分式通分的7种技巧
第一讲 分式运算中的常用技巧

第一讲 分式运算中的常用技巧在分式运算中,若能认真观察题目结构特征,灵活运用解题技巧,选择恰当的运算方法,常常收到事半功倍的效果。
现就分式运算中的技巧与方法举例说明。
一、分组通分法: 例1、计算:xy xy x y x y x y x y x y x --+-----+-24352思路点拔:如果我们将四个分式同时通分,运算量较大且容易出错,仔细观察会发现第一、三项,第二、四项分别为同分母分式,因此先将同分母分式相加减,然后再通分,能简化运算。
※例2、计算:500099009999500010050002002250001001122222222+-++-+++-++-k k k (上海市“宇振杯”竞赛题)思路点拔 首尾配对,考查一般情形,把数值计算转化为分式的运算:2500010010000200250001002001005000100500010010020010020010050001005000)100(100)100()100(5000100222222222222222222=+-+-=+--+++-=++--+-+++-=+----++-n n n n n n nn n n n n n n nn n n n n n n n n n 二、整体通分法:例3.化简:21a a --a-1思路点拔:本题是一个分式与整式的加减运算.如能把(-a-1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式. 三、逐项通分法 例4.计算4214121111xx x x ++++++- 思路点拔 :本题中原所有分式的最简公分母是()()()()241x 1x 1x 1x -+++,若按此通分解答过程的繁琐性就不用说了;如果我们进行分组、分步通分就不会因为出现“庞大”的分子导致在计算中出错;比如,若我们先计算111x 1x+-+,最简公分母为()()1x 1x -+即21x -,则111x 1x +-+2221x 1x 21x 1x 1x +-=+=---,后面的如法炮制,过程清楚,计算简便. 四、先约分,后通分例5.计算:2262a a a a +++22444a a a -++思路点拔 :按常规的解法本题应先找出两个分式分母的最简公分母()2x x 2+后通分,化成同分母的分式后再相加;细心的同学会发现,若把两个分式的分子、分母分解因式后,先约分就已经是同分母了,就“省去”了通分的过程;相比较先约分、再相加显得更为简捷. 五、裂项相加法 例6、 已知122432+--=--+x Bx A x x x ,其中A 、B 为常数,则4A -B 的值为( )(江苏省竞赛题)A .7B .9C .13D .5思路点拨 对等式右边通分,比较分子的对应项系数求出A 、B 的值. 例7、化简:111.....(1)(1)(2)(99)(100)x x x x x x ++++++++. 思路点拔 :本题的多个分式相加,无法通分,而式子的特点是:每个分式的分母都是两个连续整数的积(若a 是整数),联想到111)1()1()1(1+-=+-+=+x x x x x x x x ,这样可抵消一些项. 例8.化简:))(())(())((a c b c ba abc b a c c a b a c b -----------思路点拔 :本题采用通分的方式,计算量大,式子的特点是:每个分式的分子可用分母的两个因式的差表示,如:ca b a c a b a b a c a c a b a c b ---=-----=---11))(()()())((a b c b a b c b c b a b a b c b a c ---=-----=---11))(()()())((bc a c a c b c a c b c a c b c b a ---=-----=---11))(()()())((※例9.化简:222()()()()()()a bcb ac c aba b a c b c b a c a c b ---++++++++.思路点拔 :本题采用通分的方式,计算量大,仔细观察式子的特点,发现每个分式的分母是两个因式的积的形式,可考虑把分子通过添项的方法化成分母的两个因式的和或差的形式,即:ba bc a a c a b a c a b b a a c a b a bc ab ab a c a b a bc a +-+=+++-+=+++-+=++-))(()()())(()()())((22cb ca b b a b c b b a c c b b a b c b ac bc bc b a b c b ac b +-+=+++-+=+++-+=++-))(()()())(()()())((22ac ab c c b c a c b c a a c c b c a c ab ac ac c b c a c ab c +-+=+++-+=+++-+=++-))(()()())(()()())((22六、分式的换元化简 ※例10.