,求BC 的长.【答案】(1)四边形AMCD 是菱形,理由见解析;(2)证明见解析;(3)BC =5 【解析】 【分析】(1)证明四边形AMCD 的对角线互相平分,且∠CNM =90°,可得四边形AMCD 为菱形;(2)可证得∠CMN =∠DEN ,由CD =CM 可证出∠CDM =∠CMN ,则∠DEN =∠CDM ,结论得证;(3)证出△MDC ∽△EDN ,由比例线段可求出ND 长,再求MN 的长,则BC 可求出. 【详解】(1)四边形AMCD 是菱形,理由如下: ∵M 是Rt △ABC 中AB 的中点, ∴CM =AM , ∵CM 为⊙O 的直径, ∴∠CNM =90°, ∴MD ⊥AC , ∴AN =CN , ∵ND =MN ,∴四边形AMCD 是菱形;(2)∵四边形CENM 为⊙O 的内接四边形, ∴∠CEN+∠CMN =180°, ∵∠CEN+∠DEN =180°, ∴∠CMN =∠DEN , ∵四边形AMCD 是菱形, ∴CD =CM , ∴∠CDM =∠CMN ,∴∠DEN =∠CDM , ∴ND =NE ;(3)∵∠CMN =∠DEN ,∠MDC =∠EDN , ∴△MDC ∽△EDN , ∴MD DCDE DN=, 设DN =x ,则MD =2x ,由此得252x x=, 解得:x x 不合题意,舍去), ∴MN =∵MN 为△ABC 的中位线, ∴BC =2MN , ∴BC = 【点睛】本题考查了圆的综合知识,熟练运用圆周角定理、菱形的判定与性质、直角三角形的性质、勾股定理以及相似三角形的判定与性质是解题的关键.24.为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【答案】(1)去年每千克小龙虾的养殖成本与售价分别为8元、40元;(2)稻谷的亩产量至少会达到640千克. 【解析】 【分析】(1)设去年每千克小龙虾的养殖成本与售价分别为x 元、y 元,由题意列出方程组,解方程组即可;(2)设今年稻谷的亩产量为z 千克,由题意列出不等式,就不等式即可.试题第18页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【详解】(1)设去年每千克小龙虾的养殖成本与售价分别为x 元、y 元, 由题意得:32(110)(125)30y x y x -=⎧⎨---=⎩%%,解得:840x y =⎧⎨=⎩,答:去年每千克小龙虾的养殖成本与售价分别为8元、40元; (2)设今年稻谷的亩产量为z 千克,由题意得:20×100×30+20×2.5z ﹣20×600≥80000, 解得:z ≥640;答:稻谷的亩产量至少会达到640千克. 【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用;根据题意列出方程组或不等式是解题的关键.25.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0). (1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图2,P(m ,n)是抛物线在第四象限的图象上的点,且m+n =﹣1,连接PA 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………析;(3)点N(43,﹣73). 【解析】 【分析】(1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式,即可求解; (2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N 是PQ 的中点,根据C,P 点的坐标求出直线PC 的解析式,同理求出AC,DQ 的解析式,并联立方程求出Q 点的坐标,从而即可求N 点的坐标. 【详解】(1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式得:0=a(3﹣1)2+4, 解得:a =﹣1,故抛物线的表达式为:y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由: 如图1,∵DE ∥AO ,S △ODA =S △OEA ,S △ODA +S △AOM =S △OEA +S △AOM ,即:S 四边形OMAD =S △OBM , ∴S △OME =S △OBM , ∴S 四边形OMAD =S △OBM ;(3)设点P(m ,n),n =﹣m 2+2m+3,而m+n =﹣1, 解得:m =﹣1或4,故点P(4,﹣5);如图2,故点D 作QD ∥AC 交PC 的延长线于点Q ,由(2)知:点N 是PQ 的中点, 设直线PC 的解析式为y=kx+b ,将点C(﹣1,0)、P(4,﹣5)的坐标代入得:045k b k b -+=⎧⎨+=-⎩,试题第20页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………解得:11k b =-⎧⎨=-⎩,所以直线PC 的表达式为:y =﹣x ﹣1…①, 同理可得直线AC 的表达式为:y =2x+2, 直线DQ ∥CA ,且直线DQ 经过点D(0,3), 同理可得直线DQ 的表达式为:y =2x+3…②, 联立①②并解得:x =﹣43,即点Q(﹣43,13), ∵点N 是PQ 的中点, 由中点公式得:点N(43,﹣73). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N 是PQ 的中点,是本题解题的突破点.26.