2007年北京工业大学465线性代数考研真题【圣才出品】
2006-2007学年第二学期高等数学期末试卷

2006-2007学年第二学期高等数学期末试卷北京工业大学2006-2007学年第二学期《高等数学》期末试卷一、单项选择题:本大题共5小题,每小题4分,共20 分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确结果的字母写在括号内。
1.假定函数f (x,,y )在点),(0y x 处取得极大值,此时下列结论正确的是 【 】(A )0(,)f x y 在0x x =处导数等于零. (B )0(,)f x y 在0x x =处导数大于零.(C )0(,)f x y 在0x x =处导数小于零. (D )0(,)f x y 在x x =处导数未必存在.2. 222222ln()1z x y z dxdydz x y z Ω+++++⎰⎰⎰(其中Ω为2222xy z ++≤)的值等于 【 】 (A ) 2 (B ) 1 (C ) 0 (D ) -1 3.级数21(1)ln nn n∞=-∑ 的敛散情况是【 】(A )条件收敛 (B )绝对收敛 (C )发散 (D )敛散性不能确定4.将三重积分dvz y xI ⎰⎰⎰Ω++=)(222,其中1:222≤++Ωz y x,化为球面坐标下的三次积分为 【 】 (A )⎰⎰⎰120drd d ππϕθ (B ) ⎰⎰⎰1220rdrd d ππϕθ(C )⎰⎰⎰1420sin drr d d ϕϕθππ(D ) ⎰⎰⎰12020sin drr d d ϕϕθππθϕϕd drd r dv sin 2=注意到体积元素5.定义在[,]ππ-上的函数()||f x x =展开为以2π为周期的傅立叶级数,其和函数记为)(x S ,则=)(πS【 】(A )0 (B) π(C )π- (D )2π二、填空题:本大题共5小题,每小题4分,共20分,把答案填在题中的横线上.6.曲线32,,t z ty t x ===在点),1,1,1(--P 处的切线方程为___________________ , 法平面方程为12.计算二次积分2()a x y aI a dx e dy-=⎰⎰,其中实数0a >,并求极限lim ()a I a →+∞13.利用高斯公式计算曲面积分⎰⎰∑+-=,2dxdy z xdzdx ydydz I 其中∑是锥面22y x z +=介于平面0z =与平面3z =之间部分的外侧.14.已知曲线积分()[]⎰'+-=),()0,0()()(,y x x dyxydxxeyxIϕϕ与积分路径无关,其中()xϕ是二阶可导函数,且(0)0ϕ=,0)0(='ϕ.1.求()xϕ;2.求)1,1(I.15. 求(1)幂级数112n n n n x ∞-=∑的收敛域;(2)幂级数112n nn n x ∞-=∑的和函数;(3)级数1(1)2nnn n ∞=-∑的和.16.函数)(x f 具有连续的导数,满足0()()d 1x ax xf x e f at t ae +=+⎰,且(0)2f a =, 求a 的值及函数)(x f .12()(2)x x e xe xf x e e ee--+-+=-+四、 证明题: 本题共1题,6分.17. 已知无穷级数2n n u ∞=∑满足 22222ln 1xy nx y a nun dxdyπ--+≤=-⎰⎰,其中实数0a >, 证明: 级数2n n u ∞=∑ 当1a >时收敛; 当1a ≤时发散, 但2(1)nnn u ∞=-∑ 总收敛.北京工业大学2006-2007学年第二学期 《高等数学》期末试卷 参考答案一、单项选择题1. D 2. C 3.A 4. C (θϕϕd drd r dv sin 2=注意到体积元素)5. B二、填空题 6.312111+=--=+z y x 0632=++-z y x7. 44a π8.544x - )4,4(-9.3,2==b a 310.dy dx dz 2121+=三、计算题11. 解:设 ,x u y x v ye =-=, 则''x u v zf ye f x∂=-+∂ ()()2'''''''''''''''2'''()1x x u v uu uvx x x vu vv v x x x uu uv vv v z f ye f f e f x y yye f e f e f f e y f ye f e f ∂∂=-+=--∂∂∂+++=-+-++12. 解:()2222211.2a xa aa yy y y a xa y a dx edy dx edy dy edxyedy e -----=-=-=-=-⎰⎰⎰⎰⎰⎰⎰从而1lim ()2a I a →+∞=-。
北京大学2007年高等代数考研真题

北京大学2007年高等代数与解析几何试题1、回答下列问题:(1)问是否存在n 阶方阵A ,B ,满足AB −BA =E (单位矩阵)?又是否存在n 维线性空间上的线性变换A ,B ,满足AB −BA =E (恒等变换)?若是,举出例子;若否,给出证明.(2)设n 阶矩阵A 的各行元素之和为常数c ,则3A 的各行元素之和是否为常数?若是,是多少?说明理由.(3)设m ×n 矩阵A 的秩为r ,任取A 的r 个线性无关的行向量,再取A 的r 个线性无关的列向量,组成的r 阶子式是否一定不为0?若是,给出证明;若否,举出反例.(4)设A ,B 都是m ×n 矩阵,线性方程组AX =0与BX =0同解,则A 与B 的列向量组是否等价?行向量组是否等价?若是,给出证明;若否,举出反例.(5)把实数域R 看成有理数域Q 上的线性空间,r q p b 23=,这里的∈r q p ,,Q 是互不相同的素数.判断向量组n n n n b b b 12,...,,,1−是否线性相关?说明理由.2、设n 阶矩阵A ,B 可交换,证明:rank (A +B )≤rank (A )+rank (B )−rank (AB ).3、设f 为双线性函数,且对任意的γβα,,都有),(),(),(),(γααβαγβαf f f f =求证:f 为对称的或反对称的.4、设V 是欧几里德空间,U 是V 的子空间,U ∈β.求证:β是V ∈α在U 上的正交投影的充分必要条件为:U ∈∀γ,都有||||γαβα−≤−.5、设n 阶复矩阵A 满足:对于任意正整数k,都有0)(=k A tr .求A 的特征值.6、设n 维线性空间V 上的线性变换A 的最小多项式与特征多项式相同.求证:V ∈∃α,使得αααα12,...,,,−n A A A 为V 的一个基.7、设P 是球内一定点,A ,B ,C 是球面上三动点.∠APB =∠BPC =∠CPA =2/π.以PA,PB,PC 为棱作平行六面体,记与P 相对的顶点为Q ,求Q 点的轨迹.8、设直线L 的方程为⎩⎨⎧=+++=+++,0,022221111D z C y B x A D z C y B x A 问系数满足什么条件时,直线L(1)过原点;(2)平行于x 轴,但不与x 轴重合;(3)与y 轴相交;(4)与z 轴重合.9、证明双曲抛物面z by a x 22222=−的相互垂直的直母线的交点在双曲线上.10、求椭球面191625222=++z y x 被点(2,1,-1)平分的弦.。
07年考研数学试题(线性代数)

07年考研数学试题(线性代数)第一篇:07年考研数学试题(线性代数)07年考研数学试题(线性代数)选择题(每小题4分)⎡2-1-1⎤⎢⎥1.(07010804、07021004、07030804、07040804)设矩阵A=-12-1,⎢⎥⎢⎣-1-12⎥⎦⎡100⎤⎥,则A与B()B=⎢010⎢⎥⎢⎣000⎥⎦(A)合同,且相似;(B)合同,但不相似;(C)不合同,但相似;(D)合同,但不相似;2.(07020904、07030704、07040704)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()(A)α1-α2,α2-α3,α3-α1 ;(B)α1+α2,α2+α3,α3+α1;(C)α1-2α2,α2-2α3,α3-2α1 ;(D)α1+2α2,α2+2α3,α3+2α1.二、填空题(每小题4分)⎡0⎢03.(07011504、07021604、07030504、07041504)设矩阵A=⎢⎢0⎢⎣0秩为.三、解答题 100001000⎤0⎥⎥,则 A3 的1⎥⎥0⎦⎧x1+x2+x3=0⎪4.(07012111、07022311、07032111、07042111)设线性方程组⎨x1+2x2+ax3=0①⎪2⎩x1+4x2+ax3=0与方程 x1+2x2+x3 = a-1② 有公共解,求a的值及所有公共解.5.