线性代数96年考研试题
1996考研数三真题及解析

1996年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) ⑴设方程x = y y 确定y 是x 的函数,则dy =1 ⑵设[xf (x)dx =arcsinx+C ,则] dx = .. 'f(x)⑶设X o , y °是抛物线y =ax 1 2 • bx c 上的一点,若在该点的切线过原点,则系数应满足的关系是⑸设由来自正态总体X ~ N(~0.92)容量为9的简单随机样本,得样本均值X 二5,则未知参数J 的置信度为0.95的置信区间为、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只 有一项符合题目要求,把所选项前的字母填在题后的括号内.)cos -71(1)累次积分.0 d [0f(rcosdrsin ^)rdr 可以写成()1q y-y 2(A) 0 dy 0 f(x, y)dxn 吒n 壬n T001(C) 若正项级数7 U n 发散,则U n -丄n # nQ QQ Q(D) 若级数a U n 收敛,且U n -V n (门=1,2,川),则级数%也收敛n mn m⑶设n 阶矩阵A 非奇异(n - 2), A 是矩阵A 的伴随矩阵,则()(A) (A\—A n 」A (B)(AT= A'11(C) 0dx 0 f (x, y)dy ⑵下述各选项正确的是()(A) 若a U ;和a V ;都收敛,则a (U n V n )2收敛⑷设1 1 a 〔a ?22a 〔 a ? 1 a s2a s II I II I其中 q =a j (i = j ;i j n 3 1,2,n|U , n 1 -x jx11 1,X = X 3 ,B= 1 FI A T X 亠 〕的解是」 L X n I1 w(B) 0dy 0 f(x, y)dx1J x -x 2(D) 0dx 0 f (x, y)dy nTn仝 n妊(B)送U n V n 收敛,则送U ;与送V ;都收敛 1 a n2a na n(C) (A,= A 心A(D) (AT = A(4)设有任意两个 n 维向量组和、,”I, F ,若存在两组不全为零的数'1^1, 'm和k i ,|||,k m,使(1 匕):i 川(冷 * k m )〉m(1 - 匕)“ * 山(m -匕):m =0,则)(A) :-iJ|L :m 和S,HI 「m 都线性相关 (B) :lJH :m 和sHLm 都线性无关(C) ― -lJiL :^ ■ -m , :1 - -lJlL :^ - -m 线性无关 (D) >1「1,川Cm 「m ,〉1 - r,lH,〉m - F 线性相关⑸已知0 :: P(B) <1且P[ A A 2 B]二P(A B) P(A 2 B),则下列选项成立的是()(A) P[ A A 2 B]二 P(A 1 B) P(A 2 B) (B) P AB A 2B A P(A B) P(AB) (C) P A A 2 二 P(A 1 B) P(A 2 B) (D) P B 二P A P(BA) P©)P(B A) -X X , XF ,其中g(x)有二阶连续导数,且x =0,(1)求 f (x);⑵讨论f (x)在上的连续性. 四、(本题满分6分)设函数z = f (u)力程u = (up P(t)dt 确定u 是x, y 的函数,其中f (u),「(u)y可微;p(t),‘ (u)连续,且:(up 21.求 p(y)W P(x)二.CX cy 五、(本题满分6分)三、(本题满分6分)P(x)-e 设 f (x)二二.〔0,g(0) =1,g(0) 一1.dx.六、(本题满分5分)1设f(x)在区间[0,1]上可微,且满足条件f ⑴=2 ;xf(x)dx .试证:存在 (0,1)使f( ) • f ( ) =0.七、(本题满分6分)设某种商品的单价为p 时,售出的商品数量Q 可以表示成c ,其中p +ba 、 bc 均为正数,且a bc .(1) 求p 在何范围变化时,使相应销售额增加或减少•(2) 要使销售额最大,商品单价p 应取何值?最大销售额是多少? 八、(本题满分6分) 求微分方程业=y的通解.dx x (本题满分80分11 00 0(1)已知A 的一个特征值为3,试求y ; ⑵求矩阵P ,使(AP)T (AP)为对角矩阵. 十、(本题满分8分)设向量:•1,:2川,:\是齐次线性方程组AX =0的一个基础解系,向量1不是方程组AX =0的解,即A : = 0.试证明:向量组:,"■ -^1^线性无关.、(本题满分7分)假设一部机器在一天内发生故障的概率为 0.2,机器发生故障时全天停止工 作,若一周5个工作日里无故障,可获利润10万元;发生一次故障仍可获得利润5 万元;发生两次故障所获利润 0元;发生三次或三次以上故障就要亏损 2万元.九、 设矩阵A =求一周内期望利润是多少? 十二、(本题满分6分)考虑一元二次方程x 2 Bx 0 ,其中B 、C 分别是将一枚色子(骰子)接连 掷两次先后出现的点数•求该方程有实根的概率p 和有重根的概率q . 十三、(本题满分6分)假设X i ,X 2,川,X n 是来自总体G 的简单随机样本;已知EX k "k (k =1,2,3,4). 1 n 2证明:当n 充分大时,随机变量 乙X i 2近似服从正态分布,并指出其分布参n y 数.1996年全国硕士研究生入学统一考试数学三试题解析、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.)【解析】方法1 :方程x = y y 两边取对数得In x =lny y=yln y ,再两边求微分,1dx 二 In y 1 dy 二 dy dx x In y 1 = 0 . x x In y 1方法2 :把x 二y y 变形得x 二e yIny ,然后两边求微分得dx = e yln y d y In y = y y 1 In y dy = x 1 In y dy,⑶【答案】C -0(或ax :二c ),b 任意 a(1)【答案】dx由此可得dy =1——dx. x 1 In y(2)【答案】【解析】 -】J(1-x 2j +C 3由.xf(x)dx = arcsi nx^C ,两边求导数有 xf(x)二 arcsinx 二 _ — —— =x,1-x 21 于是有.1 -x 2f (x )f(x) dx 二 x 、,1 -x 2dx = — 2 •=_丄 1 - x 2d 1 - x 22 ________=_丄J(1_x 2 “C.3 '1 -x 2dx 2【解析】对y =ax 2 • bx • c 两边求导得y = 2ax b,y ' x ° ]=2ax o - b, 所以过X o ,y o 的切线方程为y - y ° =:[2axg • b x—X g ,即2y - ax 0 bx 0 c = 2ax 0 b x - x 0 .又题设知切线过原点0,0,把x 二y = 0代入上式,得-ax 0 - bx 0 - c 二—2ax 0 - bx 0,即卩 ax 0 — c.由于系数a = 0所以,系数应满足的关系为-_0(或 a£ =c),b 任意.a⑷【答案】(1,0,0,川0丨【解析】因为A 是范德蒙行列式,由a 知A =口(q -a 」汗0.根据解与系 数矩阵秩的关系,所以方程组A TX 二B 有唯一解.【相关知识点】克莱姆法则:若线性非齐次方程组Xn=D,』a21x 1 + a22x 2 +[11 +a2n Xn =b2,i 4a n 21 It^2X 2 十川 +a nn X n =b n ・其中Dj 是用常数项^4,川,0替换D]中第砧列所成的行列式I,即ama 21IHa 2 ,j Jb 2a 2,j 1川 a2n根据克莱姆法则,对于a i a 2a 3 2 a i 2 a2 2a 3II I IIIn J ai n J a 2 n Ja 3仏 1「11X 2 X 3易见 D<| = A ,D 2 = D 3 =川=D n = 0. 』a n 丄 xd J J T 所以 X = B 的解为 X 1 =1,X 2 = X 3 = I|l = X n = 0,即 1,0,0」2a nIII n -1a nn或简记为送a j X j = b ,j 吕其系数行列式则方程组有唯一解an a 12 III a 1nD = a 21++a22■III a 2n 4 4式0,a n1a n2 IIIa nnX j =D jD ,j =昭2,|l| ,n.(5)【答案】(4.412,5.588)an1an, j b n an, j十""ann【解析】可以用两种方法求解:⑴已知方差匚2=0.92,对正态总体的数学期望」进行估计,可根据— 1 n因XL N(」,0.92),设有n 个样本,样本均值~"X = - ' X i ,2 — n有XL 肌〜瞠),将其标准化,由公式X 「E (X) ~N(0,1)得: n -… X 一 .D (X)n 1 ~N(01)° p 曙 一心, (x-u 疾需,x 嗨肩). (2)本题是在单个正态总体方差已知条件下,求期望值)的置信区间问题.二 '卜妝命,X + U 輕法J ,-〉,U|_N(0,1),可以直接得出答案. 由正态分布分为点的定义进而确定相应的置信区间 :::u 1 -:-可确定临界值u.I - J 厉、 2 —). 由教材上已经求出的置信区间I ” 1其中P 」|U v u “ = 1 • 2j 方法1 :由题设,1-口 =0.95,可见a =0 .05.查标准正态分布表知分位点 = 1.96.本题n = 9,X =5,因此,根据P{ 5」 u.z 2 P{ <1.96^-0.95,有 £1.96} = 0.95,即卩P{4.412 2 卩对爲} =0.95, 故4的置信度为0.95的置信区间是(4.412,5.588). 方法2 :由题设,1 ■ -0.95, P{U <uQ =P{—u^<U 1 = 0.95,①(ua)= 0.975 2 2 2 2 2 查得 u :. =1.96. 2 2V -0.9 ,n =9,X -5代入(x-u :. ,x u :.)得置信区间(4.412,5.588). 八 4n J n 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只 有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)【答案】(D) 【解析】 方法1 :由题设知,积分区域在极坐标系x 二r cos 71, y = rsin 二中是1 x 一一 2y即是由八2 平面图形,如右图.由于D 的最左边点的横坐标是0,最右点的横坐标是1, 下边界方程是y =0,上边界的方程是y = -. x —x 2,从而D 的直角坐标表示是D = : x,y | 0 空 x 乞 1,0 乞 y 乞、x — x 2 .',故(D)正确.方法2 :采取逐步淘汰法.由于(A)中二重积分的积分区域的极坐标表示为U = r,二 10 _ 二一三,0 _ r _ si,而(B)中的积分区域是单位圆在第一象限的部分,(C)中的积分区域是正方形「x,y |0乞x 乞1,0乞y 乞仁, 所以,他们都是不正确的•故应选(D). ⑵【答案】(A)【解析】由于级数二u 2和厂v 2都收敛,可见级数二u 2 ■ v 2收敛.由不等式n =1 n 仝 n =12u n v n —u ; v ;及比较判别法知级数& 2U n V n 收敛,从而"2U n V n 收敛. n £ n 吕 2 2 2 002又因为(U n W ) =U n 十V n +2U n V n ,即级数送g “ )收敛,故应选(A).n=11 设 U n2 ,V n =1 n =1,2,|1(,可知(B)不正确. n 1 1设U n2 n =1,2,,可知(C)不正确. n n 」f 一1 \1设U n,V n n =1,2,川,可知(D)不正确.nnQ QQ Q注:在本题中命题(D) “若级数7 U n 收敛,且U n _V n ( n=1,2,||[),则级数7 V n 也收 n Tn T敛.”不正确,这表明:比较判别法适用于正项级数收敛 (或级数绝对收敛)的判别, 但对任意项级数一般是不适用的.这是任意项级数与正项级数收敛性判别中的一 个根本区别.⑶【答案】(C)【解析】伴随矩阵的基本关系式为AA二A A二A E ,现将A视为关系式中的矩阵A,则有A(Af= A E.n i A方法一:由A[=A及(A) A =—,可得(A丁 =冲人讯宀 A n'iA= A.I A I故应选(C).方法二:由A^(A^^|A|E,左乘A得(AAm A nJ A,即( A E)(A^|A^^ A.故应选(C).⑷【答案】(D)【解析】本题考查对向量组线性相关、线性无关概念的理解.若向量组1, 2,川,s 线性无关,即若 X 1 X2 2 IH x s=0,必有 X「0,X2 =O,HI,X s=O.既然'1^1, -m与k i, I 11 ,k m不全为零,由此推不出某向量组线性无关,故应排除 (B)、(C).一般情况下,对于kr 1 k2: 2 川 k s: s h 1 川 I s :s =0,不能保证必有Kr • k^ 2 ■ k s〉s =0,及I1 III ■ I s、=0,故(A)不正确.由已知条件,有'1 >1「1 HL 'm〉m「m ,匕「1 一肾 J |「k m〉m - : m = 0 ,又’1,IH, 'm与kjH,k m不全为零,故:1」,川,:缶「m,〉1 -也川,:m - 'm线性相关. 故选(D).⑸【答案】(B)【解析】依题意P[(A+A2)B]_P(AB)+P(A2B)P(AB +A2B)_ P(AB)+ P(A2B)P(B) - P(B) P(B) , P(B) — P(B) .因P(B) 0,故有 P AB AB U P AB) P(A?B .因此应选(B).注:有些考生错误地选择(D).他们认为(D)是全概率公式,对任何事件B都成立,但是忽略了全概率公式中要求作为条件的事件 A,A 2应满足P(A) A0,P(A 2)>0,且A, A 是对立事件.【相关知识点】条件概率公式:P(B小鵲【解析】(1)由于g(x)有二阶连续导数,故当X=O 时,f(x)也具有二阶连续导数,此时,f (x)可直接计算,且f (x)连续;当X =0时,需用导数的定义求f (0). 当 x 式0时 f (X ) _x[g'(x)+e 」] —g(x)+e 」_xg'(x)—g(x) + (x+1)e 」⑵f (x)在x.= 0点的连续牲要用定义来判定。
1996年考研数学三真题及全面解析

1996年全国硕士研究生入学统一考试数学三试题、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)Oo若正项级数VU n 发散,则U nn d(1) 设方程^y y 确定y 是X 的函数,则dy =设 xf(x)dx =arcsin x C ,则f⅛)dX =设x o ,y o 是抛物线y=aχ2 ∙bχ∙c 上的一点,若在该点的切线过原点,则系数应满足 的关系是 设a 2 2 a2>1n 』a 2其中 a^-a j (i = j;i, j =1,2J ∣∣,n)设由来自正态总体 X~N(∙L ,0.92)容量为9的简单随机样本,得样本均值 X =5,则未 知参数J的置信度为0.95的置信区间为二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中 合题目要求,把所选项前的字母填在题后的括号内 .)2CoS U(1)累次积分 2Z f(rcos 7l ,rsin τ1)rdr 可以写成()p!?0 '7,,只有一项符1 y-y 2(A)0dy 0 f(x,y)dx1 1(C) dx f (x, y)dyS S(2)下述各选项正确的是(B );dy 「f(x,y)dx1Xd 2(D) dx f (x, y)dy LO ⅛()OoOoOO(A)若7 u l 2和7 v 2都收敛,则7 (U n v n )2收敛nF nF n T(C) (B) Σ U n V n 收敛,则Σ U ;与Σ V ;都收敛 n mn Tn TOO QQ(D)若级数a U n 收敛,且u n _v n (n=1,2,H ∣),则级数7 V n 也收敛nJnJ⑶ 设n 阶矩阵A 非奇异(n_ 2), A 堤矩阵A 的伴随矩阵,则()亠亠 InI亠亠∏-A(A) (A j y=A —A(B)(A j T=IA A亠亠 In 2-I n~|2(C) (A j y=A —A(D) (A I T=IA A⑷ 设有任意两个n 维向量组:∙1,H ∣,>m 和[川,F,若存在两组不全为零的数’l,∣H,∙m和 kιJ ∣∣,k m ,使「1 kj 〉i TH(m J)〉m ( 1 - 人)UHl ( m - KJ F =。
考研数学三1996真题

n1
n1
n1
(C)
若正项级数 un
n1
发散,则 un
1 n
(D) 若级数 un 收敛,且 un vn (n 1, 2,) ,则级数 vn 也收敛
n1
Hale Waihona Puke n1(3) 设 n 阶矩阵 A 非奇异( n 2 ), A 是矩阵 A 的伴随矩阵,则
()
(A) ( A ) A n1 A
(B) ( A ) A n1 A
七、(本题满分 6 分)
设某种商品的单价为 p 时,售出的商品数量 Q 可以表示成 Q a c ,其中 a、b、 pb
c 均为正数,且 a bc . (1) 求 p 在何范围变化时,使相应销售额增加或减少.