如图,在平面直角坐标系xOy 中,矩形ABCD 的边AB =4,BC =6.若不改变矩形ABCD 的形状和大小,当矩形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半轴上随之上下移动. (1)当∠OAD =30°时,求点C 的坐标;(2)设AD 的中点为M ,连接OM 、MC ,当四边形OMCD 的面积为212时,求OA 的长;(3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时cos ∠OAD 的值.【答案】(1)点C 的坐标为(2,3);(2)OA =2;(3)OC 的最大值为8,cos ∠OAD 5. 【解析】 【分析】试题第21页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)作CE ⊥y 轴,先证∠CDE =∠OAD =30°得CE =12CD =2,DE =2223CD CE -=,再由∠OAD =30°知OD =12AD =3,从而得出点C 坐标; (2)先求出S △DCM =6,结合S 四边形OMCD =212知S △ODM =92,S △OAD =9,设OA =x 、OD =y ,据此知x 2+y 2=36,12xy =9,得出x 2+y 2=2xy ,即x =y ,代入x 2+y 2=36求得x 的值,从而得出答案;(3)由M 为AD 的中点,知OM =3,CM =5,由OC ≤OM+CM =8知当O 、M 、C 三点在同一直线时,OC 有最大值8,连接OC ,则此时OC 与AD 的交点为M ,ON ⊥AD ,证△CMD ∽△OMN 得CD DM CM ON MN OM ==,据此求得MN =95,ON =125,AN =AM﹣MN =65,再由OA =22ON AN +及cos ∠OAD =ANOA可得答案.【详解】(1)如图1,过点C 作CE ⊥y 轴于点E ,∵矩形ABCD 中,CD ⊥AD , ∴∠CDE+∠ADO =90°, 又∵∠OAD+∠ADO =90°, ∴∠CDE =∠OAD =30°, ∴在Rt △CED 中,CE =12CD =2,DE 22CD CE -3 在Rt △OAD 中,∠OAD =30°, ∴OD =12AD =3, ∴点C 的坐标为(2,3; (2)∵M 为AD 的中点, ∴DM =3,S △DCM =6, 又S 四边形OMCD =212,试题第22页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………∴S △ODM =92, ∴S △OAD =9,设OA =x 、OD =y ,则x 2+y 2=36,12xy =9, ∴x 2+y 2=2xy ,即x =y ,将x =y 代入x 2+y 2=36得x 2=18, 解得x =32(负值舍去), ∴OA =32; (3)OC 的最大值为8, 如图2,M 为AD 的中点,∴OM =3,CM 22CD DM +5, ∴OC ≤OM+CM =8,当O 、M 、C 三点在同一直线时,OC 有最大值8,连接OC ,则此时OC 与AD 的交点为M ,过点O 作ON ⊥AD ,垂足为N , ∵∠CDM =∠ONM =90°,∠CMD =∠OMN , ∴△CMD ∽△OMN ,∴CD DM CM ON MN OM ==,即4353ON MN ==, 解得MN =95,ON =125,∴AN =AM ﹣MN =65,在Rt △OAN 中,OA 2265ON AN +=, ∴cos ∠OAD =5AN OA =【点睛】试题第23页,总23页本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.。
湖南省益阳市2020版中考数学试卷(I)卷

湖南省益阳市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·宁波) 在-3,-1,0,1这四个数中,最小的数是()A . -3B . -1C . 0D . 12. (2分)(2016·深圳模拟) “提高节能,倡导低碳”,2012年3月30日“地球一小时”,深圳市民中心附近几座地标性建筑物都相继熄灭.据深圳供电局统计,在短短一小时里,深圳耗电量比上周六同时段相比减少了33900千瓦时,将33900用科学记数法表示为(结果保留2个有效数字)()A . 3.3×104B . 3.4×103C . 33×103D . 3.4×1043. (2分) (2020八上·邳州期末) 下列四个图形中,不是轴对称图案的是()A .B .C .D .4. (2分) (2019七下·韶关期末) 在数轴上表示不等式x>-2的解集,正确的是()A .B .C .D .5. (2分)(2017·石家庄模拟) 化简:(a+ )(1﹣)的结果等于()A . a﹣2B . a+2C .D .6. (2分)如图是一个可以自由转动的转盘,转盘分为6个大小相同的扇形,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),指针指向阴影区域的概率是()A .B .C .D .7. (2分) (2018九上·宜昌期中) 如图,是的外接圆,连结、,且点、在弦的同侧,若,则的度数为()A .B .C .D .8. (2分)(2016·滨湖模拟) 如图,A在O的正北方向,B在O的正东方向,且OA=OB.