(07012211、07022411、07032211、07042211)设3阶对称矩阵A的特征值为λ1 = 1,λ2 =2,λ3 =-2 ;向量α1=(1,-1,1)是A的属于λ1 的一个特征向量,记 TB = A5-4A3 + E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.第二篇:考研数学一线性代数公式1、行列式1.n行列式共有n2个元素,展开后有n!项,可分解为2n行列式;2.行列式的重要公式:①、主对角行列式:主对角元素的乘积;n(n-1)②、副对角行列式:副对角元素的乘积⨯ (-1)③、上、下三角行列式(④、 ◤◥ = ◣2;):主对角元素的乘积;n(n-1)2和◢:副对角元素的乘积⨯ (-1)ACOB=AOCB;、CBAO=OBAC=(-1)mγn⑤、拉普拉斯展开式:=ABAB⑥、范德蒙行列式:大指标减小指标的连乘积; 3.证明①、A=0的方法:;③构造齐次方程组Ax=0A=-A,证明其有非零解;④证明r(A)<n⑤证明0是其特征值;2、矩阵1.是n阶可逆矩阵:⇔A≠0(是非奇异矩阵);A⇔⇔⇔⇔⇔⇔r(A)=nA(是满秩矩阵)有非零解;的行(列)向量组线性无关;=0齐次方程组Ax∀b∈Rn,Ax=b总有唯一解;A与E等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;TAA⇔⇔⇔⇔AAA是正定矩阵;的行(列)向量组是Rn的一组基;是Rn中某两组基的过渡矩阵;=AA=AE*A2.对于n阶矩阵A:AA*3.(A-1无条件恒成立;-1)=(A)TT**-1(A-1)T=(A)**T(A)*T=(A)-1T*-1(AB)=BAT(AB)=BA*(AB)=B-1A4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均A、B可逆:若⎛A1 A=⎝A2O⎫⎪⎪⎪⎪As⎭-1,则:Ⅰ、A=A1A2ΛAs ;Ⅱ、A-1⎛A1 =⎝-1-1A2OAs⎫⎪O⎭-1-1-1⎫⎪⎪⎪⎪⎪⎭;⎛A②、⎝O⎛A④、⎝OO⎫⎪B⎭C⎫⎪B⎭-1⎛A=⎝OO⎫-1⎪B⎭-A-1⎛O;(主对角分块)③、 ⎝BCB-1-1A⎫⎪O⎭-1⎛O=-1⎝A-1B;(副对角分块)O⎫-1⎪B⎭-1⎛A=⎝O-1B⎫⎪⎭⎛A;(拉普拉斯)⑤、⎝CO⎫⎪B⎭⎛A=-1-1⎝-BCA;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个m⨯n矩阵A,总可经过初等变换化为标准形,其标准形是唯一确定的:F⎛Er=⎝OO⎫⎪O⎭m⨯n;等价类:所有与A等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A、B,若r(A) =r(B) ⇔ AγB;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(A , E) γ (E , X),则A可逆,且X②、对矩阵(A,B)做初等行变化,当Ar=AE-1;就变成A-1变为时,BB,即:(A,B) ~ (E,A-1B);rc③、求解线形方程组:对于n个未知数n个方程Ax=b,如果(A,b)γ(E,x),则A可逆,且x=A-1b;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;⎛λ1②、Λ=⎝λ2O⎫⎪⎪⎪⎪λn⎭,左乘矩阵A,λi乘A的各行元素;右乘,λi乘A的各列元素;③、对调两行或两列,符号E(i,5.矩阵秩的基本性质:①、0≤r(Am⨯n)≤min(m⑥、r(A+j),且E(i,j)-1⎛=E(i,j),例如:1⎝⎫⎪⎪1⎪⎭-1⎛=1 ⎝⎫⎪⎪1⎪⎭;,n);②、r(A)=r(A)T;③、若AγB,则r(A)=r(B);④、若P、Q可逆,则;(※)r(A)=r(PA)=r(AQ)=r(PAQ);(可逆矩阵不影响矩阵的秩)⑤、max(r(A),r(B))≤;(※)⑦、r(AB)≤min(r(A),r(B))r(A,B)≤r(A)+r(B)B)≤r(A)+r(B)⨯n;(※)⑧、如果A是m矩阵,B是n⨯s矩阵,且AB=0n=0,则:(※)Ⅰ、B的列向量全部是齐次方程组AXⅡ、r(A)+r(B)≤解(转置运算后的结论);;⑨、若A、B均为n阶方阵,则r(AB)≥r(A)+r(B)-n6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;⎛1②、型如 00⎝a10c⎫⎪b⎪1⎪⎭的矩阵:利用二项展开式;③、利用特征值和相似对角化:7.伴随矩阵:⎧n⎪①、伴随矩阵的秩:r(A*)=⎨1⎪⎩0r(A)=n r(A)=n-1r(A)<n-1*-1*;②、伴随矩阵的特征值:Aλ(AX=λX,A=AA ⇒ AX=AλX);③、A*=AA-1、A*=An-18.关于A矩阵秩的描述:①、r(A)=n,A中有n阶子式不为0,n+1阶子式全部为0;(两句话)②、r(A)<n,A中有n阶子式全部为0;③、r(A)≥n,A中有n阶子式不为0;9.线性方程组:Ax=b,其中A为m⨯n矩阵,则:①、m与方程的个数相同,即方程组Ax=b有m个方程;②、n与方程组得未知数个数相同,方程组Ax=b为n元方程;10.线性方程组Ax=b的求解:①、对增广矩阵B进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;4、向量组的线性相关性11.①、向量组的线性相关、无关⇔Ax=0有、无非零解;(齐次线性方程组)②、向量的线性表出⇔Ax=b是否有解;(线性方程组)③、向量组的相互线性表示⇔AX=B是否有解;(矩阵方程)12.矩阵Am⨯n与Bl⨯n行向量组等价的充分必要条件是:齐次方程组Ax=0和Bx=0同解;(P101例14)13.14.r(AA)=r(A)nT;(P101例15)⇔α=0维向量线性相关的几何意义:;③、α,β,γ线性相关⇔α,β,γ①、α线性相关②、α,β线性相关共面;⇔α,β坐标成比例或共线(平行);15.线性相关与无关的两套定理:若α1,α2,Λ,αs线性相关,则α1,α2,Λ,αs,αs+1必线性相关;若α1,α2,Λ,αs线性无关,则α1,α2,Λ,αs-1必线性无关;(向量的个数加加减减,二者为对偶)若r维向量组A的每个向量上添上n -r个分量,构成n维向量组B:若A线性无关,则B也线性无关;反之若B线性相关,则A也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;16.向量组A(个数为r)能由向量组B(个数为s)线性表示,且A线性无关,则r向量组A能由向量组B线性表示,则r(A)≤向量组A能由向量组B 线性表示⇔AX=Br(B)≤s(二版P74定理7);;(P86定理3)r(A)=r(A,B)有解;⇔(P85定理2)向量组A能由向量组B等价⇔ r(A)=①、矩阵行等价:A~crr(B)=r(A,B)(P85定理2推论)=P1P2ΛPl17.方阵A可逆⇔存在有限个初等矩阵P1,P2,Λ,Pl,使AB⇔PA=B;=0(左乘,P可逆)⇔Ax=0与Bx同解18.19.20.21.②、矩阵列等价:A~B⇔AQ=B(右乘,Q可逆);③、矩阵等价:A~B⇔PAQ=B(P、Q可逆);对于矩阵Am⨯n与Bl⨯n:①、若A与B行等价,则A与B的行秩相等;②、若A与B行等价,则Ax=0与Bx=0同解,且A与B的任何对应的列向量组具有相同的线性相关性;④、矩阵A的行秩等于列秩;若Am⨯sBs⨯n=Cm⨯n,则:①、C的列向量组能由A的列向量组线性表示,B为系数矩阵;②、C的行向量组能由B的行向量组线性表示,AT为系数矩阵;(转置)齐次方程组Bx=0的解一定是ABx=0的解,考试中可以直接作为定理使用,而无需证明;①、ABx=0 只有零解⇒ Bx=0只有零解;②、Bx=0 有非零解⇒ ABx=0一定存在非零解;设向量组Bn⨯r:b1,b2,Λ,br可由向量组An⨯s:a1,a2,Λ,as线性表示为:(P110题19结论)(B=AK)其中K为s⨯r,且A线性无关,则B组线性无关⇔r(K)=r;(B与K的列向量组具有相同线性相关性)(必要性:Θr=r(B)=r(AK)≤r(K),r(K)≤r,∴r(K)=r;充分性:反证法)(b1,b2,Λ,br)=(a1,a2,Λ,as)K=m注:当r=s时,K为方阵,可当作定理使用;22.①、对矩阵Am⨯n,存在Qn⨯m,AQ=Em ⇔r(A)②、对矩阵Am⨯n,存在Pn⨯m,PA=En、Q的列向量线性无关;(P87)、P的行向量线性无关;⇔r(A)=n23.若η*为Ax=b的一个解,ξ1,ξ2,Λ,ξn-r为Ax=0的一个基础解系,则η*,ξ1,ξ2,Λ,ξn-r线性无关5、相似矩阵和二次型1.正交矩阵⇔AA=ET或A-1=AT(定义),性质:⎧1=⎨⎩0i=ji≠j(i,j=1,2,Λn)①、A的列向量都是单位向量,且两两正交,即aiTaj②、若A为正交矩阵,则A-1=AT;也为正交阵,且A=±1;③、若A、B正交阵,则AB也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2.施密特正交化:(a1,a2,Λ,ar) b1=a1;b2=a2-[b1,a2][b1,b1]γb1ΛΛΛ[b1,ar][b1,b1]γb1-[b2,ar][b2,b2]γb2-Λ-[br-1,ar][br-1,br-1]γbr-1br=ar-;3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、A与B等价⇔A经过初等变换得到B;⇔PAQ=B,P、Q可逆;⇔r(A)=r(B),A、B同型;②、A与B 合同⇔CTAC=B,其中可逆;TT⇔xAx与xBx有相同的正、负惯性指数;③、A与B相似⇔P-1AP=B; 5.相似一定合同、合同未必相似;若C为正交矩阵,则CTAC=B⇒AγB,(合同、相似的约束条件不同,相似的更严格); 6.n元二次型xTAx为正定:T⇔A的正惯性指数为n⇔A与E合同,即存在可逆矩阵C,使CAC=E⇔A的所有特征值均为正数;⇔A的各阶顺序主子式均大于0⇒aii>0,A>0;(必要条件)第三篇:2013线性代数考研复习建议2013考研线性代数复习建议2013考研备考已经开始了,网校老师结合往年考研复习情况,也2013年考研的学生们一点建议。