(2) 要使销售额最大,商品单价 p 应取何值?最大销售额是多少?
八、(本题满分 6 分)
f (x, y)dx
0
0
1
1 y2
(B) dy
f (x, y)dx
0
0
1
1
(C) dx f (x, y)dy
0
0
1
xx2
(D) dx
f (x, y)dy
0
0
(2) 下述各选项正确的是
()
(A) 若 un2 和 vn2 都收敛,则 (un vn )2 收敛
n1
n1
n1
(B)
unvn 收敛,则 un2 与 vn2 都收敛
(C) ( A ) A n2 A
(D) ( A ) A n2 A
(4) 设 有 任 意 两 个 n 维 向 量 组 1,,m 和 1,, m , 若 存 在 两 组 不 全 为 零 的 数 1,, m 和 k1,, km , 使
1996年考研数学一真题及答案解析

1 2 1996 年全国硕士研究生入学统一考试理工数学一试题详解及评析一、 填空题⎛ x + 2a ⎫x(1) 设lim ⎪= 8, 则a = .x →∞ ⎝ 【答】 ln 2. x - a ⎭+ x ⎡3axx -a ⎤ x -a 【详解】 因为lim ⎛ x 2a ⎫ = lim ⎢⎛1+ 3a ⎫ 3a ⎥= e 3a , x →∞ x - a ⎪ x →∞ ⎢ x - a⎪ ⎥ ⎝ ⎭于是e 3a = 8 ⇒ a = ln 2⎣⎝ ⎭ ⎦(2)设一平面经过原点及点(6, -3, 2), 且与平面4x - y + 2z = 8 垂直,则此平面方程为.【答】 2x + 2 y - 3z = 0【详解】 原点与点(6, -3, 2) 连线的方向向量为 s = (6, -3, 2) ; 平面4x - y + 2z = 8 的法向量为 n = {4, -1, 2},根据题意,所求平面的法向量为i j ks ⨯ n = 6 4 -3 2 = 2i + 2 j - 3k .-1 2故所求平面方程为 2 ( x - 0) + 2 ( y - 0) - 3( z - 0) = 0,即2x + 2 y - 3z = 0 .(3)微分方程 y '' - 2 y ' + 2 y = e x 的通解为.【答】 y = C e x cos x + C e x sin x + e x【详解】 对应齐次方程的特征方程为λ 2 - 2λ + 2 = 0,解得特征根为 λ1,2 = 1± i ,由于α = 1 不是特征根,可设原方程的特解为 y * = Ae * ,1 2 ⎢ ⎥ 代入原方程解得 A = 1, 故所求通解为(4)函数u = ln (x 1y = C e x cos x + C e x sin x + e x在 A (1, 0,1) 点处沿 A 点指向的方向导数为.【答】 .2【详解】 因为∂u | = 1 |= 1 , ∂x A x (1,0,1) 2∂u | = 1 ⋅ y | = 0∂y A x (1,0,1)∂u | = 1 ⋅ z | = 1 , ∂z A x (1,0,1) 2–––K cos α = 2 , cos β = - 2 , cos γ = 1,3 3 3⎧ 2 2 1 ⎫沿 AB 方向的单位向量为⎨ 3 , - , ⎬,–––K⎩3 3⎭ 故u 沿 AB 方向的方向导数为∂u 1 2 ⎛ 2 ⎫ 1 1 1 –––K = ⋅ + 0 ⋅ - ⎪ + ⋅ = ∂ AB 2 3 ⎝ 3 ⎭ 2 3 2⎡ 1 0 2⎤(5)设 A 是4 ⨯ 3 矩阵,且 A 的秩 r ( A ) = 2, 而 B = ⎢ 0 2 0⎥ , 则 r ( AB ) =.⎢⎣-1 0 3⎥⎦【答】 2.【详解】 因为 B =1 0 22 0 = 10 ≠ 0,-1 0 3说明矩阵 B 可逆,故秩 r ( AB ) = 秩 r ( A ) = 2,二、选择题(1) 已知( x + ay ) dx + ydy ( x + y )2为某函数的全微分,则 a 等于(A )-1.(B )0.(C)1.(D)2.【】→ 【答】 应选(D ).( x + ay ) dx + ydy【详解】( x + y )2为某函数的全微分的充要条件是∂ ⎛ y ⎫ = ∂ ⎛ x + ay ⎫, 2 ⎪ 2 ⎪∂x ( x + y ) ∂y ( x + y ) ⎪即(a - 2) x - ay = -2 y ,⎝ ⎭ ⎝ ⎭(a - 2)( x - y ) = 0.当且仅当 a = 2 时上式恒成立,故正确选项为(D ). f '' ( x )(2)设 f ( x ) 有二阶连续导数,且 f ' (0) = 0, limx0 = 1, 则(A ) f (0) 是 f ( x ) 的极大值. (B ) f (0) 是 f ( x ) 的极小值.(C ) (0, f (0))是曲线 y = f ( x ) 的拐点.(D ) f (0) 不是 f ( x ) 的极值, (0, f (0))也不是曲线 y = f ( x ) 的拐点【 】【答】 应选(B ). f '' ( x )【详解】 由题设limx →0在此邻域内有f '' ( x )= 1 根据极限的性质知,存在 x = 0 的某邻域,≥ 0 .即 f '' ( x ) ≥ 0.又根据泰勒公式,f '' (ξ )f ( x ) = f (0) + f ' (0) x +f '' (ξ )x 2 其中ξ 在 0 与 x 之间, 2! 从而 f ( x ) = f (0) +x 2 ≥ 2!f (0)可见 f (0) 是 f ( x ) 的极小值,故正确选项为(B )∞⎛ π ⎫∞ n ⎛ λ ⎫ (3)设a n > 0 (n = 1, 2,⋯), 且∑a n 收敛,常数λ ∈ 0, 2 ⎪ , 则级数∑(-1) n tan n ⎪ a 2nn =1 ⎝ ⎭ n =1⎝ ⎭(A )绝对收敛. (B )条件收敛. (C)发散.(D )敛散性与λ 有关.【 】【答】 应选(A ).xxx⎝⎭ ⎝ ⎭ 0= lim∞x n⎛λ ⎫ λ 【详解】 由于 (-1) nn tan n ⎪ a 2n = n tan n ⋅ a 2n ,而lim n tann →∞λ = λ, 所以当n 充分大时,n tan λ⋅ a < (λ +1) an 2n2n∞∞又正项级∑an 收敛,所以其偶数项数列构成的级数∑a2n 也收敛,n =1n =1n⎛λ ⎫ 从而 ∑(-1) n =1n tan n ⎪ a 2n 绝对收敛,故正确选项为(A )(4)设 f ( x ) 有连续的导数, f (0) = 0, f ' (0) ≠ 0, F ( x ) = ⎰ x(x 2- t 2 )f (t ) dt , 且当 x → 0 时, F ' ( x )是与 xk是同阶无穷小,则 k 等于【答】 应选(C ). 【详解】 因为' ⎡ 2xx 2【 】⎤'x2 2 F ( x ) = ⎢⎣ x ⎰0xf (t ) dt - ⎰0 t f (t ) d t ⎥⎦= 2x ⎰0 f (t ) dt + x f ( x ) - x f ( x ) = 2x ⎰0 f (t )dt .又根据题设 F ' ( x ) 与xk 是同阶无穷小,且 f (0) = 0, f ' (0) ≠ 0,于是有F ' ( x )2x ⎰ f (t ) dt2 f ( x ) lim x →0 x k = lim 0 x →0 x kx →0 (k -1) x k -2 = 2 lim 1⋅f ( x ) - f (0) x →0 (k -1) x k -3 x - 0= 2 f ' (0)⋅lim 1≠ 0,x →0 (k -1) x k -3可见应有 k = 3 故正确选项为(C ).(5)四阶行列式 的值等于3 3(A ) a 1a 2 x 3 x 4 - b 1b 2b 3b 4 .(B ) a 1a 2a 3a 4 + b 1b 2b 3b 4 .a 1 0 0b 10 a 2 b 2 0 0 b 4 b 0 a 0 0 a 41 n →∞1 4(C ) (a 1a 2 - b 1b 2 )(a 3a 4 - b 3b 4 ).(D ) (a 2a 3 - b 2b 3 )(a 1a 4 - b 1b 4 ).【 】【答】 应选(D ) 【详解】 按第一行展开,a 1 0 0 0 a 2b 2 b 10 a 2 b 2 = a ⋅ b a 00 0 - b 0 a 2 b 2 b a 0 b 3 a 3 0b 0 0 a1 3 3 0 0 a 4 1 3 3 b 4 0 0 44= aaa 2b 2- b b a 2 b 2 b 3 a 3b 3 a 3故正确选项为(D ).= (a 2a 3 - b 2b 3 )(a 1a 4 - b 1b 4 ).三、(1)求心形线 r = a (1+ cos θ ) 的全长,其中a > 0 是常数.' 【详解】 因为 r (θ ) = -a sin θ , ds = d θ = 2a cosd θ 利用对称性知,所求心形线的全长s = 2⎰π 2a co sθ d θ = 8a s in θ |π= 8a0 2 2 0(2)设 x 1 = 10, x n +1 =【详解】 由 x 1 = 10, x 2 =n = 1, 2,⋯), 试证数列{x n } 的极限存在,并求此极限.= 4 知, x > x . 2设对某个正整数 k 有 x k > x k +1 则x k +1 =>= x k +2 .故由归纳法知,对一切正整数 n , 都有 x n > x n +1, 即数列{x n } 为单调减少数列.又显然有 x n > 0 (n = 1, 2,⋯),即{x n } 有下界,根据单调有界数列必有极限知,数列{x n } 的极限存在.记lim x n = a , 对 x n +1从而 a 2 - a - 6 = 0两边取极限,得 a解得 a = 3 或 a = -2 (舍去,因为 x n > 0 )θ21 41 y 0 0 2π 故所求极限值为 a = 3 .四、(1)计算曲面积分⎰⎰(2x + z )dydz + zdxdy , 其中 S 为有向曲面 z = x 2 + y 2(0 ≤ z ≤ 1) , s其法向量与 z 轴正向的夹角为锐角.【详解 1】 用高斯公式,以 S 表示法向量指向 z 轴负向的有向平面 z = 1(x 2 + y 2 ≤ 1), D 为S 1 在 xOy 平面上的投影区域,则⎰⎰(2x + z ) d yd z + z dxdy = º⎰⎰ (2x + z ) d ydz + zdx dy -⎰⎰ (2x + z ) dyd z + z dxdysS +S 1S 1= -⎰⎰⎰( 2 +1)dV - ⎰⎰ -dxdyΩ D = -3 d θ 1 rdr 2⎡-(-π )⎤dz⎰⎰=- 3π + π2π⎰r 2⎣ ⎦=- .2【详解 2】 用矢量投影法,因为z ' = 2x , z ' = 2 yx于是(2x + z ) dydz + zdxdy =⎡(2x + z )⋅(-z ' ) + z ⎤dxdy⎰⎰⎰⎰ ⎣ x ⎦sS= ⎰⎰(-4x 2 - 2xz + z )dxdyS= ⎰⎰ ⎡⎣-4x 2 - 2x (x 2 + y 2) + x 2 + y 2 ⎤⎦dxdyD= ⎰2πd θ ⎰1(-4r 2 c os 2 θ - 2r 3 c os θ + r 2 )π=- .2【详解 3 】 直接投影法,曲面 S 在 yOz 平面上投影 D yz 对应两个曲面:一是x ≤ z ≤ 1, 其方向指向前侧,因此积分取正号,一是 x =≤ z ≤ 1, 其方向指向后侧,因此积分取负号,再记 D xy 表示 S 在 xOy 平面上的投影区域,则⎩ ∂2 z ) 2 0 五、求级数∑ n - + 2 ⎰⎰(2x + z )dydz + zdxdys= ⎰⎰ (D yz= -4⎰⎰D yz+ z )dyd z + ⎰⎰ (-D yz+ ⎰⎰ (x 2 + y 2 )dxdyD xyz )dy dz + ⎰⎰ (x 2 + y 2 )dxdyD xy112π1 24⎰-1dy ⎰y 2+ ⎰0 d θ ⎰0 r ⋅ rdrπ =- 2 ⎧u = x - 2 y∂2 z∂2 z ∂2 z∂2 z(2)设变换⎨ v = x + ay 可把方程6 ∂x 2 + ∂x ∂y - ∂y 2 = 0 化简为∂u ∂v = 0, 求常数 a .∂z∂z ∂z ∂z ∂z ∂z 【详解】∂x = ∂u + ∂v , ∂y = -2 ∂u + a ∂v ,∂2 z= ∂2 z +∂2 z + ∂2 z∂x 2 ∂2 z ∂u 2 =- 2 ∂u ∂v ∂2 z∂v 2 , ∂2 z ∂2z∂x ∂y 2 ∂u 2 + (a - 2) ∂u ∂v + a ∂v 2 ,∂2 z = ∂y 2 ∂2 z 4 ∂u 2 - 4a ∂2 z ∂u ∂v ∂2 z a ∂v 2. 将上述结果代入原方程,经整理后得(10 + 5a )∂u ∂v+ (6 + a - a 依题意知 a 应满足∂2z = ∂v解之得 6 + a - a 2 = 0, 且10 + 5a ≠ 0,a = 3.∞n =2(n21-1)2n的和.∞n【详解】 令 S ( x ) = ∑ 2n =2 x , 则1=- .2 1x - 1 2 ∞1 ∑ ∞x n1 ⎛ ∞ x n ∞x n ⎫ S ( x ) = ∑ n 2 - = ∑ - ∑ ⎪n =2 1 2 ⎝ n =2 n -1 n =2 n +1 ⎭-1 ∞n +1 = x ∑∞ x n - 1 ∑ x 2 n =2 n -1 2x n =2 n +1= x ∑∞ x n - 1 ⎛ ∑∞n ⎫ x - x .2 n =1 n ⎪ ⎝ n =1 n2 ⎭因为 x n =1 n= - ln (1- x ), 于是有S ( x ) =- x ln (1- x ) + 1 + 1 x + 1ln (1- x )( x < 1, x ≠ 0),2 2 4 2x 1 ⎛ 1 ⎫ ∞ 1 53 令 x = , 得 2S 2⎪ = ∑ 2= - ln 2.⎝ ⎭ n =2 (n -1)2 8 41 x六、设对任意 x > 0, 曲线 y = f ( x ) 的一般表达式.f ( x ) 上点( x , f ( x ))处切线在Y 轴上得截距等于x⎰0f (t )dt , 求【详截】 曲线 y = f ( x ) 上点( x , f ( x ))处切线方程为Y - f ( x ) = f ' ( x )( X - x ) ,令 X = 0 得截距Y = f ( x ) - xf ' ( x )由题意有1⎰ xf (t )dt = f ( x ) - xf ' ( x ),x 0即⎰x f (t )dt = x ⎡ f ( x ) - xf ' ( x )⎤上式对 x 求导,化简得即(xf ' ( x ))'= 0;⎣ ⎦ xf ''' ( x ) + f ' ( x ) = 0积分得因此xf ' ( x ) = C ,f ( x ) = C 1 ln x + C 2 (其中C 1、C 2为任意常数).七、设 f ( x ) 在[0,1]上具有二阶导数,且满足条件常数, c 是(0,1) 内任意一点,证明f ( x ) ≤ a , f '' ( x ) ≤ b 其中 a 、b 都是非负n 2x n1 ⎣⎦ f ' (c ) ≤ 2a + b.2【详解】 对 f ( x ) 在 x = c 处用泰勒公式展开,得f ( x ) = f (c ) + f '(c )( x - c ) + f '' (ξ ) 2!( x - c )2(*)其中ξ = c + θ ( x - c ), 0<θ <1.