化简:)2)(2())(()2)(2())(()2)(2())((z y x x z y z y z x x z y z y x y x y z z y x z y x x z x y +--+--+-+-+--+-++--- 思路点拔:注意到分母与分子的项与项之间的关系,如x -2y+z=(x -y)-(y -z),x+y-2z=(y-z)-(z-x), y+z-2x=(z-x)-(x-y)采用换元法,设x-y=a,y-z=b,z-x=c,原分式可化为:))(())(())((b a a c bca c cb bac b b a ac ---+---+---,再通分,可简化运算。
分式运算中的常用技巧与方法

分式运算中的常用技巧与方法1在分式运算中,若能认真观察题目结构特征,灵活运用解题技巧,选择恰当的运算方法,常常收到事半功倍的效果。
现就分式运算中的技巧与方法举例说明。
一、整体通分法例1.化简:21a a --a-1 分析 将后两项看作一个整体,则可以整体通分,简捷求解。
解:21a a --a-1=21a a --(a+1)= 21a a --(1)(1)1a a a -+-=22(1)1a a a ---=11a - 二、逐项通分法例2.计算1a b --1a b +-222b a b +-3444b a b - 分析:注意到各分母的特征,联想乘法公式,适合采用逐项通分法 解:1a b --1a b +-222b a b +-3444b a b -=22()()a b a b a b +----222b a b +-3444b a b- =222b a b --222b a b +-3444b a b -=2222442()2()b a b b a b a b +----3444b a b - =3444b a b --3444b a b-=0 三、先约分,后通分例3.计算:2262a a a a +++22444a a a -++ 分析:分子、分母先分解因式,约分后再通分求值计算 解:2262a a a a +++22444a a a -++=(6)(2)a a a a +++2(2)(2)(2)a a a +-+=62a a +++22a a -+=242a a ++=2 四、整体代入法例4.已知1x +1y=5求2522x xy y x xy y -+++的值 解法1:∵1x +1y =5∴x y ≠0,.所以2522x xy y x xy y -+++=225112y x y x -+++=112()5112x y x y+-++=25552⨯-+=57解法2:由1x +1y=5得,x y xy +=5, x+y=5xy ∴2522x xy y x xy y -+++=2()5()2x y xy x y xy+-++=25552xy xy xy xy ⨯-+=57xy xy =57 五、运用公式变形法例5.已知a 2-5a+1=0,计算a 4+41a 解:由已知条件可得a ≠0,∴a+1a=5 ∴a 4+41a =(a 2+21a )2-2=[(a+1a )2-2]2-2=(52-2)2-2=527 六、设辅助参数法例6.已知b c a += a c b += a b c +,计算:()()()a b b c c a abc+++ 解:设b c a += a c b += a b c +=k ,则b+c=ak ;a+c=bk ;a+b=ck ; 把这3个等式相加得2(a+b+c)= (a+b+c)k若a+b+c=0,a+b= -c,则k= -1若a+b+c ≠0,则k=2()()()a b b c c a abc +++=ak bk ck abc⋅⋅=k 3 当k=-1时,原式= -1当k=2时,原式= 8七、应用倒数变换法例7.已知21a a a -+=7,求2421a a a ++的值 解:由条件知a ≠0,∴21a a a -+=17,即a+1a =87∴4221a a a ++=a 2+21a +1=(a+1a)2-1=1549 ∴2421a a a ++=4915八、取常数值法例8.已知:xy z ≠0,x+y+z=0,计算y z x ++x z y ++x y z+ 解:根据条件可设x=1,y=1,z=-2.则y z x ++x z y ++x y z+=-3.当然本题也可以设为其他合适的常数。