自学考试线性代数2007-2012历年真题及答案

全国2012年10月自学考试线性代数试题请考生按规定用笔将所有试题的答案涂、写在答题纸上。
说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,A表示方阵A 的行列式,r(A )表示矩阵A 的秩。
选择题部分一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题 纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设行列式1122=1a b a b ,11221a c a c -=--,则行列式111222=a b c a b c -- A .-1 B .0C .1D .22.设矩阵123456709⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则*A 中位于第2行第3列的元素是A .-14B .-6C .6D .143.设A 是n 阶矩阵,O 是n 阶零矩阵,且2-=A E O ,则必有 A .1-=A A B .=-A E C .=A ED .1=A4.已知4×3矩阵A 的列向量组线性无关,则r (A T )= A .1 B .2 C .3 D .45.设向量组T T12(2,0,0),(0,0,-1)αα==,则下列向量中可以由12,αα线性表示的是A .(-1,-1,-1)TB .(0,-1,-1)TC .(-1,-1,0)TD .(-1,0,-1)T6.齐次线性方程组134234020x x x x x x ++=⎧⎨-+=⎩的基础解系所含解向量的个数为A.1B.2C.3D.47.设12,αα是非齐次线性方程组Ax =b 的两个解向量,则下列向量中为方程组解的是A .12αα-B .12αα+C .1212αα+D .121122αα+8.若矩阵A 与对角矩阵111-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭D 相似,则A 2= A.EB.AC.-ED.2E9.设3阶矩阵A 的一个特征值为-3,则-A 2必有一个特征值为 A.-9 B.-3 C.3 D.910.二次型222123123121323(,,)222f x x x x x x x x x x x x =+++++的规范形为A .2212z z -B .2212z z + C .21zD .222123z z z ++二、填空题(本大题共10小题,每小题2分,共20分)11.行列式123111321的值为______. 12.设矩阵011001000⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则A 2=______.13.若线性方程组12323323122(1)x x x x x x λλ++=⎧⎪-+=-⎨⎪+=-⎩无解,则数λ=______.14.设矩阵43012110⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,=A P ,则PAP 2=______.15.向量组T T 12,-2,2,(4,8,8)k αα==-()线性相关,则数k =______. 16.已知A 为3阶矩阵,12,ξξ为齐次线性方程组Ax =0的基础解系,则=A ______. 17.若A 为3阶矩阵,且19=A ,则-1(3)A =______. 18.设B 是3阶矩阵,O 是3阶零矩阵,r (B )=1,则分块矩阵⎛⎫⎪⎝⎭E O B B 的秩为______.19.已知矩阵211121322⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,向量11k ⎛⎫ ⎪= ⎪ ⎪⎝⎭α是A 的属于特征值1的特征向量,则数k =______.20.二次型1212(,)6f x x x x =的正惯性指数为______. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式a ba b D a a b b aba b+=++的值.22.设矩阵100112210,022222046A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求满足方程AX =B T 的矩阵X .23.设向量组123411212142,,,30614431αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,求该向量组的秩和一个极大线性无关组.24.求解非齐次线性方程组123412341234124436x x x x x x x x x x x x +--=⎧⎪+++=⎨⎪+--=⎩.(要求用它的一个特解和导出组的基础解系表示).25.求矩阵200020002⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的全部特征值和特征向量.26.确定a ,b 的值,使二次型22212312313(,,)222f x x x ax x x bx x =+-+的矩阵A 的特征值之和为1,特征值之积为-12. 四、证明题(本题6分)27.设矩阵A 可逆,证明:A *可逆,且*11*--=()()A A .全国2012年7月高等教育自学考试一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 为三阶矩阵,且13A -=,则 3A -( )A.-9B.-1C.1D.92.设[]123,,A a a a =,其中 (1,2,3)i a i = 是三维列向量,若1A =,则[]11234,23,a a a a - ( )A.-24B.-12C.12D.243.设A 、B 均为方阵,则下列结论中正确的是( ) A.若AB =0,则A=0或B=0 B. 若AB =0,则A =0或B =0 C .若AB=0,则A=0或B=0 D. 若AB ≠0,则A ≠0或B ≠04. 设A 、B 为n 阶可逆阵,则下列等式成立的是( ) A. 111()AB A B ---=B. 111()A B A B ---+=+ C .11()AB AB-= D. 111()A B A B ---+=+5. 设A 为m ×n 矩阵,且m <n ,则齐次方程AX=0必 ( ) A.无解B.只有唯一解 C .有无穷解 D.不能确定6. 设12311102103A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦则()r A = A.1 B.2 C.3 D.47. 若A 为正交矩阵,则下列矩阵中不是正交阵的是( ) A. 1A -B.2A C .A ²D. T A8.设三阶矩阵A有特征值0、1、2,其对应特征向量分别为123ξξξ、、,令[]312,,2P ξξξ= 则1P AP -=( ) A. 200010000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ B. 200000001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .000010004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ D. 200000002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦9.