某一时刻,甲车从A 出发,以60km/h的速度朝正东方向行驶,与此同时,乙车从B出发,以40km/h的速度朝正北方向行驶.1小时后,位于点O处的观察员发现甲、乙两车之间的夹角为45°,即∠COD=45°,此时,甲、乙两人相距的距离为()A . 90kmB . 50 kmC . 20 kmD . 100km9. (2分)(2018·西华模拟) 如图所示,△ABC中,∠ABC =∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC 与DE相交于O,下列结论中,不一定成立的是()A . AD=ECB . AC=DEC . AB=ACD . OA=OE10. (2分)(2017·黔西南) 如图,点A是反比例函数y= (x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y= 图象上移动,则k的值为()A . ﹣4B . 4C . ﹣2D . 2二、填空题 (共8题;共12分)11. (1分) (2020七下·江阴月考) 计算:÷ · =________.12. (1分) (2019八下·绍兴期中) 五个数1,a,3,2,3有唯一的众数3,则a的值是________.13. (1分)已知方程x2﹣2x﹣5=0的两个根是m和n,则2m+4n﹣n2的值为________.14. (1分) (2017八上·启东期中) 已知:(x﹣2)0无意义,请你计算(2x+1)2﹣(2x+5)(2x﹣5)=________.15. (1分) (2017八上·十堰期末) 如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,则∠ADC=________.16. (1分) (2020九上·柳州期末) 已知圆锥的底面半径为 3cm ,母线长为 5cm ,则圆锥的侧面积是________ cm2 (结果用含π 的式子表示).17. (5分)如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为.18. (1分) (2017七下·独山期末) 菱形ABCD的边AB为5,对角线AC为8,则菱形ABCD的面积为________.三、解答题 (共10题;共100分)19. (10分)(2018·兴化模拟)(1)计算:;(2)解不等式:.20. (10分)(2018·济南)(1)化简:(a+3)(a-3)+a(4-a)(2)解不等式组:.21. (5分) (2017八上·南宁期中) 如图,已知:∠D =∠C,OA=OB,求证:AD=BC.22. (10分) (2018九上·宁城期末) 在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次取的小球的标号相同(2)两次取的小球的标号的和等于423. (15分) (2016七上·莘县期末) 某校为了了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分~74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图(图2)中C级所在的扇形圆心角的度数;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?24. (10分) (2020八上·浦北期末) 今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)25. (10分)在同一个直角坐标系中作出y= x2 , y= x2-1的图象.(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y= x2-1与抛物线y= x2有什么关系?26. (10分)(2017·陕西) 如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.27. (10分)(2019·海南模拟) 正方形ABCD的边长为4,点E在BC上,点F在CD上,且CF=BE,AE与BF 交于G点.(1)如图1,求证:①AE=BF,②AE⊥BF.(2)连接CG并延长交AB于点H,①若点E为BC的中点(如图2),求BH的长;②若点E在BC的边上滑动(不与B、C重合),当CG取得最小值时,求BE的长.28. (10分)(2019·江北模拟) 如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s 的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共12分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共100分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、27-1、28-1、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.四个实数 , , , 中,最大的是( )
A. B. C. D.
2.将不等式组 的解集在数轴上表示,正确的是( )
A. B.
C. D.
14.若反比例函数y= 的图象经过点(﹣2,3),则k=_____.
15.时光飞逝,十五六岁的我们,童年里都少不了“弹珠”。小朋友甲的口袋中有 粒弹珠,其中 粒红色, 粒绿色,他随机拿出 颗送给小朋友乙,则送出的弹珠颜色为红色的概率是__________.
16.若一个多边形的内角和是540°,则该多边形的边数是_____.