在(*) 式中令 x = 0, 则有f (0) = f (c ) + f '(c )(0 - c ) +在(*) 式中令 x = 1 ,则有f '' (ξ ) 2!f '' (ξ )(0 - c )22,0<ξ1<c<1,f (1) = f (c ) + f '(c )(1- c ) +(1- c ) 2!,0<ξ2 <1,上述两式相减得f (1) - f (0) = f '(c ) +1 ⎡f ''(ξ)(1 - c )2 - f '' (ξ ) c 2 ⎤2! ⎣于是21⎦f ' (c ) = f (1) - f (0) - 1 ⎡ f '' (ξ )(1 - c )2- f '' (ξ )c 2 ⎤ 2 ⎣ 2 1 ⎦≤ f (1) + f (0) + f '' (ξ ) (1- c )2 + f '' (ξ ) c 2≤ 2a + b ⎡(1- c )2+ c 2 ⎤ .2 又因当c ∈(0,1) 时,有(1- c )2+ c 2 ≤ 1, 故f ' (c ) ≤ 2a + b.2八、设 A = E - ξξ T 其中 E 是 n 阶单位矩阵, ξ 是 n 维非列向量, ξ T 是ξ 的转置,证明:(1) A 2 = A 的充要条件是ξ T ξ = 1;(2) 当ξ T ξ = 1时, A 是不可逆矩阵.【详解】 (1) A 2 = (E - ξξ T )(E - 2ξξ T ) = E - 2ξξ T + ξ (ξ T ξ )ξ T = E - (2 - ξ T ξ )ξξ T ,因此 A 2 = A ⇔ E - (2 - ξ T ξ)ξξ T = E - ξξ T ⇔ (ξ T ξ -1)ξξ T = 01 2 1 22因为ξ≠ 0, 所以ξξT≠ 0故 A2=A 的充要条件为ξTξ= 1;(2)方法一:当ξTξ= 1时,由 A =E -ξξT, 有 Aξ=ξ-ξξTξ=ξ-ξ= 0,因为ξ≠ 0, 故Ax = 0 有非零解,因此A= 0 ,说明A 不可逆.方法二:当ξTξ= 1,由A2=A ⇔A(E -A)= 0, 即E -A 的每一列均为Ax = 0 的解,因为E -A =ξξT≠ 0, 说明Ax = 0 有非零解,故秩(A)<n ,因此A 不可逆.方法三:用反证法.假设 A 可逆,当ξξT= 1, 有 A2=A于是 A-1A2=A-1A, 即 A =E .这与A =E -ξξT≠E 矛盾,故A 是不可逆矩阵.九、已知二次型f (x , x , x )= 5x 2+ 5x 2+cx 2- 2x x+ 6x x- 6x x 的秩为2.1 2 3 1 2 3 1 2 1 3 2 3(1)求参数c及此二次型对应矩阵的特征值;(2)指出方程f (x1, x2 , x3)= 1表示何种二次曲面.【详解】(1)此二次型对应矩阵为⎡5 -1 3 ⎤A =⎢-1 5 -3⎥.⎢⎥⎢⎣3 -3 c⎥⎦因秩(A)= 2, 故A= 0, 由此解得c = 3, 容易验证,此时A 的秩的确为2.又由λ- 5 1 -3λE - A = 1 λ- 5 3 =λ(λ- 4)(λ- 9),-3 3 λ- 3所求特征值为λ1= 0, λ2= 4, λ3= 9.(2)由特征值可知,f (x1, x2 , x3)= 1表示椭球柱面.十、填空题(1)设工厂A 和工厂B 的产品率分别为1%和2%,现从由A 和B 的产品分别占60%和402 2 2π2π +∞=π2 .%的一批产品中随机抽取一件,发现是次品,则该次品属 A 产品的概率是.3 【答】 .7【详解】 设事件 A ={抽取的产品为工厂 A 生产的}, B ={抽取的产品为工厂 B 生产的},C ={抽取的是次品},则P ( A ) = 0.6, P ( B ) = 0.4, P (C | A ) = 0.01, P (C | B ) = 0.02,由逆概率公式知P ( A | C ) =P ( AC ) =P ( A )⋅ P (C | A ) P (C ) P ( A ) P (C | A ) + P ( B ) P (C | B )=0.6 ⨯ 0.010.6 ⨯ 0.01+ 0.4 ⨯ 0.02 = 3 . 7⎛ ⎛ ⎫2 ⎫(2)设ξ ,η 是两个相互独立且均服从正态分布 N 0, ⎪ ⎪的随机变量,则随机变量 ξ -η的数学期望 E( ξ -η ) =.⎝ ⎝ ⎭ ⎭【答】.【详解】 因为ξ ,η 是两个相互独立且均服从正态分布 N ⎛ 0,1 ⎫, 2 ⎪ ⎝ ⎭故 Z = ξ -η 也服从正态分布,且 E (Z ) = E ξ - E η = 0, D (Z ) = D ξ + D η = 1 + 1= 1,2 2即 Z ~ N (0,1).于是E ( ξ -η ) = E Z = ⎰ z 1-x22 dz -∞2 +∞ - x 2⎛ z 2 ⎫ = ⎰ e 2 d ⎪0 ⎝ 2 ⎭十一、设 ξ ,η 是两个相互独立且服从同一分布的两个随机变量,已知 ξ 的分布律为P {ξ = i } = 1, i = 1, 2, 3, 又设 X = max (ξ ,η ),Y = min (ξ ,η ).32π(1)写出二维随机变量(X ,Y )的分布律;(2)求随机变量 X 的数学期望 E (X ).P{X <Y}= 0 即【详解】(1 )由X = max (ξ,η),Y = min (ξ,η). 的定义知,P{X = 1,Y = 2}=P (X = 1,Y = 3)=P (X = 2,Y = 3)= 0,且进已步有P{X = 1,Y = 1}=P{ξ= 1,η= 1}=P{ξ= 1}⋅P{η= 1}=1 ,9P{X = 2,Y = 2}=P{ξ= 2,η= 2}=P{ξ= 2}⋅P{η= 2}=1 ,9P{X = 3,Y = 3}=P{ξ= 3,η= 3}=P{ξ= 3}⋅P{η= 3}=1 ,9P{X = 2,Y = 1}=P{ξ= 1,η= 2}+P{ξ= 2,η= 1}=1 +1 =2 ,9 9 9P{X = 3,Y = 2}=P{ξ= 2,η= 3}+P{ξ= 3,η= 2}=1 +1 =2 ,9 9 9P{X = 3,Y = 1}= 1-7 =2 ;9 9故所求的分布律为(2)X 的边缘分布为故X 的数学期望为E (X )=1 ⨯1+3 ⨯ 2 +5 ⨯ 3 =22 .9 9 9 9。
1996考研数一真题答案及详细解析

1996年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.)(1)【答案】ln 2【解析】这是1∞型未定式求极限.方法一:3323lim()lim(1)x a axx a xax x x a a x a x a-⋅-→∞→∞+=+--,令3at x a=-,则当x →∞时,0t →,则1303lim(1)lim(1)x aa t x t a t e x a -→∞→+=+=-,即33lim lim 312lim()x x ax ax a x a x x a ee e x a →∞→∞-→∞+===-.由题设有38ae=,得1ln 8ln 23a ==.方法二:2223()2221lim 112lim lim lim 11lim 1x xa xax a x ax x ax x x a a x a a a x a e x x x e a x a e a a x x x ⋅→∞-→∞→∞→∞-⋅-→∞⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪+⎛⎫⎝⎭⎝⎭===== ⎪ ⎪-⎝⎭⎛⎫ ⎪-⎛⎫- ⎪-⎝⎭ ⎪⎝⎭⎝⎭,由题设有38ae=,得1ln 8ln 23a ==.(2)【答案】2230x y z +-=【解析】方法一:所求平面过原点O 与0(6,3,2)M -,其法向量{}06,3,2n OM ⊥=-;平面垂直于已知平面428x y z -+=,它们的法向量也互相垂直:{}04,1,2n n ⊥=-;由此,00//632446412i j kn OM n i j k ⨯=-=--+- .取223n i j k =+-,则所求的平面方程为2230x y z +-=.方法二:所求平面即为过原点,与两个不共线的向量(一个是从原点到点0(6,3,2)M -的向量{}06,3,2OM =- ,另一是平面428x y z -+=的法向量{}04,1,2n =-)平行的平面,即6320412xy z-=-,即2230x y z +-=.(3)【答案】12(cos sin 1)xe c x c x ++【解析】微分方程22xy y y e '''-+=所对应的齐次微分方程的特征方程为2220r r -+=,解之得1,21r i =±.故对应齐次微分方程的解为12(cos sin )x y e C x C x =+.由于非齐次项,1xe αα=不是特征根,设所给非齐次方程的特解为*()xy x ae =,代入22x y y y e '''-+=得1a =(也不难直接看出*()x y x e =),故所求通解为1212(cos sin )(cos sin 1)x x x y e C x C x e e C x C x =++=++.【相关知识点】①二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.②二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ;分三种情况:(1)两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2)两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3)一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.③对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),xm f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()kxm y x x Q x eλ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x mm y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1.(4)【答案】12【分析】先求方向l 的方向余弦和,,u u ux y z ∂∂∂∂∂∂,然后按方向导数的计算公式cos cos cos u u u u l x y zαβγ∂∂∂∂=++∂∂∂∂求出方向导数.【解析】因为l 与AB 同向,为求l的方向余弦,将{}{}31,20,212,2,1AB =----=- 单位化,即得{}{}12,2,1cos ,cos ,cos 3||AB l AB αβγ==-=.将函数ln(u x =+分别对,,x y z求偏导数得12Au x ∂==∂,0Au y ∂==∂,12Au z∂==∂,所以cos cos cos AA AA u u u ulx y z αβγ∂∂∂∂=++∂∂∂∂1221110()233232=⨯+⨯-+⨯=.(5)【答案】2【解析】因为10220100103B ==≠-,所以矩阵B 可逆,故()()2r AB r A ==.【相关知识点】()min((),())r AB r A r B ≤.若A 可逆,则1()()()[()]()r AB r B r EB r A AB r AB -≤==≤.从而()()r AB r B =,即可逆矩阵与矩阵相乘不改变矩阵的秩.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)【答案】(D)【解析】由于存在函数(,)u x y ,使得22()()()x ay dx ydydu x y x y +=+++,由可微与可偏导的关系,知2()u x ay x x y ∂+=∂+,2()u yy x y ∂=∂+,分别对,y x 求偏导数,得2243()()2()(2)()()u a x y x ay x y a x ayx y x y x y ∂+-+⋅+--==∂∂++,232()u yy x x y ∂-=∂∂+.由于2u y x ∂∂∂与2u x y ∂∂∂连续,所以22u u y x x y∂∂=∂∂∂∂,即33(2)2()()a x ay yx y x y ---=++2a ⇒=,故应选(D).(2)【答案】(B)【解析】因为()f x 有二阶连续导数,且0()lim10,||x f x x →''=>所以由函数极限的局部保号性可知,在0x =的空心领域内有()0||f x x ''>,即()0f x ''>,所以()f x '为单调递增.又由(0)0f '=,()f x '在0x =由负变正,由极值的第一充分条件,0x =是()f x 的极小值点,即(0)f 是()f x 的极小值.应选(B).【相关知识点】极限的局部保号性:设0lim ().x x f x A →=若0A >(或0A <)⇒0,δ∃>当00x x δ<-<时,()0f x >(或()0f x <).(3)【答案】(A)【解析】若正项级数1nn a∞=∑收敛,则21nn a∞=∑也收敛,且当n →+∞时,有tanlim (tan lim n n n n n nλλλλλ→+∞→+∞=⋅=.用比较判别法的极限形式,有22tanlim0n n nn a n a λλ→+∞=>.因为21n n a ∞=∑收敛,所以2lim tann x n a nλ→+∞也收敛,所以原级数绝对收敛,应选(A).【相关知识点】正项级数比较判别法的极限形式:设1nn u∞=∑和1nn v∞=∑都是正项级数,且lim,nn nv A u →∞=则(1)当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2)当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3)当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.(4)【答案】(C)【解析】用洛必达法则.由题可知220()()()xxF x xf t dt t f t dt =-⎰⎰,对该积分上限函数求导数,得220()2()()()2()x xF x x f t dt x f x x f x x f t dt '=+-=⎰⎰,所以1002()2()()limlim limxxk kk x x x x f t dtf t dtF x xxx -→→→'==⎰⎰23002()2()limlim(1)(1)(2)k k x x f x f x k x k k x --→→'---洛洛.因为()F x '与kx 是同阶无穷小,且(0)0f '≠,所以302()lim(1)(2)k x f x k k x -→'--为常数,即3k =时有300()2()limlim(0)0(1)(2)kk x x F x f x f x k k x -→→'''==≠--,故应选(C).【相关知识点】设在同一个极限过程中,(),()x x αβ为无穷小且存在极限()lim()x l x αβ=,(1)若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小;(2)若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ ;(3)若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=.