设A 、B 为同阶方阵,且()()r A r B =,则( ) A.A 与B 等阶 B. A 与B 合同 C .A B =D. A 与B 相似10.设二次型22212312123(,,)22f x x x x x x x x =+-+则f 是( ) A.负定 B.正定 C .半正定 D.不定二、填空题(本大题共10小题,每小题2分,共20分) 11.设A 、B 为三阶方阵,A =4,B =5, 则2AB = 12.设121310A ⎡⎤=⎢⎥⎣⎦ , 120101B ⎡⎤=⎢⎥⎣⎦ ,则TA B 13.设120010002A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦则1A - =14.若22112414A t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦且()2r A =,则t= 15.设1231120,2,2110a a a -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则由 123,,a a a 生成的线性空间123(,,)L a a a的维数是16. 设A 为三阶方阵,其特征值分别为1、2、3,则1A E --=17.设111,21t a β-⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,且a 与β正交,则t = 18.方程1231x x x +-=的通解是19.二次型212341223344(,,,)5f x x x x x x x x x x x =+++所对应的对称矩阵是20.若00100A x =⎢⎥⎢⎥⎥⎥⎦是正交矩阵,则x =三、计算题 (本大题共6小题,每小题9分,共54分)21.计算行列式1112112112112111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 22.设010111101A ⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦= 112053-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦B = ,且X 满足X=AX+B,求X23.求线性方程组的123412345221.53223x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩12x x 的通解,24.求向量组 (2,4,2),(1,1,0),(2,3,1),(3,5,2)====1234a a a a 的一个极大线性无关组,并把其余向量用该极大线性无关组表示。
2007年-2012年线性代数(经管类)总试题+答案

全国2007年4月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为3阶方阵,且2||=A ,则=-|2|1A ( D ) A .-4 B .-1 C .1D .44218||2|2|131=⨯==--A A. 2.设矩阵A =(1,2),B =⎪⎪⎭⎫⎝⎛4321,C =⎪⎪⎭⎫ ⎝⎛654321,则下列矩阵运算中有意义的是( B ) A .ACBB .ABC C .BACD .CBA3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) A .A +A TB .A -A TC .AA TD .A T A)()()(TTTTTTTA A A AA AA A --=-=-=-,所以A -A T为反对称矩阵.4.设2阶矩阵A =⎪⎪⎭⎫ ⎝⎛d cb a ,则A *=( A ) A .⎪⎪⎭⎫⎝⎛--a cb dB .⎪⎪⎭⎫⎝⎛--a b c dC .⎪⎪⎭⎫⎝⎛--a c b dD .⎪⎪⎭⎫⎝⎛--a b c d 5.矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( C ) A .⎪⎪⎭⎫⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫ ⎝⎛-13110D .⎪⎪⎪⎭⎫⎝⎛-01311 6.设矩阵A =⎪⎪⎪⎭⎫⎝⎛--50043200101,则A 中( D ) A .所有2阶子式都不为零 B .所有2阶子式都为零 C .所有3阶子式都不为零D .存在一个3阶子式不为零7.设A 为m×n 矩阵,齐次线性方程组Ax =0有非零解的充分必要条件是( A ) A .A 的列向量组线性相关 B .A 的列向量组线性无关 C .A 的行向量组线性相关D .A 的行向量组线性无关Ax =0有非零解⇔n A r <)(⇔ A 的列向量组线性相关.8.设3元非齐次线性方程组Ax=b 的两个解为T )2,0,1(=α,T )3,1,1(-=β,且系数矩阵A 的秩r(A )=2,则对于任意常数k , k 1, k 2,方程组的通解可表为( C ) A .k 1(1,0,2)T+k 2(1,-1,3)TB .(1,0,2)T +k (1,-1,3)TC .(1,0,2)T+k (0,1,-1)TD .(1,0,2)T+k (2,-1,5)TT )2,0,1(=α是Ax=b 的特解,T)1,1,0(-=-βα是Ax =0的基础解系,所以Ax=b 的通解可表为=-+)(βααk (1,0,2)T +k (0,1,-1)T .9.矩阵A =⎪⎪⎪⎭⎫⎝⎛111111111的非零特征值为( B ) A .4B .3C .2D .1111111111)3(111111333111111111||-------=---------=---------=-λλλλλλλλλλλλA E)3(000111)3(2-=-=λλλλλ,非零特征值为3=λ.10.4元二次型413121214321222),,,(x x x x x x x x x x x f +++=的秩为( C ) A .4B .3C .2D .1⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=000000011100001000000000011110001000100011111A ,秩为2. 二、填空题(本大题共10小题,每小题2分,共20分)11.若,3,2,1,0=≠i b a i i 则行列式332313322212312111b a b a b a b a b a b a b a b a b a =__0__. 行成比例值为零. 12.设矩阵A =⎪⎪⎭⎫⎝⎛4321,则行列式|A TA |=__4__.4)2(4321||||||||222=-====A A AA A TT .13.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 有非零解,则其系数行列式的值为__0__.14.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100020101,矩阵E A B -=,则矩阵B 的秩r(B )= __2__. E A B -==⎪⎪⎪⎭⎫⎝⎛000010100,r(B )=2. 15.向量空间V={x =(x 1,x 2,0)|x 1,x 2为实数}的维数为__2__.16.设向量)3,2,1(=α,)1,2,3(=β,则向量α,β的内积),(βα=__10__.17.设A 是4×3矩阵,若齐次线性方程组Ax =0只有零解,则矩阵A 的秩r(A )= __3__. 18.已知某个3元非齐次线性方程组Ax =b 的增广矩阵A 经初等行变换化为:⎪⎪⎪⎭⎫⎝⎛-----→1)1(0021201321a a a A ,若方程组无解,则a 的取值为__0__. 0=a 时,2)(=A r ,3)(=A r .19.设3元实二次型),,(321x x x f 的秩为3,正惯性指数为2,则此二次型的规范形是232221y y y -+.秩3=r ,正惯性指数2=k ,则负惯性指数123=-=-k r .规范形是232221y y y -+. 20.设矩阵A =⎪⎪⎪⎭⎫⎝⎛-300021011a 为正定矩阵,则a 的取值范围是1<a . 011>=∆,0121112>-=-=∆a a,0)1(33021113>-=-=∆a a ⇒1<a .三、计算题(本大题共6小题,每小题9分,共54分)21.计算3阶行列式767367949249323123. 解:0760300940200320100767367949249323123==. 22.设A = ⎪⎪⎪⎭⎫⎝⎛--523012101,求1-A . 