17.若计算 的结果为正整数,则无理数 的值可以是__________.(写出一个符合条件的即可)
18.某公司新产品上市 天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是__________元.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
7.一次函数 的图象如图所示,则下列结论正确的是( )
A. B.
C. 随 的增大而减小D.当 时,
8.如图, 对角线 , 交于点 ,若 , ,则 的长可能是( )
A. B. C. D.
9.如图,在 中, 垂直平分线交 于点 , 平分 ,若 ,则 的度数为( )
A. B. C. D.
10.如图,在矩形 中, 是 上的一点, 是等边三角形, 交 于点 ,则下列结论不成立的是( )
(2)该同学将数据进行整理,按如下方案分组统计,并制作扇形统计图:
分组
笔画数 (画)
字数(个)
组
组
组
组
组
请确定上表中 、 的值及扇形统计图中组对应扇形圆心角的度数.
(3)若这篇文章共有 个汉字,估计笔画数在 画( 组)的字数有多少个?
23.沿江大堤经过改造后的某处横断面为如图所示的梯形 ,高 米,斜坡 的坡度 ,此处大堤的正上方有高压电线穿过, 表示高压线上的点与堤面 的最近距离( 、 、 在同一直线上),在点 处测得 .
3.图所示的几何体的俯视图是( )
A. B. C. D.
4.一组数据由 个数组成,其中 个数分别为 , , ,且这组数据的平均数为 ,则这组数据的中位数为( )
A. B. C. D.
5.同时满足二元一次方程 和 的 , 的值为( )
A. B. C. D.
6.下列因式分解正确的是( )
A.
,其中
21.如图, 是 的半径,过点 作 的切线 ,且 , , 分别交 于点 , ,求证:
22.为了了解现行简化汉字的笔画画数情况,某同学随机选取语文课本的一篇文章,对其部分文字的笔画数进行统计,结果如下表:
笔画数
字数
请解答下列问题:
(1)被统计汉字笔画数的众数是多少?
数学能力测试试题解析
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.四个实数 , , , 中,最大的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据实数的大小比较法则比较即可.
【详解】解:四个实数 , , , 中,最大的是 ;
(1)求斜坡 坡角
(2)电力部门要求此处高压线离堤面 的安全距离不低于 米,请问此次改造是否符合电力部门的安全要求?(参考数据: , , , )
24.“你怎么样,中国便是怎么样:你若光明,中国便不黑暗”。 年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城。针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有 人不能到厂生产,为了应对疫情,已复产的工人加班生产,由原来每天工作 小时增加到 小时,每小时完成的工作量不变原来每天能生产防护服 套,现在每天能生产防护服 套.
(1)如图1,正方形 中, 是 上的点,将 绕 点旋转,使 与 重合,此时点 的对应点 在 的延长线上,则四边形 为“直等补”四边形,为什么?
(2)如图2,已知四边形 是“直等补”四边形, , , ,点 到直线 距离为 .
①求 长.
②若 、 分别是 、 边上的动点,求 周长的最小值.
益阳市2020年普通初中学业水平考试
A. B. C. D.
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
11.我国北斗全球导航系统最后一颗组网卫星于 年 月 日成功定位于距离地球 千米的地球同步轨道,将 用科学计数法表示为__________.
12.如图, , , ,则 的度数为__________.
13.小明家有一个如图所示的闹钟,他观察圆心角 ,测得 的长为 ,则 的长为__________ .
(1)判断点 在运动过程中是否经过点C(0,5)
(2)设动点 的坐标为 ,求 关于 的函数表达式:填写下表,并在给定坐标系中画出函数的图象:
...
...
...
...
(3)点 关于 轴的对称点为 ,点 在直线 的下方时,求线段 长度的取值范围
26.定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形,根据以上定义,解决下列问题:
(1)求原来生产防护服的工人有多少人?
(2)复工 天后,未到的工人同时到岗加入生产,每天生产时间仍然为 小时公司决定将复工后生产的防护服 套捐献给某地,则至少还需要生产多少天才能完成任务?
25.如图,在平面直角坐标系中,点 的坐标是 ,点 为一个动点,过点 作 轴的垂线 ,垂足为 ,点 在运动过程中始终满足 【提示:平面直角坐标系内点 、 的坐标分别为 、 ,则 】
故选C.
【点睛】本题考查了对实数 大小比较法则的应用,能熟记法则内容是解题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
2.将不等式组 的解集在数轴上表示,正确的是( )
A. B.