若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较.(5)【答案】(D)【解析】可直接展开计算,22221331334400000000a b a b D a b a b b a a b =-22221414232314143333()()a b a b a a b b a a b b a a b b b a b a =-=--,所以选(D).三、(本题共2小题,每小题5分,满分10分.)(1)【解析】由极坐标系下的弧微分公式得ds a θθ==⋅2cos2a a d θθθ==.由于()(1cos )r r a θθ==+以2π为周期,因而θ的范围是[0,2]θπ∈.又由于()()r r θθ=-,心形线关于极轴对称.由对称性,24cos 8sin 822s ds a d a a πππθθθ⎡⎤====⎢⎥⎣⎦⎰⎰.xyz1O xyOxyD yOz 12z y =yzD (2)【解析】用单调有界准则.由题设显然有0n x >,数列{}nx 有下界.证明n x单调减:用归纳法.214x x ==<;设1nn x x -<,则1n n x x +=<.由此,n x 单调减.由单调有界准则,lim n n x →+∞存在.设lim ,(0)n n xa a →+∞=≥,在恒等式1nx +=两边取极限,即1lim lim n n n x a +→+∞→+∞==,解之得3a =(2a =-舍去).【相关知识点】1.单调有界准则:单调有界数列必有极限.2.收敛数列的保号性推论:如果数列{}n x 从某项起有0n x ≥(或0n x ≤),且lim n n x a →∞=,那么0a ≥(或0a ≤).四、(本题共2小题,每小题6分,满分12分.)(1)【分析一】见下图所示,S 在xOy 平面与yOz 平面上的投影均易求出,分别为22:1xy D x y +≤;2:11,1yz D y y z -≤≤≤≤,或01,z y ≤≤≤≤.图1求Szdxdy ⎰⎰,自然投影到xOy 平面上.求(2)Sx z dydz +⎰⎰时,若投影到xOy 平面上,被积函数较简单且可利用对称性.【分析二】令(,,)2,(,,)0,(,,)P x y z x z Q x y z R x y z z =+==,则SI Pdydz Rdxdy =+⎰⎰.这里,213P Q R x y z∂∂∂++=+=∂∂∂,若用高斯公式求曲面积分I ,则较简单.因S 不是封闭曲面,故要添加辅助曲面.【解析】方法一:均投影到平面xOy 上,则22(2)[(2)()()]xySD zI x z dydz zdxdy x z x y dxdy x∂=++=+-++∂⎰⎰⎰⎰,其中22z x y =+,22:1xy D x y +≤.把2zx x∂=∂代入,得2222242()()xyxyxyD D D I x dxdy x x y dxdy x y dxdy =--+++⎰⎰⎰⎰⎰⎰,由对称性得222()0xyD x x y dxdy +=⎰⎰,22242()xyxyD D x dxdy x y dxdy =+⎰⎰⎰⎰,所以22()xyD I x y dxdy =-+⎰⎰.利用极坐标变换有121340001242I d r dr r ππθπ⎡⎤=-=-=-⎢⎥⎣⎦⎰⎰.方法二:分别投影到yOz 平面与xOy 平面.投影到yOz 平面时S要分为前半部分1:S x =2:S x =(见图1),则12(2)(2)S S SI x z dydz x z dydz zdxdy =++++⎰⎰⎰⎰⎰⎰.由题设,对1S 法向量与x 轴成钝角,而对2S 法向量与x 轴成锐角.将I化成二重积分得2222)()()4().yzyzxyyzxyD D D D D I z dydz z dydz x y dxdyx y dxdy =-+-++=-++⎰⎰⎰⎰⎰⎰⎰⎰2213111221131242200sin 2()344(1)cos 3343,34224yzz y D z y y tdy z y dyy dy tdt πππ=--====-=-=⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰或21101.24yzD dz dz ππ===⎰⎰⎰⎰(这里的圆面积的一半.)22()2xyD x y dxdy π+=⎰⎰(同方法一).因此,4.422I πππ=-⋅+=-方法三:添加辅助面221:1(1)S z x y =+≤,法方向朝下,则11(2)1S S Dx z dydz zdxdy dxdy dxdy π++==-=-⎰⎰⎰⎰⎰⎰,其中D 是1S 在平面xy 的投影区域:221x y +≤.S 与1S 即22z x y =+与1z =围成区域Ω,S 与1S 的法向量指向Ω内部,所以在Ω上满足高斯公式的条件,所以1(2)3S S x z dydz zdxdy dVΩ++=-⎰⎰⎰⎰⎰ 11()3332D z dz dxdy zdz ππ=-=-=-⎰⎰⎰⎰,其中,()D z 是圆域:22x y z +≤,面积为z π.因此,133(2)()222S I x z dydz zdxdy ππππ=--++=---=-⎰⎰.(2)【解析】由多元复合函数求导法则,得z z u z v z zx u x v x u v ∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂,2z z u z v z z a y u y v y u v∂∂∂∂∂∂∂=+=-+∂∂∂∂∂∂∂,所以22222222((z z z z u z v z v z ux x u x v u x u v x v x v u x∂∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂222222z z zu u v v ∂∂∂=++∂∂∂∂,2222222()()z z z z u z v z v z u x y y u y v u y u v y v y v u y∂∂∂∂∂∂∂∂∂∂∂∂∂=+=+⋅+⋅⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂222222(2)z z za a u u v v ∂∂∂=-+-+∂∂∂∂,222222222222222()()2()()44.z z z a y y u y vz u z v z v z ua u y u v y v y v u yz z z a a u u v v∂∂∂∂∂=-+∂∂∂∂∂∂∂∂∂∂∂∂∂=-⋅+⋅++⋅∂∂∂∂∂∂∂∂∂∂∂∂∂=-+∂∂∂∂代入2222260z z zx x y y ∂∂∂+-=∂∂∂∂,并整理得2222222226(105)(6)0z z z z z a a a x x y y u v v∂∂∂∂∂+-=+++-=∂∂∂∂∂∂∂.于是,令260a a +-=得3a =或2a =-.2a =-时,1050a +=,故舍去,3a =时,1050a +≠,因此仅当3a =时化简为20zu v∂=∂∂.【相关知识点】多元复合函数求导法则:若(,)u u x y =和(,)v v x y =在点(,)x y 处偏导数存在,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数[(,),(,)]z f u x y v x y =在点(,)x y 处的偏导数存在,且,z f u f v z f u f vx u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂.五、(本题满分7分)【解析】先将级数分解,212211222131111)(1)2211111111.212122n n n n n n n n n n n n A n n n n n n n ∞∞+==∞∞∞∞+++======---+=⋅-⋅=--+⋅⋅∑∑∑∑∑∑令122131122n nn n A A nn ∞∞+=== =⋅⋅∑∑,则12A A A =-.由熟知ln(1)x +幂级数展开式,即11(1)ln(1)(11)n nn x x x n -∞=-+=-<≤∑,得1121111(1)1111()ln(1)ln 2242424n n n n n A n n -∞∞+==-==--=--=⋅∑∑,12331211(1)1(22(1)11111115(()ln(1)ln 2,22222288n nn n n n n n A n n n -∞∞==-∞=-==--⋅-=-----=----=-∑∑∑因此,1253ln 284A A A =-=-.六、(本题满分7分)【解析】曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-.令0X =得y 轴上的截距()()Y f x f x x '=-.由题意,1()()()xf t dt f x f x x x ' =-⎰.为消去积分,两边乘以x ,得20()()()xf t dt xf x f x x ' =-⎰,(*)将恒等式两边对x 求导,得2()()()2()()f x f x xf x xf x x f x ''''=+--,即()()0xf x f x '''+=.在(*)式中令0x =得00=自然成立.故不必再加附加条件.就是说()f x 是微分方程0xy y '''+=的通解.下面求解微分方程0xy y '''+=.方法一:()100xy y xy xy C ''''''+=⇒=⇒=,因为0x >,所以1C y x'=,两边积分得12()ln y f x C x C ==+.方法二:令()y P x '=,则y P '''=,解0xP P '+=得1C y P x'==.再积分得12()ln y f x C x C ==+.七、(本题满分8分)【解析】由于问题涉及到,f f '与f ''的关系,自然应当利用泰勒公式,而且应在点c 展开:2()()()()()()2!f f x f c f x x c x c ξ'''=+-+-,ξ在c 与x 之间.分别取0,1x =得20()(0)()()(0)(0)2!f f f c f c c c ξ'''=+-+-,0ξ在c 与0之间,21()(1)()()(1)(1)2!f f f c f c c c ξ'''=+-+-,1ξ在c 与1之间,两式相减得22101(1)(0)()[()(1)()]2!f f f c f c f c ξξ'''''-=+--,于是22101()(1)(0)()(1)()]2!f c f f f c f c ξξ'''''=----.由此221011()(1)(0)()(1)()2!2!f c f f f c f c ξξ'''''≤++-+2212[(1)]222b a b c c a ≤+-+<+.八、(本题满分6分)【解析】(1)因为TA E ξξ=-,Tξξ为数,Tξξ为n 阶矩阵,所以2()()2()(2)T T T T T T T A E E E E ξξξξξξξξξξξξξξ=--=-+=--,因此,2(2)(1)0T T T T T A A E E ξξξξξξξξξξ=⇔--=-⇔-=因为ξ是非零列向量,所以0Tξξ≠,故210,TA A ξξ=⇔-=即1Tξξ=.(2)反证法.当1Tξξ=时,由(1)知2A A =,若A 可逆,则121A A A A A E --===.与已知T A E E ξξ=-≠矛盾,故A 是不可逆矩阵.九、(本题满分8分)【解析】(1)此二次型对应的矩阵为51315333A c -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭.因为二次型秩()()2r f r A ==,由513440400153153163333336A c c c -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--→--→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭可得3c =.再由A 的特征多项式513||153(4)(9)333E A λλλλλλλ---=-=----求得二次型矩阵的特征值为0,4,9.(2)因为二次型经正交变换可化为222349y y +,故123(,,)1f x x x =,即2223491y y +=.表示椭圆柱面.【相关知识点】主轴定理:对于任一个n 元二次型12(,,,)T n f x x x x Ax = ,存在正交变换x Qy =(Q 为n 阶正交矩阵),使得2221122()T T T n n x Ax y Q AQ y y y y λλλ==+++ ,其中12,,,n λλλ 是实对称矩阵A 的n 个特征值,Q 的n 个列向量12,,,n ααα 是A 对应于特征值12,,,n λλλ 的标准正交特征向量.十、填空题(本题共2小题,每小题3分,满分6分.)(1)【答案】37【解析】设事件C =“抽取的产品是次品”,事件D =“抽取的产品是工厂A 生产的”,则事件D 表示“抽取的产品是工厂B 生产的”,依题意有()0.60,()0.40,(|)0.01,(|)0.02P D P D P C D P C D ====.应用贝叶斯公式可以求得条件概率(|)P D C :()(|)0.60.013(|)0.60.010.40.027()(|)()(|)P D P C D P D C P D P C D P D P C D ⨯===⨯+⨯+.【相关知识点】贝叶斯公式:设试验E 的样本空间为S .A 为E 的事件,12,,,n B B B 为S 的一个划分,且()0,()0(1,2,,)i P A P B i n >>= ,则1()(|)(|)1,2,,.()(|)i i i njjj P B P A B P B A i n P B P A B ===∑ (*)(*)式称为贝叶斯公式.【解析】由于ξ与η相互独立且均服从正态分布2)N ,因此它们的线性函数U ξη=-服从正态分布,且()0,EU E E E ξηξη=-=-=()11122DU D D D ξηξη=-=+=+=,所以有(0,1)U N .代入正态分布的概率密度公式,有22()u f u du +∞--∞=⎰.应用随机变量函数的期望公式有22(||)(||)||u E E U u du ξη+∞--∞-= =⎰222u u +∞-=⎰由凑微分法,有222(||)2()2u u E d ξη+∞--=--⎰22u +∞-==.【相关知识点】对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.十一、(本题满分6分.)【解析】易见(,)X Y 的可能取值为(1,1),(2,1),(2,2),(3,1),(3,2),(3,3).依题意{}X Y <=∅,故{}0P X Y <=,即{}{}{}1,21,32,30P X Y P X Y P X Y =========,{}{}1,1max(,)1,min(,)1P X Y P ξηξη====={}{}{}11,1119P P P ξηξη=======.类似地可以计算出所有ij p 的值列于下表中,得到随机变量(,)X Y 的联合分布律:XY123119002291903292919(2)将表中各行元素相加求出X 的边缘分布123135999X ⎡⎤⎢⎥⎢⎥⎣⎦,由离散型随机变量数学期望计算公式可得135221239999EX =⋅+⋅+⋅=.【相关知识点】1.离散型随机变量的边缘分布计算公式:二维离散型随机变量(,)X Y 关于X 与Y 的边缘概率分布或边缘分布律分别定义为:{}{},,1,2,i i i j ij jjp P X x P X x Y y p i ⋅=======∑∑{}{},,1,2,j j i j ij iip P Y y P X x Y y p j ⋅=======∑∑它们分别为联合分布律表格中第i 行与第j 列诸元素之和.2.离散型随机变量数学期望计算公式:{}1()nkk k E X xP X x ==⋅=∑.。