解: ⎪⎪⎪⎭⎫⎝⎛--100010001523012101→ ⎪⎪⎪⎭⎫ ⎝⎛---103012001220210101→ ⎪⎪⎪⎭⎫ ⎝⎛---127012001200210101 → ⎪⎪⎪⎭⎫ ⎝⎛---12701200220210202→ ⎪⎪⎪⎭⎫⎝⎛----127115125200010002→ ⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/510010001, =-1A⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/5. 23.设向量组T )1,2,1,1(1-α,T )2,4,2,2(2--α,T )1,6,0,3(3-α,T )4,0,3,0(4-α. (1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.解:=),,,(4321αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛-----4121064230210321→⎪⎪⎪⎪⎪⎭⎫⎝⎛---4440000033000321 →⎪⎪⎪⎪⎪⎭⎫⎝⎛---000330044400321→⎪⎪⎪⎪⎪⎭⎫⎝⎛000110011100321→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110000103021→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110000103001. (1)321,,ααα是一个极大线性无关组;(2)=4α32103ααα++-.24.求齐次线性方程组 ⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系及通解.解:⎪⎪⎪⎭⎫⎝⎛-=11100011110011A →⎪⎪⎪⎭⎫ ⎝⎛--11101010010011→⎪⎪⎪⎭⎫⎝⎛--0101010010011→⎪⎪⎪⎭⎫ ⎝⎛0101010010011,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==--=55453225210x x x x x x x x x x , 基础解系为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00011,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10101,通解为TTk k )1,0,1,0,1()0,0,0,1,1(21--+-=η.25.设矩阵A =⎪⎪⎭⎫⎝⎛1221,求正交矩阵P ,使AP P 1-为对角矩阵. 解:)3)(1(324)1(1221||22-+=--=--=----=-λλλλλλλλA E ,特征值11-=λ,32=λ.对于11-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛----=-00112222A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛-=111α,单位化为 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-==21211121||1111ααβ; 对于32=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛--=-00112222A E λ,⎩⎨⎧==2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛=112α,单位化为 ⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛==21211121||1222ααβ.令⎪⎪⎪⎪⎭⎫⎝⎛-=21212121P ,则P 是正交矩阵,使⎪⎪⎭⎫⎝⎛-=-30011AP P . 26.利用施密特正交化方法,将下列向量组化为正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00111α, ⎪⎪⎪⎪⎪⎭⎫⎝⎛=01012α.解:正交化,得正交的向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==001111αβ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-=012/12/10011210101||),(1211222βββααβ; 单位化,得正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==002/12/1001121||1111ββp ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==06/26/16/1012/12/162||1222ββp . 四、证明题(本大题6分)27.证明:若A 为3阶可逆的上三角矩阵,则1-A 也是上三角矩阵.证:设⎪⎪⎪⎭⎫⎝⎛=33232213121100a a a a a a A ,则⎪⎪⎪⎭⎫⎝⎛==*-3323133222123121111||1||1A A A A A A A A A A A A A , 其中000332312=-=a a A ,0002213=-=a A ,00121123=-=a a A ,所以⎪⎪⎪⎭⎫⎝⎛=-333222312111100||1A A A A A A A A 是上三角矩阵. 全国2007年7月高等教育自学考试线性代数(经管类)试题答案 课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 是3阶方阵,且|A |=21-,则|A -1|=( A )A .-2B .21-C .21 D .22.设A 为n 阶方阵,λ为实数,则=||A λ( C ) A .||A λB .||||A λC .||A n λD .||||A n λ3.设A 为n 阶方阵,令方阵B =A +A T,则必有( A ) A .B T =B B .B =2A C .B B T -=D .B =0B AA A AA AA A BTTTT TTT T=+=+=+=+=)()(.4.矩阵A =⎪⎪⎭⎫⎝⎛--1111的伴随矩阵A *=( D ) A .⎪⎪⎭⎫⎝⎛--1111B .⎪⎪⎭⎫⎝⎛--1111C .⎪⎪⎭⎫⎝⎛--1111D .⎪⎪⎭⎫⎝⎛--1111 5.下列矩阵中,是初等矩阵的为( C ) A .⎪⎪⎭⎫⎝⎛0001B .⎪⎪⎪⎭⎫ ⎝⎛--100101110C .⎪⎪⎪⎭⎫ ⎝⎛101010001D .⎪⎪⎪⎭⎫ ⎝⎛0013000106.若向量组)0,1,1(1+=t α,)0,2,1(2=α,)1,0,0(23+=t α线性相关,则实数t =( B )A .0B .1C .2D .30)1)(1(2111)1(1021011222=-+=++=++t tt ttt ⇒1=t .7.设A 是4×5矩阵,秩(A )=3,则( D ) A .A 中的4阶子式都不为0 B .A 中存在不为0的4阶子式 C .A 中的3阶子式都不为0D .A 中存在不为0的3阶子式8.设3阶实对称矩阵A 的特征值为021==λλ,23=λ,则秩(A )=( B ) A .0 B .1 C .2 D .3A 相似于⎪⎪⎪⎭⎫⎝⎛=200000000D ,秩(A )= 秩(D )=1. 9.设A 为n 阶正交矩阵,则行列式=||2A ( C ) A .-2B .-1C .1D .2A 为正交矩阵,则E A A T =,==22||||A A 1||||||==A A A A T T .10.二次型2.2),,(y x z y x f -=的正惯性指数p 为( B ) A .0 B .1 C .2 D .3二、填空题(本大题共10小题,每小题2分,共20分) 11.设矩阵A =⎪⎪⎭⎫⎝⎛1121,则行列式=||TAA __1__. 1)1(1121||||||||22=-====A AA AATT.12.行列式1694432111中)2,3(元素的代数余子式=32A __-2__.2421132-=-=A .13.设矩阵A =⎪⎪⎭⎫ ⎝⎛21,B =⎪⎪⎭⎫ ⎝⎛21,则=B A T__5__.521)2,1(=⎪⎪⎭⎫ ⎝⎛=B A T.14.已知βααα=+-32125,其中)1,4,3(1-=α,)3,0,1(2=α,)5,2,0(-=β,则=3α⎪⎭⎫ ⎝⎛-211,1,1. ⎪⎭⎫ ⎝⎛-=-=+---=211,1,1)11,2,2(21)]3,0,1(5)1,4,3()5,2,0[(213α 15.