分式的方法与技巧

1、整体通分法
分析:像这样的,一个分式,后面是整式时,将后面的整式看作一个整体,来进行整体通分,可以简单求解。
2、逐项通分法
分析:通过观察各分母的特点,分母为整式时,想一想符合不符合乘法公式的运用特点,从左到右依次通分。
3、先约分,再通分
分析:像这样分子分母都是含有分母的整式时,想到能不能先约分,就要现将分子、分母先分解因式,能月份的先约分后再根据题目的特点进项必要的变化后求值。
4、裂项相消法
分析:通过观察,后两个分式的分母是两个因数的积,并且这两个因式相差1,而分子是一个还相同,这是就应该想到裂项法解题,就是将每一个分式拆成两项的差,前后抵消后再计算。
5、整体代入法
分析:先将条件进行整理,然后整体代入求代数式的值值。
6、公式法
分析:遇到这种特点的题目,先将条件式进行变形,利用完全平方公式再对要求的式子进行整理,然后代入求值。
7、设辅助参数法
分析:利用条件式设一个辅助参数,将一些代数式用所设的参数表示,然后再将这些代数式代入到所求的式子中去,起到化简的目的。
8、倒数变换法
分析:像这种分子比较简单,分母比较复杂事时,这时可以想到把条件式整体取倒数,使条件变简单,再求值。
9、特殊值法
分析:由已知条件无法求出a、b、c的值,可根据已知条件取字母的一组特殊值,然后代入所求的式子求出结果。
这种方法多用在填空题、选择题中。
分式通分的技巧

分式通分的技巧一、分组通分例1、计算:xy x y x y x y x y x y x y x --+-----+-24352 分析:如果我们将四个分式同时通分,运算量较大且容易出错,仔细观察会发现第一、三项,第二、四项分别为同分母分式,因此先将同分母分式相加减,然后再通分,能简化运算。
解:原式)23(452yx x y x y x y x y x y x y x ---+-+--+-= 222244xy xy y x xy y x y x y x y x -=--=-+-+-= 反思:当遇到的分式较多时可以观察是否有相同分母的分式适当分组结合,先将同分母分式相加减,再通分,可以使计算更加简便。
二、先约分再求值例2、计算:969362222++-+++x x x x x x x 分析:我们观察到两个分式都不是单项式,看起来很复杂,计算起来肯定不会很轻松,应首先想到运用约分化简后再计算。
解:原式3323336)3()3(3()3()6(2++=+-+++=+-++++=x x x x x x x x x x x x x 反思:在进行分式加减运算时,不能简单的盲目进行通分,首先要根据题目自身的特点,选用合适的方法,以使运算过程适当简化,本题中利用公式因式分解后,先约分再进行计算就比较简单。
三、逐步通分法例3、计算:4214121111xx x x ++++++- 分析:我们在计算时,会发现计算的分式较长,不知如何下手,但我们仔细观察各个分式的特点,会发现可以巧妙运用平方差公式逐步通分,会得到想要的结果.解:原式844422181414141212xx x x x x -=++-=++++-= 反思:本题如果用常规方法进行计算太繁琐,根据题目特点巧用平方差公式,采用逐步通分法,从而使运算简便。
四、整体通分法例4、计算y x yx x +-+2分析:我们看到题目中既有分式又有整式,不相统一,我们可以寻求到可以做为整体的部分,那么计算起来就可以简便一些.解:原式yx y y x y x y x x y x y x x +=+--+=--+=22222)( 反思:将后两项看作一个分母为“1”的整体可使运算简便。
分式通分的技巧

2.. 2.. 3.. 6n + 2; 2.. 2.. 4.. 3n + 1;
2.. 2.. 5.. 4n + 4[或填4( n + 1) 或4( n +
2) - 4或( n + 2)
2
- n
2
]
能力提高:
a - 4
..
解: 原式= ( 1+
1
a + 1
) - ( 1+
1
a + 2
) - ( 1
-
1
a - 3
) + ( 1 -
1
a - 4
)
= (
1
a + 1
-
1
a + 2
) + (
1
a - 3
-
1
a - 4
x
2
+ 4x - 5
..
解: 原式=
x + 2
( x + 2) ( x - 5)
-
x - 1
( x - 1) ( x + 5)
=
1
x - 5
-
1
x + 5
=
10
x
2
- 25
三、合理结合, 分组通分
例3.. 计算1
a + 1
2. 复习时认真地阅读与钻研教材, 可以提
高学生的解题能力.