1996年考研数学三真题及全面解析

1996年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) 设方程yx y =确定y 是x 的函数,则dy =___________. (2) 设()arcsin x f x dx x C =+⎰,则1()dx f x =⎰___________.. (3) 设()00,x y 是抛物线2y ax bx c =++上的一点,若在该点的切线过原点,则系数应满足的关系是___________. (4) 设123222212311111231111n nn n n n n a a a a A a a a a a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,123n x x X x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1111B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 其中(;,1,2,,)i j a a i j i j n ≠≠=.则线性方程组T A X B =的解是___________.(5) 设由来自正态总体2~(,0.9)X N μ容量为9的简单随机样本,得样本均值5X =,则未知参数μ的置信度为0.95的置信区间为___________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 累次积分cos 20(cos ,sin )d f r r rdr πθθθθ⎰⎰可以写成 ( )(A) 10(,)dy f x y dx ⎰(B) 10(,)dy f x y dx ⎰ (C)11(,)dx f x y dy ⎰⎰(D) 10(,)dx f x y dy ⎰(2) 下述各选项正确的是 ( ) (A) 若21nn u∞=∑和21nn v∞=∑都收敛,则21()nn n uv ∞=+∑收敛(B)1n nn u v∞=∑收敛,则21nn u∞=∑与21nn v∞=∑都收敛(C) 若正项级数1nn u∞=∑发散,则1n u n≥(D) 若级数1nn u∞=∑收敛,且(1,2,)n n u v n ≥=,则级数1n n v ∞=∑也收敛(3) 设n 阶矩阵A 非奇异(2n ≥),A *是矩阵A 的伴随矩阵,则 ( ) (A) 1()n A A A -**= (B) 1()n A A A +**= (C) 2()n A AA -**= (D) 2()n A AA +**=(4) 设有任意两个n 维向量组1,,m αα和1,,m ββ,若存在两组不全为零的数1,,m λλ和1,,m k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-=,则( )(A) 1,,m αα和1,,m ββ都线性相关 (B) 1,,m αα和1,,m ββ都线性无关(C) 1111,,,,,m m m m αβαβαβαβ++--线性无关 (D) 1111,,,,,m m m m αβαβαβαβ++--线性相关(5) 已知0()1P B <<且()1212[]()()P A A B P A B P A B +=+,则下列选项成立的是( ) (A) ()1212[]()()P A A B P A B P A B +=+ (B) ()1212()()P A B A B P A B P A B +=+ (C) ()1212()()P A A P A B P A B +=+ (D) ()()1122()()()P B P A P B A P A P B A =+三、(本题满分6分)设(),0,()0,0,xg x e x f x xx -⎧-≠⎪=⎨⎪=⎩其中()g x 有二阶连续导数,且(0)1,(0)1g g '==-. (1)求()f x ';(2)讨论()f x '在(,)-∞+∞上的连续性.四、(本题满分6分)设函数()z f u =,方程()()xyu u p t dt ϕ=+⎰确定u 是,x y 的函数,其中(),()f u u ϕ可微;()p t ,()u ϕ'连续,且()1u ϕ'≠.求()()z z p y p x x y∂∂+∂∂.五、(本题满分6分)计算2(1)xx xe dx e -+∞-+⎰.六、(本题满分5分)设()f x 在区间[0,1]上可微,且满足条件120(1)2()f xf x dx =⎰.试证:存在(0,1)ξ∈使()()0.f f ξξξ'+=七、(本题满分6分)设某种商品的单价为p 时,售出的商品数量Q 可以表示成aQ c p b=-+,其中a b 、、 c 均为正数,且a bc >.(1) 求p 在何范围变化时,使相应销售额增加或减少.(2) 要使销售额最大,商品单价p 应取何值?最大销售额是多少?八、(本题满分6分)求微分方程dy dx =的通解.九、(本题满分8分)设矩阵010010000010012A y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. (1) 已知A 的一个特征值为3,试求y ; (2) 求矩阵P ,使()()TAP AP 为对角矩阵.十、(本题满分8分)设向量12,,,t ααα是齐次线性方程组0AX =的一个基础解系,向量β不是方程组0AX =的解,即0A β≠.试证明:向量组12,,,,t ββαβαβα+++线性无关.十一、(本题满分7分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元;发生一次故障仍可获得利润5万元;发生两次故障所获利润0元;发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?十二、(本题满分6分)考虑一元二次方程20x Bx C ++=,其中B C 、分别是将一枚色子(骰子)接连掷两次先后出现的点数.求该方程有实根的概率p 和有重根的概率q .十三、(本题满分6分)假设12,,,n X X X 是来自总体X 的简单随机样本;已知(1,2,3,4)k k EX a k ==.证明:当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.1996年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.) (1)【答案】()1ln dxx y +【解析】方法1:方程yx y =两边取对数得ln ln ln yx y y y ==,再两边求微分,()()11ln 1ln 1dx y dy dy dx x x y =+⇒=+()()ln 10x y +≠. 方法2:把yx y =变形得ln y yx e =,然后两边求微分得()()()ln ln 1ln 1ln y y y dx e d y y y y dy x y dy ==+=+,由此可得 ()1.1ln dy dx x y =+(2)【答案】C【解析】由()arcsin x f x dx x C =+⎰,两边求导数有()1()arcsin ()xf x x f x '==⇒=于是有1()dx f x ⎰212==⎰ ()2112x =--C =.(3)【答案】0c a≥(或2ax c =),b 任意 【解析】对2y ax bx c =++两边求导得()0022y ax b,y x ax b,''=+=+ 所以过()00x ,y 的切线方程为()()0002y y ax b x x ,-=+-即()()()200002y ax bx c ax b x x .-++=+-又题设知切线过原点()00,,把0x y ==代入上式,得2200002ax bx c ax bx ,---=--即20ax c.=由于系数0a ≠,所以,系数应满足的关系为0c a≥(或2ax c =),b 任意. (4)【答案】()1000T,,,【解析】因为A 是范德蒙行列式,由i j a a ≠知()0ijA a a =-≠∏.根据解与系数矩阵秩的关系,所以方程组T A X B =有唯一解.根据克莱姆法则,对于2111112122222133332111111111n n n n n nnn x a a a x a a a x a a a x a a a ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 易见 1230n D A ,D D D .=====所以TA XB =的解为12310n x ,x x x =====,即()1000T,,,,.【相关知识点】克莱姆法则:若线性非齐次方程组11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 或简记为 112nij ji j a xb ,i ,,,n ===∑其系数行列式1112121222120n n n n nna a a a a a D a a a =≠,则方程组有唯一解12j j D x ,j ,,,n.D==其中j D 是用常数项12n b ,b ,,b 替换D 中第j 列所成的行列式,即1111111121212212111,j ,j n ,j ,j n j n n,j nn,j nna ab a a a a b a a D a a b a a -+-+-+=.(5)【答案】(4.412,5.588) 【解析】可以用两种方法求解:(1)已知方差220.9σ=,对正态总体的数学期望μ进行估计,可根据 因2(,0.9)XN μ,设有n 个样本,样本均值11ni i X X n ==∑,有20.9(,)XN n μ,将其标准化,~(0,1)XN 得:)1,0(~1N nX μ-由正态分布分为点的定义21P uαα⎫⎪<=-⎬⎪⎭可确定临界值2αu ,进而确定相应的置信区间22(x u x u αα-+.(2)本题是在单个正态总体方差已知条件下,求期望值μ的置信区间问题. 由教材上已经求出的置信区间22x u x u αα⎛-+ ⎝,其中21,(0,1)P U u UN αα⎧⎫<=-⎨⎬⎩⎭,可以直接得出答案.方法1:由题设,95.01=-α,可见.05.0=α查标准正态分布表知分位点.96.12=αu 本题9n =, 5X =,因此,根据 95.0}96.11{=<-nX P μ,有 1.96}0.95P <=,即 {4.412 5.588}0.95P μ<<=,故μ的置信度为0.95的置信区间是(4.412,5.588) .方法2:由题设,95.01=-α,22222{}{}2()10.95,()0.975P U u P u U u u u ααααα<=-<<=Φ-=Φ=查得.96.12=αu20.9σ=,9n =, 5X =代入22(x u x u αα-+得置信区间(4.412,5.588).二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)【答案】(D)【解析】方法1:由题设知,积分区域在极坐标系cos ,sin x r y r θθ==中是(),|0,0cos ,2D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭即是由221124x y ⎛⎫-+= ⎪⎝⎭与x 轴在第一象限所围成的平面图形,如右图.由于D 的最左边点的横坐标是0,最右点的横坐标是1, 下边界方程是0y ,=上边界的方程是y =从而D 的直角坐标表示是(){010D x,y |x ,y ,=≤≤≤≤故(D)正确.方法2:采取逐步淘汰法.由于(A)中二重积分的积分区域的极坐标表示为()1,|0,0sin ,2D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭而(B)中的积分区域是单位圆在第一象限的部分, (C)中的积分区域是正方形(){}0101x,y |x ,y ,≤≤≤≤所以,他们都是不正确的.故应选(D).(2)【答案】(A) 【解析】由于级数21nn u∞=∑和21nn v∞=∑都收敛,可见级数()221nn n uv ∞=+∑收敛.由不等式222n n n nu v u v ≤+及比较判别法知级数12n nn u v∞=∑收敛,从而12n nn u v∞=∑收敛.又因为()2222n n nnn n u v u v u v ,+=++即级数()21n n n u v ∞=+∑收敛,故应选(A).设()21112n n u ,v n ,,n ===,可知(B)不正确. 设()21112n u n ,,n n=-=,可知(C)不正确.设()()11112n nn u ,v n ,,nn--==-=,可知(D)不正确.注:在本题中命题(D)“若级数1nn u∞=∑收敛,且(1,2,)n n u v n ≥=,则级数1n n v ∞=∑也收敛.”不正确,这表明:比较判别法适用于正项级数收敛(或级数绝对收敛)的判别,但对任意项级数一般是不适用的.这是任意项级数与正项级数收敛性判别中的一个根本区别. (3)【答案】(C)【解析】伴随矩阵的基本关系式为AA A A A E **==, 现将A *视为关系式中的矩阵A ,则有()A A A E ****=. 方法一:由1n A A-*=及1()AA A*-=,可得 121()().n n A A A A AA A A--****-=== 故应选(C).方法二:由()A A A E ****=,左乘A 得1()()n AA A AA -***=,即1()()n A E A AA -**=.故应选(C). (4)【答案】(D)【解析】本题考查对向量组线性相关、线性无关概念的理解.若向量组12,,,s γγγ线性无关,即若11220s s x x x γγγ+++=,必有120,0,,0s x x x ===.既然1,,m λλ与1,,m k k 不全为零,由此推不出某向量组线性无关,故应排除(B)、(C).一般情况下,对于1122110,s s s s k k k l l αααββ++++++=不能保证必有11220,s s k k k ααα+++=及110,s s l l ββ++=故(A)不正确.由已知条件,有()()()()1111110m m m m m m k k λαβλαβαβαβ+++++-++-=,又1,,m λλ与1,,m k k 不全为零,故1111,,,,,m m m m αβαβαβαβ++--线性相关.故选(D).(5)【答案】(B) 【解析】依题意()()()()()12121212)(,.()()()()()P A A B P A B P A B P A B A B P A B P A B P B P B P B P B P B +⎡⎤++⎣⎦=+=因()0P B >,故有()()1212)(P A B A B P A B P A B +=+.因此应选(B).注:有些考生错误地选择(D).他们认为(D)是全概率公式,对任何事件B 都成立,但是忽略了全概率公式中要求作为条件的事件12,A A 应满足12()0,()0P A P A >>,且12,A A 是对立事件.