矩阵A =⎪⎪⎪⎭⎫⎝⎛-613101的行向量组的秩=__2__. ⎪⎪⎪⎭⎫ ⎝⎛-613101→⎪⎪⎪⎭⎫ ⎝⎛-603001→⎪⎪⎪⎭⎫⎝⎛-003001,秩=2. 16.已知向量组)1,1,1(1=α,)0,2,1(2=α,)0,0,3(3=α是3R 的一组基,则向量)3,7,8(=β在这组基下的坐标是)1,2,3(.设332211αααβx x x ++=,即)0,0,3()0,2,1()1,1,1()3,7,8(321x x x ++=,得⎪⎩⎪⎨⎧==+=++37283121321x x x x x x ,解得⎪⎩⎪⎨⎧===123321x x x . 17.已知方程组⎩⎨⎧=+-=-0202121tx x x x 存在非零解,则常数t =__2__.02211=-=--t t,2=t .18.已知3维向量T )1,3,1(-=α,T )4,2,1(-=β,则内积=),(βα__1__.19.已知矩阵A =⎪⎪⎪⎭⎫⎝⎛x 01010101的一个特征值为0,则x =__1__. 0|0|=-A E ,所以0||=A ,即0111101010101=-==x xx,1=x .20.二次型323121232221321822532),,(x x x x x x x x x x x x f +-+++=的矩阵是⎪⎪⎪⎭⎫⎝⎛--541431112. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=2112112的值. 解:4)26(2123211212302112112=+--=---=--=.22.设矩阵A =⎪⎪⎭⎫ ⎝⎛3512,B =⎪⎪⎭⎫⎝⎛0231,求矩阵方程XA =B 的解X . 解:⎪⎪⎭⎫⎝⎛--→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫⎝⎛=252610022501101220016101210013512),(E A ⎪⎪⎭⎫ ⎝⎛--→25131001,⎪⎪⎭⎫ ⎝⎛--=-25131A ,⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛==-26512251302311BA X .23.设矩阵A =⎪⎪⎪⎭⎫⎝⎛---a 363124843121,问a 为何值时,(1)秩(A )=1;(2)秩(A )=2. 解:⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121→⎪⎪⎪⎭⎫ ⎝⎛--90000003121a →⎪⎪⎪⎭⎫⎝⎛--00090003121a . (1)9=a 时,秩(A )=1;(2)9≠a 时,秩(A )=2.24.求向量组1α=⎪⎪⎪⎭⎫ ⎝⎛-111,2α=⎪⎪⎪⎭⎫ ⎝⎛531,3α=⎪⎪⎪⎭⎫ ⎝⎛626,4α=⎪⎪⎪⎭⎫⎝⎛-542的秩与一个极大线性无关组.解:⎪⎪⎪⎭⎫ ⎝⎛--565142312611→⎪⎪⎪⎭⎫ ⎝⎛--3126028402611→⎪⎪⎪⎭⎫ ⎝⎛--142014202611→⎪⎪⎪⎭⎫⎝⎛--00014202611, 秩为2,1α,2α是一个极大线性无关组.25.求线性方程组⎪⎩⎪⎨⎧=++=+=++362232234232132321x x x x x x x x 的通解.解:⎪⎪⎪⎭⎫⎝⎛=362232203421A →⎪⎪⎪⎭⎫ ⎝⎛---322032203421→⎪⎪⎪⎭⎫ ⎝⎛00032203421→⎪⎪⎪⎭⎫⎝⎛00032200201→⎪⎪⎪⎭⎫ ⎝⎛0002/31100201,⎪⎪⎩⎪⎪⎨⎧=-=-=333231232x x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛11202/30k .26.设矩阵⎪⎪⎪⎭⎫⎝⎛--=1630310104A ,求可逆矩阵P 及对角矩阵D ,使得D AP P =-1. 解:2)1)(2(31104)1(163310104||-+=--+-=-----+=-λλλλλλλλλA E ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫⎝⎛-----=-00013050300013001531300000511210510513630510102A E λ ⎪⎪⎪⎭⎫ ⎝⎛-→0003/1103/501,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=3332313135x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫ ⎝⎛-=13/13/51α;对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫⎝⎛----=-0000000210210210210630210105A E λ,⎪⎩⎪⎨⎧==-=3322212x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0122α,⎪⎪⎪⎭⎫⎝⎛=1003α. 令⎪⎪⎪⎭⎫⎝⎛--=101013/1023/5P ,⎪⎪⎪⎭⎫⎝⎛-=100010002D ,则P 是可逆矩阵,使D AP P =-1. 四、证明题(本大题6分)27.设向量组1α,2α线性无关,证明向量组211ααβ+=,212ααβ-=也线性无关. 证:设02211=+ββk k ,即0)()(212211=-++ααααk k ,0)()(221121=-++ααk k k k .由1α,2α线性无关,得⎩⎨⎧=-=+002121k k k k ,因为021111≠-=-,方程组只有零解,所以1β,2β线性无关.全国2007年10月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( D )A .-3B .-1C .1D .3222111c b a c b a ++=2211b a b a +2211c a c a =1+2=3.2.设A 为3阶方阵,且已知2|2|=-A ,则=||A ( B ) A .-1B .41-C .41 D .12|2|=-A ,2||)2(3=-A ,41||-=A .3.设矩阵A ,B ,C 为同阶方阵,则=T ABC )(( B ) A .A T B T C TB .C T B T A TC .C T A T B TD .A T C T B T4.设A 为2阶可逆矩阵,且已知⎪⎪⎭⎫⎝⎛=-4321)2(1A ,则A =( D ) A .2⎪⎪⎭⎫ ⎝⎛4321B .⎪⎪⎭⎫⎝⎛432121C .214321-⎪⎪⎭⎫⎝⎛D .1432121-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-4321)2(1A ,143212-⎪⎪⎭⎫ ⎝⎛=A ,1432121-⎪⎪⎭⎫⎝⎛=A .5.设向量组s ααα,,,21 线性相关,则必可推出( C ) A .s ααα,,,21 中至少有一个向量为零向量 B .s ααα,,,21 中至少有两个向量成比例C .s ααα,,,21 中至少有一个向量可以表示为其余向量的线性组合D .s ααα,,,21 中每一个向量都可以表示为其余向量的线性组合6.设A 为m×n 矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是( A ) A .A 的列向量组线性无关 B .A 的列向量组线性相关 C .A 的行向量组线性无关D .A 的行向量组线性相关Ax=0仅有零解⇔n A r =)(⇔ A 的列向量组线性无关.7.已知21,ββ是非齐次线性方程组Ax =b 的两个不同的解,21,αα是其导出组Ax =0的一个基础解系,21,C C 为任意常数,则方程组Ax =b 的通解可以表为( A ) A .)()(212121121ααC αC ββ++++B .)()(212121121ααC αC ββ+++-C .)()(212121121ββC αC ββ-+++D .)()(212121121ββC αC ββ+++-)(2121ββ+是Ax =b 的特解,211,ααα+是Ax =0的基础解系.8.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3,则=-||1B ( A ) A .121B .71C .7D .12B 相似于⎪⎪⎪⎭⎫⎝⎛300020002,1230020002||==B ,121||||11==--B B .9.设A 为3阶矩阵,且已知0|23|=+E A ,则A 必有一个特征值为( B ) A .23-B .32-C .32D .230|23|=+E A ⇒032=--A E ⇒A 必有一个特征值为32-.10.