3. 复习时认真地阅读与钻研教材, 可以培
分式的通分

用字母表示为:
A AC B BC
A AC (C≠0)
B BC
2.分式的符, 号法则:
(1) a ? (2)a a ?
b
b b
同号得正
异号得负
根据分式的基本性质, 把一个分式的分子 和分母的公因式约去,这种变形叫做分式的约 分。
1.约分的依据是: 分式的性质(除法)
1
因此 x²-y² =
1
x²+xy =
x x(x+y)(x-y)
x-y x(x+y)(x-y)
归纳
异分母分式通分的步骤是:
1、求出所有分式分母的最简公分母 2、将所有分式的分母变为最简公分母,同时
各分式按照分母所扩大的倍数,相应扩大各自 的分子。
练习: 1.通分:
(1)
2c bd
与
3ac 4b2
看作一个整体,然后再执行: • (1)定系数________________ • (2)定字母(或含字母的因式)
______________________ • (3)定字母(或含字母的因式)的次数
_________
例题讲解与练习
例 通分
a 2
3 2b 与
ab
ab2c
公分母如何确定呢?
最简公分母的确定: 各分母中系数取最小 公倍数,因式取最高 次幂。
分析:分式通分的关键是确定几个分式的公分
母,通常取各分母所有因式的最高次幂的积作为 公分母,也叫最简公分母.
问题:如何找最简公分母?
(2)2x32y
xy xy2z
2 xy 2 2 z
最小 所有 最高 公倍数 字母 次幂
3、找最简公分母
(1)
分式通分有技巧

=
3(
一
) 3( +
一丽1 ) 3( 1 + 丽
1
一
)
.
3 3 = 一 — —1 a-
6 a 二 ‘
注 :此题不但 用到 了分离整 式技 巧,还涉 及到拆项 抵消 等技 巧. 六 、换元 后 ( ) 免 通分
例 简 x斗 +-(z+. 6化 一 罨+ X ) ) - y Z ( -z) - x y (x y+ - )
=
a -b ( - ̄’ a
口
一 .
C一
b)
一
b 一
c
( - ) -c 。 -a(-b b a( ) ( ) b c c )
j b+ — a b+
—
一 一
( - ) 一6 。 - (— ) - ) a c( ) b c’ a( b c c c
一
c一 一 :—
2 x~ 1 2
I = 一 : 二 _一
一
一
=: 塑±
+ ) 2 - ) 1 + ) 2
一j一
x 2 + ‘
二 、化繁为简 后再通 分 例 2 计 算 : 2 一 x 2 x -2 +
二- 3x
.
分析:若运算中的分式不是最简分式,可先化简约分,然后再 通分 ,可 使运算 简便.
探问瑜伽
§3 7
一
旦 螳 l I 敞: 技
分 :用 法 低 子 数将 式 为+的 式 再 析 利 除 降 分 次 , 分 詈化 号 形 后
通分.