【相关知识点】条件概率公式:()(|)()P AB P B A P A =.三、(本题满分6分)【解析】(1) 由于()g x 有二阶连续导数,故当0x ≠时,()f x 也具有二阶连续导数,此时,()f x '可直接计算,且()f x '连续;当0x =时,需用导数的定义求(0)f '.当0x ≠时, 22[()]()()()(1)().x x xx g x e g x e xg x g x x e f x x x ---''+-+-++'== 当0x =时,由导数定义及洛必达法则,有2000()()()(0)1(0)lim lim lim 222x x x x x x g x e g x e g x e g f x x ---→→→'''''-+--'==洛洛. 所以 2()()(1),0,()(0)1,0.2xxg x g x x e x x f x g x -'⎧-++≠⎪⎪'=⎨''-⎪=⎪⎩(2) ()f x '在0x =点的连续性要用定义来判定.因为在0x =处,有200()()(1)lim ()lim xx x xg x g x x e f x x -→→'-++'=0()()()(1)lim 2x xx g x xg x g x e x e x --→''''+-+-+= 0()(0)1lim(0)22x x g x e g f -→''''--'===. 而()f x '在0x ≠处是连续函数,所以()f x '在(,)-∞+∞上为连续函数.四、(本题满分6分) 【解析】由()z f u =可得(),()z u z u f u f u x x y y∂∂∂∂''==∂∂∂∂. 在方程()()xyu u p t dt ϕ=+⎰两边分别对,x y 求偏导数,得()(),()().u u u u u p x u p y x x y yϕϕ∂∂∂∂''=+=-∂∂∂∂ 所以()(),1()1()u p x u p y x u y u ϕϕ∂∂-==''∂-∂-. 于是 ()()()()()()()01()1()z z p x p y p x p y p y p x f u x y u u ϕϕ⎡⎤∂∂'+=-=⎢⎥''∂∂--⎣⎦.五、(本题满分6分)【分析】题的被积函数是幂函数与指数函数两类不同的函数相乘,应该用分部积分法. 【解析】方法1:因为21(1)111x x x x x xe x dxdx xd e e e e-----=-++++⎰⎰⎰分部积分 1(1)1111ln(1),1x xx x x x xx x e x dx d e e e e e x e C e---=-=-+++++=-+++⎰⎰所以20lim ln(1)ln 2.(1)1x x x x x x xe xe dx e e e -+∞-→+∞⎡⎤=-++⎢⎥++⎣⎦⎰而 lim ln(1)lim ln (1)11x x x x xxx x x xe xe e e e e e -→+∞→+∞⎡⎤⎧⎫⎡⎤-+=-+⎨⎬⎢⎥⎣⎦++⎣⎦⎩⎭lim ln(1)1x x xx xe x e e -→+∞⎧⎫=--+⎨⎬+⎩⎭lim 001xx xe →+∞-=-=+,故原式ln 2=. 方法2:220001(1)(1)1x x x x x xe xe dx dx xd e e e-+∞+∞+∞-==-+++⎰⎰⎰0000011111(1)ln(1)ln 2.1xxx x xx x xx dx dx e dx e e e e d e e e +∞-+∞+∞+∞-+∞+∞---=-+==++++=-+=-+=+⎰⎰⎰⎰六、(本题满分5分)【分析】由结论可知,若令()()x xf x ϕ=,则()()()x f x xf x ϕ''=+.因此,只需证明()x ϕ在[0,1]内某一区间上满足罗尔定理的条件.【解析】令()()x xf x ϕ=,由积分中值定理可知,存在1(0,)2η∈,使112201()()()2xf x dx x dx ϕϕη==⎰⎰,由已知条件,有1201(1)2()2()(),2f xf x dx ϕηϕη==⋅=⎰于是(1)(1)(),f ϕϕη==且()x ϕ在(,1)η上可导,故由罗尔定理可知,存在(,1)(0,1),ξη∈⊂使得()0,ϕξ'=即()()0.f f ξξξ'+=【相关知识点】1.积分中值定理:如果函数()f x 在积分区间[ ,]a b 上连续,则在[ ,]a b 上至少存在一个点ξ,使下式成立:()()()()baf x dx f b a a b ξξ=-≤≤⎰.这个公式叫做积分中值公式. 2.罗尔定理:如果函数()f x 满足(1)在闭区间[ ,]a b 上连续; (2)在开区间()a,b 内可导;(3)在区间端点处的函数值相等,即()()f a f b =, 那么在()a,b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.七、(本题满分6分)【分析】利用函数的单调性的判定,如果在x 的某个区间上导函数()0f x '≥,则函数()f x 单调递增,反之递减.【解析】(1)设售出商品的销售额为R ,则()()22(),().ab c p b aR pQ p c R p p b p b -+'==-=++ 令0,R '=得00p b ==>.当0p <<时,0R '>,所以随单价p 的增加,相应销售额R 也将增加.当p >时,有0R '<,所以随单价p 的增加,相应销售额R 将减少. (2)由(1)可知,当p =时,销售额R 取得最大值,最大销售额为2maxR b c ⎡⎤⎫⎥==⎪⎪⎥⎭⎥⎦.八、(本题满分6分) 【解析】令y z x =,则dy dzz x dx dx=+. 当0x >时,原方程化为dzz xz dx +=-,dx x =-,其通解为1ln(ln z x C =-+ 或C z x+=. 代回原变量,得通解(0)y C x =>.当0x <时,原方程的解与0x >时相同,理由如下: 令t x =-,于是0t >,而且dy dy dx dydt dx dt dx =⋅=-===.从而有通解(0)y C t +=>,即(0)y C x =<.综合得,方程的通解为y C =.注:由于未给定自变量x 的取值范围,因而在本题求解过程中,引入新未知函数yz x=后得x =,从而,应当分别对0x >和0x <求解,在类似的问题中,这一点应当牢记.九、(本题满分8分)【分析】本题的(1)是考查特征值的基本概念,而(2)是把实对称矩阵合同于对角矩阵的问题转化成二次型求标准形的问题,用二次型的理论与方法来处理矩阵中的问题. 【解析】(1)因为3λ=是A 的特征值,故31001300313138(2)0,00311311011y E A y y ------==⋅=-=-----所以2y =.(2)由于TA A =,要2()()T T AP AP P A P ==Λ,而21000010000540045A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是对称矩阵,故可构造二次型2T x A x ,将其化为标准形Ty y Λ.即有2A 与Λ合同.亦即2T P A P =Λ.方法一:配方法.由于 22222123434558T x A x x x x x x x =++++22222212334444222212344816165()55255495(),55x x x x x x x x x x x x x =+++++-=++++那么,令1122334444,,,,5y x y x y x x y x ===+=即经坐标变换1122334410000100,400150001x y x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦有 222221234955Tx A x y y y y =+++. 所以,取 10000100400150001P ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,有 211()()595T T AP AP P A P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 方法二:正交变换法.二次型22222123434558T x A x x x x x x x =++++对应的矩阵为21000010000540045A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 其特征多项式23100010(1)(9)005445E A λλλλλλλ---==------.2A 的特征值12341,1,1,9λλλλ====.由21()0E A x λ-=,即12340000000000044000440x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,和24()0E A x λ-=,即12348000080000044000440x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,分别求得对应1,2,31λ=的线性无关特征向量123(1,0,0,0),(0,1,0,0),(0,0,1,1)T T T ααα===-,和49λ=的特征向量4(0,0,1,1)Tα=.对123,,ααα用施密特正交化方法得123,,βββ,再将4α单位化为4β,其中:1234(1,0,0,0),(0,1,0,0),,T T T Tββββ====. 取正交矩阵[]123410000100000,,,P ββββ⎡⎤⎢⎥⎢⎥⎢==⎢⎢⎢⎢⎣, 则 1221119T P A P P A P -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦, 即 211()()19T T AP AP P A P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦.十、(本题满分8分)【解析】证法1: (定义法)若有一组数12,,,,,t k k k k 使得1122()()()0,t t k k k k ββαβαβα+++++++= (1)则因12,,,t ααα是0AX =的解,知0(1,2,,)i A i t α==,用A 左乘上式的两边,有12()0t k k k k A β++++=. (2) 由于0A β≠,故120t k k k k ++++=. 对(1)重新分组为121122()0t t t k k k k k k k βααα++++++++=. (3)把(2)代入(3)得 11220t t k k k ααα+++=.由于12,,,t ααα是基础解系,它们线性无关,故必有120,0,,0t k k k ===.代入(2)式得:0k =. 因此向量组12,,,,t ββαβαβα+++线性无关.证法2: (用秩)经初等变换向量组的秩不变.把第一列的-1倍分别加至其余各列,有()()1212,,,,,,,,.t t ββαβαβαβααα+++→ 因此 ()()1212,,,,,,,,.t t r r ββαβαβαβααα+++=由于12,,,t ααα是基础解系,它们是线性无关的,秩()12,,,t r t ααα=,又β必不能由12,,,t ααα线性表出(否则0A β=),故()12,,,,1t r t αααβ=+.所以 ()12,,,, 1.t r t ββαβαβα+++=+即向量组12,,,,t ββαβαβα+++线性无关.十一、(本题满分7分)【解析】设一周5个工作日内发生故障的天数为X ,则X 服从二项分布即(5,0.2)B . 由二项分布的概率计算公式,有{}500.80.32768,P X ==={}14510.80.20.4096,P X C ==⋅= {}232520.80.20.2048,P X C ==⋅={}{}{}{}310120.05792.P X P X P X P X ≥=-=-=-==设一周内所获利润Y (万元),则Y 是X 的函数,且10,0,5,1,()0,2,2,3.X X Y f X X X =⎧⎪=⎪==⎨=⎪⎪-≥⎩若若若若由离散型随机变量数学期望计算公式,100.3276850.409620.05792 5.20896EY =⨯+⨯-⨯=(万元).【相关知识点】1.二项分布的概率计算公式:若(,)Y B n p ~,则{}(1)kkn kn P Y k C p p -==-, 0,1,,k n =.2.离散型随机变量数学期望计算公式:{}1()nkk k E X xP X x ==⋅=∑.十二、(本题满分6分)【解析】一枚色子(骰子)接连掷两次,其样本空间中样本点总数为36.设事件1A =“方程有实根”,2A =“方程有重根”,则{}221404B A B C C ⎧⎫=-≥=≤⎨⎬⎩⎭.用列举法求有利于i A 的样本点个数(1,2i =),具体做法见下表:有利于的意思就是使不等式24B C ≤尽可能的成立,则需要B 越大越好,C 越小越好.当B 取遍由古典型概率计算公式得到11246619(),3636p P A ++++===2111().3618q P A +===【相关知识点】古典型概率计算公式:().i i A P A =有利于事件的样本点数样本空间的总数十三、(本题满分6分) 【解析】依题意,12,,,n X X X 独立同分布,可见22212,,,n X X X 也独立同分布.由(1,2,3,4)k k EX a k ==及方差计算公式,有224222242222242211,(),111,().ii i i n nn i n ii i EX a DX EX EX a a EZ EX a DZ DX a a n nn ====-=-====-∑∑ 因此,根据中心极限定理n U =的极限分布是标准正态分布,即当n 充分大时,n Z 近似服从参数为2422(,)a a a n-的正态分布.【相关知识点】1.列维-林德伯格中心极限定理,又称独立同分布的中心极限定理:设随机变量12,,,n X X X 独立同分布,方差存在,记μ与2σ()0σ<<+∞分别是它们相同的期望和方差,则对任意实数x ,恒有1lim )(),ni n i P X n x x μ→∞=⎫-≤=Φ⎬⎭∑ 其中()x Φ是标准正态分布函数.2.方差计算公式:22()()()D X E X E X =-.。
1996考研数学一真题及答案解析