二次型312123222132142),,(x x x x x x x x x x f ++++=的矩阵为( C )A .⎪⎪⎪⎭⎫ ⎝⎛104012421B .⎪⎪⎪⎭⎫ ⎝⎛100010421C .⎪⎪⎪⎭⎫ ⎝⎛102011211D .⎪⎪⎪⎭⎫ ⎝⎛120211011二、填空题(本大题共10小题,每小题2分,共20分)11.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100012021,B =⎪⎪⎪⎭⎫ ⎝⎛310120001,则A+2B =⎪⎪⎪⎭⎫⎝⎛720252023. 12.设3阶矩阵A =⎪⎪⎪⎭⎫⎝⎛002520310,则=-1)(T A ⎪⎪⎪⎭⎫⎝⎛--002/1130250. →),(E A T⎪⎪⎪⎭⎫ ⎝⎛10010*********200→⎪⎪⎪⎭⎫ ⎝⎛001100010200053021→⎪⎪⎪⎭⎫⎝⎛--00113001020010021→⎪⎪⎪⎭⎫ ⎝⎛---00113025020010001→⎪⎪⎪⎭⎫ ⎝⎛--002/1130250100010001,=-1)(T A ⎪⎪⎪⎭⎫ ⎝⎛--002/1130250.13.设3阶矩阵A =⎪⎪⎪⎭⎫⎝⎛333022001,则A *A =⎪⎪⎪⎭⎫⎝⎛600060006. ==*E A A A ||⎪⎪⎪⎭⎫⎝⎛==6000600066333022001E E . 14.设A 为m ×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,则矩阵B =AC 的秩为__r__. B =AC ,其中C 可逆,则A 经过有限次初等变换得到B ,它们的秩相等. 15.设向量)1,1,1(=α,则它的单位化向量为⎪⎪⎭⎫⎝⎛31,31,31. 16.设向量T )1,1,1(1=α,T )0,1,1(2=α,T )0,0,1(3=α,T )1,1,0(=β,则β由321,,ααα线性表出的表示式为3210αααβ-+=.设332211αααβk k k ++=,即⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001011111110321k k k ,⎪⎩⎪⎨⎧==+=++110121321k k k k k k , ⎪⎩⎪⎨⎧-===101321k k k .17.已知3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+0320320321321321x x x ax x x x x x 有非零解,则a =__2__.02412141121200132132111=-=+=+=-a a a a ,2=a .18.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则1)2(-A 必有一个特征值为41.2=λ是A 的特征值,则41)2(1=-λ是1)2(-A 的特征值.19.若实对称矩阵A =⎪⎪⎪⎭⎫⎝⎛a aa 000103为正定矩阵,则a 的取值应满足30<<a .031>=∆,031322>-==∆aaa ,0)3(00010323>-==∆a a aaa ⇒30<<a .20.二次型2221212122),(x x x x x x f -+=的秩为__2__.⎪⎪⎭⎫⎝⎛-→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛-=301112111112A ,秩为2. 三、计算题(本大题共6小题,每小题9分,共54分)21.求4阶行列式1111112113114111的值.解:630102010011000100010011020130011111112113114111===.22.设向量)4,3,2,1(=α,)0,2,1,1(-=β,求(1)矩阵βαT ;(2)向量α与β的内积),(βα.解:(1)()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-⎪⎪⎪⎪⎪⎭⎫⎝⎛=08440633042202110,2,1,14321βαT ;(2)50621),(=++-=βα. 23.设2阶矩阵A 可逆,且⎪⎪⎭⎫ ⎝⎛=-21211b ba a A ,对于矩阵⎪⎪⎭⎫⎝⎛=10211P ,⎪⎪⎭⎫⎝⎛=01102P ,令21AP P B =,求1-B.解:⎪⎪⎭⎫ ⎝⎛-=-102111P ,⎪⎪⎭⎫⎝⎛=-011012P , 111121----=P AP B=⎪⎪⎭⎫ ⎝⎛0110⎪⎪⎭⎫ ⎝⎛2121b b a a ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛2121a ab b ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛--12112122a a a b b b .24.求向量组T )3,1,1,1(1=α,T )1,5,3,1(2--=α,T )4,1,2,3(3-=α,T )2,10,6,2(4--=α的秩和一个极大线性无关组.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-----24131015162312311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------85401246041202311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------070070041202311→⎪⎪⎪⎪⎪⎭⎫⎝⎛------000070041202311, 秩为3,321,,ααα是一个极大线性无关组.25.给定线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321ax x x x ax x a x x x .(1)问a 为何值时,方程组有无穷多个解;(2)当方程组有无穷多个解时,求出其通解(用一个特解和导出组的基础解系表示).解:(1)⎪⎪⎪⎭⎫⎝⎛---=2112113111aa a A →⎪⎪⎪⎭⎫⎝⎛-----a a a a a 11010103111,1=a 时,方程组有无穷多解;(2)1=a 时,A →⎪⎪⎪⎭⎫⎝⎛-00000002111,⎪⎩⎪⎨⎧==---=33223212x x x x x x x ,通解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-10101100221k k . 26.求矩阵A =⎪⎪⎪⎭⎫⎝⎛------011101110的全部特征值及对应的全部特征向量. 解:10010111)2(1111111)2(1212112111111||--+=+=+++==-λλλλλλλλλλλλλλλA E)2()1(2+-=λλ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫⎝⎛---=-000330211330330211112121211211121112A E λ ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→000110101000110211,⎪⎩⎪⎨⎧===333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛=111α,对应的全部特征向量为αk (k 是任意非零常数);对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000000111111111111A E λ,⎪⎩⎪⎨⎧==--=3322321x x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0111α,⎪⎪⎪⎭⎫⎝⎛-=1012α,对应的全部特征向量为2211ααk k +(21,k k 是不全为零的任意常数). 四、证明题(本大题6分)27.设A 是n 阶方阵,且0)(2=+E A ,证明A 可逆.证:由0)(2=+E A ,得022=++E A A ,E A A =+-)2(2,E A E A =+-)2(.所以A 可逆,且)2(1E A A +-=-.全国2008年1月自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
线性代数02-07年部分试题整理

2 1 0 5. (4 分)设 A = 1 2 0 ,矩阵 B 满足 ABA∗ = 2 BA∗ + E ,则 | B | = 0 0 1
{ ABA∗ = 2 BA∗ + E ⇒ ABA∗ A = 2 BA∗ A + A ⇒ 3 AB = 6 B + A ,
1 9
.