解: 原式= + + ( 2
一
一
) 2+ 一( a 3
3 a-6
)( 1 +
分式通分的常用技巧

分式通分的常用技巧作者:张开智来源:《初中生之友·中旬刊》2010年第03期通分是解决分式加减的基础,要解决好分式的运算,就必须掌握好分式的通分问题。
通分时常常是先找出最简公分母,将其变为同分母分式,然后再加减。
可在实际运算时,有时找最简公分母十分麻烦,或者在进行通分时,将面临着复杂、繁烦的计算,甚至走进“死胡同”,因此有必要掌握一些常用的通分技巧和方法,这样能使问题变得简单,即化难为易。
现介绍几种常用的通分技巧,供同学们在学习时合理选用。
一、分组通分例1 计算-+-。
分析经观察发现,分母的结构有如下特点:a+2与a-2相乘、a+1与a-1相乘可分别构成平方差,故本题可先合理搭配,采用分组通分的方法来解。
解原式=-+-=+=。
点评根据分母的结构特点合理分组后再进行通分,可简化运算。
二、逐步通分例2 计算:+++。
分析四个分式分母迥然不同,如果先找最简公分母再通分,结果只能劳而无功。
若把前两个分式通分化简,将结果再与第三个分式通分,依次类推,逐步通分,可使问题得到解决。
解原式=++=++=+=。
三、整体通分例3 计算:x+y+。
分析一个整式与分式相加减,将整式当做一个整体,看做分母为1的分式,再通分。
解原式=(x+y)+=+= + =。
四、分解因式,约分后通分例4 计算-。
分析观察发现各分式的分子、分母均可分解因式,故应先分解因式,约分后再通分。
解原式=- =-==。
点评当分式的分子、分母可分解因式时,一般应先分解因式,进行约分后再通分。
五、改变排序,一次通分例5 计算++。
分析这是轮换式问题,对这样的问题可通过适当改变字母的排列顺序来找到公分母,然后再进行通分。
解原式=++=++==0。
点评面对轮换式的问题,采用这种先行变序、再行通分的方法,常常一次通分就能成功解题。
六、常量代换,自然通分例6 设abc=1,试求++的值。
分析根据分式的结构特点和已知条件,运用分式的基本性质和常量代换的方法,本题可获巧解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通分是解决分式加减的基础,要解决好分式的运算,就必须掌握好分式的
通分问题。
通分时常常是先找出最简公分母,将其变为同分母分式,然后
再加减。
可在实际运算时,有时找最简公分母十分麻烦,或者在进行通分时,将面临着复杂、繁烦的计算,甚至走进“死胡同”,因此有必要掌握一些常用的通分技巧和方法,这样能使问题变得简单,即化难为易。
现介绍几
种常用的通分技巧,供同学们在学习时合理选用。
一、分组通分
例1 计算-+-。
分析经观察发现,分母的结构有如下特点:a+2与a-2相乘、a+1与a-1相乘可分别构成平方差,故本题可先合理搭配,采用分组通分的方法来解。
解原式=-+-=+=。
点评根据分母的结构特点合理分组后再进行通分,可简化运算。
二、逐步通分
例2 计算:+++。
分析四个分式分母迥然不同,如果先找最简公分母再通分,结果只能
劳而无功。
若把前两个分式通分化简,将结果再与第三个分式通分,依次
类推,逐步通分,可使问题得到解决。
解原式=++=++
=+=。
三、整体通分
例3 计算:x+y+。
分析一个整式与分式相加减,将整式当做一个整体,看做分母为1的
分式,再通分。
解原式=(x+y)+=+
= + =。
四、分解因式,约分后通分
例4 计算-。
分析观察发现各分式的分子、分母均可分解因式,故应先分解因式,约分后再通分。
解原式=- =-==。
点评当分式的分子、分母可分解因式时,一般应先分解因式,进行约分后再通分。
五、改变排序,一次通分
例5 计算++。
分析这是轮换式问题,对这样的问题可通过适当改变字母的排列顺序来找到公分母,然后再进行通分。
解原式=++
=++
==0。
点评面对轮换式的问题,采用这种先行变序、再行通分的方法,常常一次通分就能成功解题。
六、常量代换,自然通分
例6 设abc=1,试求++的值。
分析根据分式的结构特点和已知条件,运用分式的基本性质和常量
代换的方法,本题可获巧解。
解原式=++
=++==1。
点评本题的解法很巧妙,它是在认真分析题目特点的基础上,利用分式的基本性质和常量代换,使其由“山重水复”变为“柳暗花明”的。
七、裂项相消,拆项通分
例7 化简:+++…+。
分析当分式比较复杂,而且按常规方法通分十分艰难时,就要看看题中是否隐含着某些规律。
当每一个分式的分母是两个因数之积,而分子又是一个定值时,可将每一个分式先拆成两项之差,前后相消后再通分。
解原式=(-)+(-)+(-)+…+(-)=-=。
点评合理、灵活地运用各种变形技巧,能使枯燥乏味、繁杂冗长的分式运算变得简单明了。
而要做到这一点,就必须细心观察和认真分析题目中各分式的特点。