1996年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.) (1) 设2lim()8xx x a x a→∞+=-,则a =___________. (2) 设一平面经过原点及点(6,-3,2),且与平面428x y z -+=垂直,则此平面方程为___________.(3) 微分方程22xy y y e '''-+=的通解为___________.(4) 函数ln(u x =+在(1,0,1)A 点处沿A 点指向(3,2,2)B -点方向的方向导数为___________.(5) 设A 是43⨯矩阵,且A 的秩()2r A =,而102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则()r AB =___________.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 已知2()()x ay dx ydyx y +++为某函数的全微分,则a 等于 ( )(A) -1 (B) 0 (C) 1 (D) 2 (2) 设()f x 有二阶连续导数,且(0)0f '=,0()lim 1||x f x x →''==,则 ( ) (A) (0)f 是()f x 的极大值 (B) (0)f 是()f x 的极小值(C) (0,(0))f 是曲线()y f x =的拐点(D) (0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3) 设0(1,2,)n a n >=,且1n n a ∞=∑收敛,常数(0,)2πλ∈,则级数21(1)(tan )n n n n a n λ∞=-∑( )(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 收敛性与λ有关(4) 设()f x 有连续的导数,(0)0f =,(0)0f '≠,220()()()xF x x t f t dt =-⎰,且当0x →时,()F x '与kx 是同阶无穷小,则k 等于 ( ) (A) 1 (B) 2 (C) 3 (D) 4(5) 四阶行列式112233440000000a b a b b a b a 的值等于 ( ) (A) 12341234a a a a b b b b - (B) 12341234a a a a b b b b +(C) 12123434()()a a b b a a b b -- (D) 23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分.)(1) 求心形线(1cos )r a θ=+的全长,其中0a >是常数. (2) 设110x =,11,2,)n x n +==,试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分.) (1) 计算曲面积分(2)Sx z dydz zdxdy ++⎰⎰,其中S 为有向曲面22(01)z x y z =+≤≤,其法向量与z 轴正向的夹角为锐角.(2) 设变换2,u x y u x ay=-⎧⎨=+⎩可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂化简为20zu v ∂=∂∂,求常数a ,其中(,)z z x y =有二阶连续的偏导数.五、(本题满分7分)求级数221(1)2nn n ∞=-∑的和.六、(本题满分7分)设对任意0x >,曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01()xf t dt x⎰,求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件|()|f x a ≤,|()|f x b ''≤,其中,a b 都是非负常数,c 是(0,1)内任一点,证明|()|22b fc a '≤+.八、(本题满分6分)设T A E ξξ=-,其中E 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置,证明: (1) 2A A =的充要条件是1T ξξ=;(2) 当1Tξξ=时,A 是不可逆矩阵.九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2.(1) 求参数c 及此二次型对应矩阵的特征值; (2) 指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.)(1) 设工厂A 和工厂B 的产品的次品率分别为1%和 2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是__________. (2) 设ξ、η是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量 ξη-的数学期望()E ξη-=__________.十一、(本题满分6分.)设ξ、η是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为{}13P i ξ==, i =1,2,3,又设max(,)X ξη=,min(,)Y ξη=.(1) 写出二维随机变量(,)X Y 的分布律:(2) 求随机变量X 的数学期望()E X .1996年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.) (1)【答案】ln 2【解析】这是1∞型未定式求极限.方法一: 3323lim()lim(1)x a axx a xax x x a a x a x a-⋅-→∞→∞+=+-- ,令3at x a=-,则当x →∞时,0t →, 则 1303lim(1)lim(1)x aa t x t a t e x a -→∞→+=+=-, 即 33lim lim 312lim()x x ax ax a x a x x a e e e x a→∞→∞-→∞+===-. 由题设有38ae=,得1ln8ln 23a ==.方法二:2223()2221lim 112lim lim lim 11lim 1x xa xax a x a x x a x x x a a x a a a x a e x x x e a x a e a a x x x ⋅→∞-→∞→∞→∞-⋅-→∞⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪+⎛⎫⎝⎭⎝⎭===== ⎪ ⎪-⎝⎭⎛⎫ ⎪-⎛⎫- ⎪-⎝⎭ ⎪⎝⎭⎝⎭, 由题设有38ae=,得1ln8ln 23a ==.(2)【答案】2230x y z +-=【解析】方法一:所求平面过原点O 与0(6,3,2)M -,其法向量{}06,3,2n OM ⊥=-;平面垂直于已知平面428x y z -+=,它们的法向量也互相垂直:{}04,1,2n n ⊥=-;由此, 00//632446412ij kn OM n i j k ⨯=-=--+-.取223n i j k =+-,则所求的平面方程为2230x y z +-=.方法二:所求平面即为过原点,与两个不共线的向量(一个是从原点到点0(6,3,2)M -的向量{}06,3,2OM =-,另一是平面428x y z -+=的法向量{}04,1,2n =-)平行的平面,即 6320412xy z-=-,即 2230x y z +-=.(3)【答案】12(cos sin 1)xe c x c x ++【解析】微分方程22xy y y e '''-+=所对应的齐次微分方程的特征方程为2220r r -+=,解之得1,21r i =±.故对应齐次微分方程的解为12(cos sin )x y e C x C x =+.由于非齐次项,1xe αα=不是特征根,设所给非齐次方程的特解为*()xy x ae =,代入22x y y y e '''-+=得1a =(也不难直接看出*()x y x e =),故所求通解为1212(cos sin )(cos sin 1)x x x y e C x C x e e C x C x =++=++.【相关知识点】① 二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.② 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ; 分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.③ 对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),x m f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()k xm y x x Q x e λ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1. (4)【答案】12【分析】先求方向l 的方向余弦和,,u u ux y z∂∂∂∂∂∂,然后按方向导数的计算公式 cos cos cos u u u u l x y zαβγ∂∂∂∂=++∂∂∂∂求出方向导数. 【解析】因为l 与AB 同向,为求l 的方向余弦,将{}{}31,20,212,2,1AB =----=-单位化,即得 {}{}12,2,1cos ,cos ,cos 3||AB l AB αβγ==-=.将函数ln(u x =+分别对,,x y z 求偏导数得12Au x ∂==∂,0Au y ∂==∂,12Au z∂==∂, 所以cos cos cos AA A A u u u ulx y z αβγ∂∂∂∂=++∂∂∂∂ 1221110()233232=⨯+⨯-+⨯=. (5)【答案】2【解析】因为10220100103B ==≠-,所以矩阵B 可逆,故()()2r AB r A ==.【相关知识点】()min((),())r AB r A r B ≤.若A 可逆,则1()()()[()]()r AB r B r EB r A AB r AB -≤==≤.从而()()r AB r B =,即可逆矩阵与矩阵相乘不改变矩阵的秩.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)【答案】(D)【解析】由于存在函数(,)u x y ,使得 22()()()x ay dx ydydu x y x y +=+++, 由可微与可偏导的关系,知2()u x ay x x y ∂+=∂+,2()u yy x y ∂=∂+, 分别对,y x 求偏导数,得2243()()2()(2)()()u a x y x ay x y a x ayx y x y x y ∂+-+⋅+--==∂∂++,232()u yy x x y ∂-=∂∂+. 由于2u y x ∂∂∂与2u x y∂∂∂连续,所以22u uy x x y ∂∂=∂∂∂∂,即 33(2)2()()a x ay y x y x y ---=++2a ⇒=, 故应选(D).(2)【答案】(B)【解析】因为()f x 有二阶连续导数,且0()lim10,||x f x x →''=>所以由函数极限的局部保号性可知,在0x =的空心领域内有()0||f x x ''>,即()0f x ''>,所以()f x '为单调递增. 又由(0)0f '=,()f x '在0x =由负变正,由极值的第一充分条件,0x =是()f x 的极小值点,即(0)f 是()f x 的极小值.应选(B).【相关知识点】极限的局部保号性:设0lim ().x x f x A →=若0A >(或0A <)⇒0,δ∃>当00x x δ<-<时,()0f x >(或()0f x <).(3)【答案】(A) 【解析】若正项级数1nn a∞=∑收敛,则21nn a∞=∑也收敛,且当n →+∞时,有tanlim (tan )limn n n n n nλλλλλ→+∞→+∞=⋅=. 用比较判别法的极限形式,有22tanlim0nn nn a na λλ→+∞=>.因为21n n a ∞=∑收敛,所以2lim tann x n a nλ→+∞也收敛,所以原级数绝对收敛,应选(A).【相关知识点】正项级数比较判别法的极限形式:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则(1) 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2) 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3) 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.(4)【答案】(C)【解析】用洛必达法则.由题可知 220()()()xxF x xf t dt t f t dt =-⎰⎰,对该积分上限函数求导数,得220()2()()()2()x xF x x f t dt x f x x f x x f t dt '=+-=⎰⎰,所以 0010002()2()()lim lim lim x xk k k x x x x f t dt f t dt F x x x x-→→→'==⎰⎰ 23002()2()limlim (1)(1)(2)k k x x f x f x k x k k x --→→'---洛洛.因为()F x '与kx 是同阶无穷小,且(0)0f '≠,所以302()lim(1)(2)k x f x k k x -→'--为常数,即3k =时有 300()2()limlim (0)0(1)(2)k k x x F x f x f x k k x-→→'''==≠--, 故应选(C).【相关知识点】设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (5)【答案】(D)【解析】可直接展开计算,2222133133440000a b a b D a b a b b a a b =- 22221414232314143333()()a b a b a a b b a a b b a a b b b a b a =-=--,所以选(D).三、(本题共2小题,每小题5分,满分10分.) (1)【解析】由极坐标系下的弧微分公式得ds a θθ==2cos2a a d θθθ==.由于()(1cos )r r a θθ==+以2π为周期,因而θ的范围是[0,2]θπ∈. 又由于()()r r θθ=-,心形线关于极轴对称.由对称性,24cos 8sin 822s ds a d a a πππθθθ⎡⎤====⎢⎥⎣⎦⎰⎰.(2)【解析】用单调有界准则.由题设显然有0n x >,数列{}n x 有下界.证明n x 单调减:用归纳法.214x x ==<;设1n n x x -<,则1n n x x +==.由此,n x 单调减.由单调有界准则,lim n n x →+∞存在.设lim ,(0)n n x a a →+∞=≥,在恒等式1n x +两边取极限,即1lim lim n n n x a +→+∞=⇒=解之得3a =(2a =-舍去).【相关知识点】1.单调有界准则:单调有界数列必有极限.2. 收敛数列的保号性推论:如果数列{}n x 从某项起有0n x ≥(或0n x ≤),且lim n n x a →∞=,那么0a ≥(或0a ≤).四、(本题共2小题,每小题6分,满分12分.)(1)【分析一】见下图所示,S 在xOy 平面与yOz 平面上的投影均易求出,分别为22:1xy D x y +≤;2:11,1yz D y y z-≤≤≤≤,或01,z y ≤≤≤≤ 图1求Szdxdy ⎰⎰,自然投影到xOy 平面上.求(2)Sx z dydz +⎰⎰时,若投影到xOy 平面上,被积函数较简单且可利用对称性.【分析二】令(,,)2,(,,)0,(,,)P x y z x z Q x y z R x y z z =+==,则SI Pdydz Rdxdy =+⎰⎰.这里,213P Q R x y z∂∂∂++=+=∂∂∂,若用高斯公式求曲面积分I ,则较简单.因S 不是封闭曲面,故要添加辅助曲面.