(3 A − 6 E ) B = A ⇒| 3 A − 6 E | ⋅ | B | = | A |⇒ | B | = 1 } 9
11. (4 分)设 A 为 3 阶方阵, A 的第 1 列和第 2 列交换得到 B ,再把 B 的第 2 列加到第 3 列 上得到 C ,则满足 AQ = C 的可逆阵 Q 为
面, α1 = 2α 2 − α 3 说明 (1, − 2, 1, 0)T 为 Ax = 0 的解. 又条件 β = α1 + α 2 + α 3 + α 4 说明 (1, 1, 1, 1)T 为 Ax = β 的解. 总之, Ax = β 的通解为
x = (1, 1, 1, 1)T + k (1, − 2, 1, 0)T .
A 的列向量组线性相关, A 的列向量组线性相关, A 的行向量组线性相关, A 的行向量组线性相关,
(⇒ )
~ 反之, 设 r ( A) = r ( A) = 2 . 此时,假设 a + b + c ≠ 0 , 则
0 1 2 −3 1 1 1 1 0 → b 2c −3a → b c a → 0 c − b a − b ; A c 2a −3b c a b 0 a − c b − c
2006—2011考研真题(线性代数)

考研真题(线性代数)2006数(一)(5)设___,222112=+=⎪⎪⎭⎫⎝⎛-=B E B BA B E A 则满足阶单位矩阵,矩阵为,(11)设矩阵,下列选项是维向量,均为,,,n m A n s ⨯ααα 21正确的是: s s A A A A αααααα,,)(2121 ,线性相关,则,,,若线性相关; s s A A A B αααααα,,)(2121 ,线性无关,则,,,若线性相关; s s A A A C αααααα,,)(2121 ,线性无关,则,,,若线性无关; s s A A A D αααααα,,)(2121 ,线性相关,则,,,若线性无关;(12) 设B B A A ,再将到的第二行加到第一行得阶矩阵,将为3的第一列的)1(-倍加到第2列得到,记C⎪⎪⎪⎭⎫⎝⎛=100010011P则:11)(--==PAP C B AP P C A )(T T PAP C D APP C C ==)()(20 已知非线性方程组:有三个线性无关的解;⎪⎩⎪⎨⎧=-++-=-++-=+++1315341432143214321bx x x ax x x x x x x x x 证明(1)方程组系数矩阵A 的秩2)(=A r (2)求b a ,的值及其方程组的解。
21 设3阶实对称矩阵A 的各行元素之和均为3,向量()T1211--=α,()T 1102-=α是线性方程组的两个解,(1)求A 的特征值;(2) 求正交矩阵Λ=ΛAQ Q Q T 使得和对角矩阵。
(6)设___,222112=+=⎪⎪⎭⎫⎝⎛-=B E B BA B E A 则满足阶单位矩阵,矩阵为,(13)设矩阵,下列选项是维向量,均为,,,n m A n s ⨯ααα 21正确的是: s s A A A A αααααα,,)(2121 ,线性相关,则,,,若线性相关; s s A A A B αααααα,,)(2121 ,线性无关,则,,,若线性相关; s s A A A C αααααα,,)(2121 ,线性无关,则,,,若线性无关; s s A A A D αααααα,,)(2121 ,线性相关,则,,,若线性无关; (14)设B B A A ,再将到的第二行加到第一行得阶矩阵,将为3的第一列的)1(-倍加到第2列得到,记C⎪⎪⎪⎭⎫⎝⎛=100010011P则:11)(--==PAP C B AP P C A )( T T PAP C D AP P C C ==)()(22 已知非线性方程组:有三个线性无关的解;⎪⎩⎪⎨⎧=-++-=-++-=+++1315341432143214321bx x x ax x x x x x x x x 证明(1)方程组系数矩阵A 的秩2)(=A r (2)求b a ,的值及其方程组的解。
北京工业大学849交通工程考研真题(2007)

北京工业大学2007年硕士研究生入学考试试题一、名词解释(共36分,每题3分)1.负荷度2.保护型与许可型左转相位3.半感应式信号控制4.二路停车5.85%位车速6.何谓临界车速7.可接受间隙和随车时距8.智能交通系统(ITS)包含哪几个子系统9.何谓潮汐车道10.“绿色”交通的含义指什么11.什么是高乘率车道(H0V),设置在什么道路上12.何谓交通分配中的容量限制法二、叙述题(共50分,每题5分)1.高速公路与一般公路的主要区别2.解释 MUTCD手册中关于信号灯设置的基本原则,写出 MUTCD英文全称3.列出影响多车道公路自由流速度的因素4.从工程经济的角度,列举出交通项目的经济收益有哪些5.写出交通分布的重力模型数学式,并解释模型中各参数的含义6.度量道路交通事故死亡率的指标有哪些,何种指标更合理7.描述机动性与可达性之间的关系。
8.简述交叉口某进口方向直行车饱和流量是如何得到的9.解释高峰小时系数的含义10.描述传统交通规划的四个步骤三、计算题(共64分)1.某道路上车辆到达符合泊松分布,其断面流量为750辆/小时,试求该断面4秒钟内无车辆通过的概率。
(8分)2.某加油站仅有一套加油设备,到达该加油站的车辆符合泊松分布,平均到达车辆为100辆/小时,加油站平均30秒完成一辆车的加油,该服务符合负指数分布。
计算该加油站的平均排队长度,车辆的平均消耗时间和平均等待时间。
(10分)3.某道路断面观测得到车辆的10个地点车速值如下:24.5 32 26 42 28 26.5 32 33 29 40(单位:公里/小时)计算时间平均车速和空间平均车速,并指出在什么情况下时间平均车速与空间平均车速相等(10分)4.已知速度与密度的关系S=50(1-0.004×D),(S—速度;D—密度)(10分)(1)求自由流速度和阻塞密度(2)给出流量-速度,流量-密度关系式(3)确定此时的通行能力(4)绘出速度-密度,流量-速度,流量-密度曲线并指出拥挤区和非拥挤区5.已知某条路的交通量为720辆/小时,且车队车头时距符合负指数分布,求:(1)一小时内,车头时距不小于5秒的车头时距个数;(2)两小时内,车头时距界于15秒和20秒之间的车头时距个数(8分)6.一辆以每小时120公里行驶的汽车在200米处发现停靠在路上的卡车,请问,小车司机最小的反应时间为多大时才不会撞到该卡车。