【解析】方法一:均投影到平面xOy 上,则22(2)[(2)()()]xySD zI x z dydz zdxdy x z x y dxdy x∂=++=+-++∂⎰⎰⎰⎰, 其中22z x y =+,22:1xy D x y +≤.把2zx x∂=∂代入,得 2222242()()xyxyxyD D D I x dxdy x x y dxdy x y dxdy =--+++⎰⎰⎰⎰⎰⎰,由对称性得222()0xyD x x y dxdy +=⎰⎰,22242()xyxyD D x dxdy x y dxdy =+⎰⎰⎰⎰, 所以 22()xyD I x y dxdy =-+⎰⎰. 利用极坐标变换有121340001242I d r dr r ππθπ⎡⎤=-=-=-⎢⎥⎣⎦⎰⎰.方法二:分别投影到yOz 平面与xOy 平面.投影到yOz 平面时S要分为前半部分1:S x =2:S x =(见图1),则12(2)(2)S S SI x z dydz x z dydz zdxdy =++++⎰⎰⎰⎰⎰⎰.由题设,对1S 法向量与x 轴成钝角,而对2S 法向量与x 轴成锐角.将I 化成二重积分得2222)()()4().yzyzxyyzxyD D D D D I z dydz z dydz x y dxdyx y dxdy =-+-++=-++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2213111221131242200sin 2()344(1)cos 3343,34224yzz y D z y y t dy z y dyy dy tdt πππ=--====-=-=⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰或21101.24yzD dz dz ππ===⎰⎰⎰⎰(这里的圆面积的一半.)22()2xyD x y dxdy π+=⎰⎰(同方法一).因此, 4.422I πππ=-⋅+=-方法三:添加辅助面221:1(1)S z x y =+≤,法方向朝下,则11(2)1S S Dx z dydz zdxdy dxdy dxdy π++==-=-⎰⎰⎰⎰⎰⎰,其中D 是1S 在平面xy 的投影区域:221x y +≤.S 与1S 即22z x y =+与1z =围成区域Ω,S 与1S 的法向量指向Ω内部,所以在Ω上满足高斯公式的条件,所以1(2)3S S x z dydz zdxdy dV Ω++=-⎰⎰⎰⎰⎰11()3332D z dz dxdy zdz ππ=-=-=-⎰⎰⎰⎰, 其中,()D z 是圆域:22x y z +≤,面积为z π. 因此,133(2)()222S I x z dydz zdxdy ππππ=--++=---=-⎰⎰. (2)【解析】由多元复合函数求导法则,得z z u z v z zx u x v x u v∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂, 2z z u z v z z a y u y v y u v∂∂∂∂∂∂∂=+=-+∂∂∂∂∂∂∂, 所以 22222222()()z z z z u z v z v z ux x u x v u x u v x v x v u x∂∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ 222222z z zu u v v∂∂∂=++∂∂∂∂, 2222222()()z z z z u z v z v z u x y y u y v u y u v y v y v u y∂∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ 222222(2)z z za a u u v v∂∂∂=-+-+∂∂∂∂,222222222222222()()2()()44.z z z a y y u y vz u z v z v z ua u y u v y v y v u yz z z a a u u v v∂∂∂∂∂=-+∂∂∂∂∂∂∂∂∂∂∂∂∂=-⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂=-+∂∂∂∂代入2222260z z zx x y y∂∂∂+-=∂∂∂∂,并整理得 2222222226(105)(6)0z z z z z a a a x x y y u v v∂∂∂∂∂+-=+++-=∂∂∂∂∂∂∂. 于是,令260a a +-=得3a =或2a =-.2a =-时,1050a +=,故舍去,3a =时,1050a +≠,因此仅当3a =时化简为20zu v∂=∂∂. 【相关知识点】多元复合函数求导法则:若(,)u u x y =和(,)v v x y =在点(,)x y 处偏导数存在,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数[(,),(,)]z f u x y v x y =在点(,)x y 处的偏导数存在,且,z f u f v z f u f v x u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂.五、(本题满分7分) 【解析】先将级数分解,212211222131111()(1)2211111111.212122n n n n n n n n n n n n A n n n n n n n ∞∞+==∞∞∞∞+++======---+=⋅-⋅=--+⋅⋅∑∑∑∑∑∑令 1221311,22n nn n A A nn∞∞+====⋅⋅∑∑, 则 12A A A =-.由熟知ln(1)x +幂级数展开式,即11(1)ln(1)(11)n nn x x x n -∞=-+=-<≤∑,得 1121111(1)1111()ln(1)ln 2242424n n n n n A n n -∞∞+==-==--=--=⋅∑∑,12331211(1)1()22(1)11111115()()ln(1)ln 2,22222288n nn n n n n n A n n n -∞∞==-∞=-==--⋅-=-----=----=-∑∑∑因此, 1253ln 284A A A =-=-.六、(本题满分7分)【解析】曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-.令0X =得y 轴上的截距()()Y f x f x x '=-.由题意,01()()()xf t dt f x f x x x' =-⎰. 为消去积分,两边乘以x ,得 20()()()xf t dt xf x f x x ' =-⎰, (*)将恒等式两边对x 求导,得2()()()2()()f x f x xf x xf x x f x ''''=+--,即 ()()0xf x f x '''+=.在(*)式中令0x =得00=自然成立.故不必再加附加条件.就是说()f x 是微分方程0xy y '''+=的通解.下面求解微分方程0xy y '''+=.方法一:()100xy y xy xy C ''''''+=⇒=⇒=, 因为0x >,所以1C y x'=, 两边积分得 12()ln y f x C x C ==+.方法二:令()y P x '=,则y P '''=,解0xP P '+=得1C y P x'==. 再积分得12()ln y f x C x C ==+.七、(本题满分8分)【解析】由于问题涉及到,f f '与f ''的关系,自然应当利用泰勒公式,而且应在点c 展开:2()()()()()()2!f f x f c f x x c x c ξ'''=+-+-,ξ在c 与x 之间. 分别取0,1x =得20()(0)()()(0)(0)2!f f f c f c c c ξ'''=+-+-,0ξ在c 与0之间, 21()(1)()()(1)(1)2!f f f c f c c c ξ'''=+-+-,1ξ在c 与1之间, 两式相减得 22101(1)(0)()[()(1)()]2!f f f c f c f c ξξ'''''-=+--,于是 22101()(1)(0)[()(1)()]2!f c f f f c f c ξξ'''''=----.由此 221011()(1)(0)()(1)()2!2!f c f f f c f c ξξ'''''≤++-+ 2212[(1)]222b a bc c a ≤+-+<+.八、(本题满分6分)【解析】(1)因为T A E ξξ=-,Tξξ为数,Tξξ为n 阶矩阵,所以2()()2()(2)T T T T T T T A E E E E ξξξξξξξξξξξξξξ=--=-+=--,因此, 2(2)(1)0TTTTTA A E E ξξξξξξξξξξ=⇔--=-⇔-=因为ξ是非零列向量,所以0Tξξ≠,故210,TA A ξξ=⇔-=即1Tξξ=.(2)反证法.当1Tξξ=时,由(1)知2A A =,若A 可逆,则121A A A A A E --===.与已知TA E E ξξ=-≠矛盾,故A 是不可逆矩阵. 九、(本题满分8分)【解析】(1)此二次型对应的矩阵为51315333A c -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭.因为二次型秩 ()()2r f r A ==,由513440400153153163333336A c c c -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭可得3c =.再由A 的特征多项式513||153(4)(9)333E A λλλλλλλ---=-=----求得二次型矩阵的特征值为0,4,9.(2)因为二次型经正交变换可化为222349y y +,故123(,,)1f x x x =,即2223491y y +=.表示椭圆柱面.【相关知识点】主轴定理:对于任一个n 元二次型12(,,,)T n f x x x x Ax =,存在正交变换x Qy =(Q 为n 阶正交矩阵),使得2221122()T T T n n x Ax y Q AQ y y y y λλλ==+++,其中12,,,n λλλ是实对称矩阵A 的n 个特征值,Q 的n 个列向量12,,,n ααα是A 对应于特征值12,,,n λλλ的标准正交特征向量.十、填空题(本题共2小题,每小题3分,满分6分.) (1)【答案】37【解析】设事件C =“抽取的产品是次品”,事件D =“抽取的产品是工厂A 生产的”,则事件D 表示“抽取的产品是工厂B 生产的”,依题意有()0.60,()0.40,(|)0.01,(|)0.02P D P D P C D P C D ====.应用贝叶斯公式可以求得条件概率(|)P D C :()(|)0.60.013(|)0.60.010.40.027()(|)()(|)P D P C D P D C P D P C D P D P C D ⨯===⨯+⨯+.【相关知识点】贝叶斯公式:设试验E 的样本空间为S .A 为E 的事件,12,,,n B B B 为S 的一个划分,且()0,()0(1,2,,)i P A P B i n >>=,则1()(|)(|),1,2,,.()(|)i i i njjj P B P A B P B A i n P B P A B ===∑ (*)(*)式称为贝叶斯公式. (2)【解析】由于ξ与η相互独立且均服从正态分布2)N ,因此它们的线性函数U ξη=-服从正态分布,且()0,EU E E E ξηξη=-=-=()11122DU D D D ξηξη=-=+=+=, 所以有 (0,1)UN .代入正态分布的概率密度公式,有22()u f u du +∞--∞=⎰. 应用随机变量函数的期望公式有22(||)(||)||u E E U u du ξη+∞--∞-= =⎰222u du +∞-=⎰由凑微分法,有222(||)2()2u uE d ξη+∞--=--⎰22u +∞-==【相关知识点】对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++, 22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.十一、(本题满分6分.)【解析】易见(,)X Y 的可能取值为(1,1),(2,1),(2,2),(3,1),(3,2),(3,3).依题意{}X Y <=∅,故{}0P X Y <=,即{}{}{}1,21,32,30P X Y P X Y P X Y =========, {}{}1,1max(,)1,min(,)1P X Y P ξηξη====={}{}{}11,1119P P P ξηξη=======. 类似地可以计算出所有ij p 的值列于下表中,得到随机变量(,)X Y 的联合分布律:(2)将表中各行元素相加求出X 的边缘分布123135999X⎡⎤⎢⎥⎢⎥⎣⎦, 由离散型随机变量数学期望计算公式可得135221239999EX =⋅+⋅+⋅=. 【相关知识点】1.离散型随机变量的边缘分布计算公式:二维离散型随机变量(,)X Y 关于X 与Y 的边缘概率分布或边缘分布律分别定义为:{}{},,1,2,i i i j ij jjp P X x P X x Y y p i ⋅=======∑∑ {}{},,1,2,j j i j ij iip P Y y P X x Y y p j ⋅=======∑∑它们分别为联合分布律表格中第i 行与第j 列诸元素之和. 2. 离散型随机变量数学期望计算公式:{}1()nkk k E X xP X x ==⋅=∑.。
96-15年考研数一线代真题汇总

96年97年98年99年00年01年02年03年04年05年06年07年08年09年10年11年12年13年5.设A,B,C 均为n 阶矩阵,若AB=C ,且B 可逆,则( ) A.矩阵C 的行向量组与矩阵A 的行向量组等价 B 矩阵C 的列向量组与矩阵A 的列向量组等价 C 矩阵C 的行向量组与矩阵B 的行向量组等价 D 矩阵C 的列向量组与矩阵B 的列向量组等价6.矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与20000000b ⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为( )A. 0,2a b ==B. 0,a b = 为任意常数C. 2,0a b ==D. 2,a b = 为任意常数13.设A=(a ij )是3阶非零矩阵,A 为A 的行列式,A ij 为a ij 的代数余子式.若a ij +A ij =0(i,j=1,2,3),则|A |= 。
20.(本题满分11分)设101,101a A B b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,当a,b 为何值时,存在矩阵C 使得AC-CA=B,并求所有矩阵C 。
21.(本题满分11分)设二次型22123112233112233(,,)2()()f x x x a x a x a x b x b x b x =+++++,记123a a a α⎛⎫ ⎪= ⎪ ⎪⎝⎭,123b b b β⎛⎫ ⎪= ⎪ ⎪⎝⎭。
(1) 证明二次型f 对应的矩阵为2T T ααββ+;(2) 若,αβ正交且均为单位向量,证明f 在正交变换下的标准形为22122y y +。
14年。