高二数学选修2 椭圆基础训练

合集下载

高二数学选修2 椭圆基础训练 试题

高二数学选修2 椭圆基础训练 试题

高二数学选修2 椭圆根底训练制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题1.〔 〕椭圆1162522=+y x 上的一点P 到椭圆一个焦点的间隔 为3,那么P 到另一焦点间隔 为A .2B .3C .5D .7D 点P 到椭圆的两个焦点的间隔 之和为210,1037a =-=2.〔 〕假设椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,那么椭圆的方程为A .116922=+y x B .1162522=+y x C .1162522=+y x 或者1251622=+y x D .以上都不对C 2222218,9,26,3,9,1a b a b c c c a b a b +=+====-=-=得5,4a b ==,2212516x y ∴+=或者1251622=+y x 3.〔 〕假如222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是A .()+∞,0B .()2,0C .()+∞,1D .()1,0D 焦点在y 轴上,那么2221,20122y x k k k+=>⇒<< 4.〔 〕21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,那么Δ12AF F 的面积为 A .7 B .47 C .27D .257C 1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2AF AF AF AF -=-+=177222S =⨯⨯= 5.〔 〕椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,那么△21F PF 的面积为A .20 B .22 C .28 D .24D 222212121214,()196,(2)100PF PF PF PF PF PF c +=+=+==,相减得12121296,242PF PF S PF PF ⋅==⋅= 二、填空题6.椭圆22189x y k +=+的离心率为12,那么k 的值是______________。

高中数学选修(2-1)椭圆基础、提高、综合篇

高中数学选修(2-1)椭圆基础、提高、综合篇

椭圆及其标准方程基础卷一、选择题:1、椭圆2211625x y +=的焦点坐标为( ) (A )(0, ±3) (B )(±3, 0) (C )(0, ±5) (D )(±4, 0)2、在方程22110064x y +=中,下列a , b , c 全部正确的一项是( ) (A )a =100, b =64, c =36 (B )a =10, b =6, c =8 (C )a =10, b =8, c =6 (D )a =100, c =64, b =36 3、已知a =4, b =1,焦点在x 轴上的椭圆方程是( )(A )2214x y += (B )2214y x += (C )22116x y += (D )22116y x += 4、已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是( )(A )2213620x y += (B )2212036x y += (C )2213616x y += (D )2211636x y += 5、若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( ) (A )4 (B )194 (C )94 (D )146、已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是( ) (A )椭圆 (B )直线 (C )圆 (D )线段 二、填空题:7、若y 2-lga ·x 2=31-a 表示焦点在x 轴上的椭圆,则a 的取值范围是 . 8、当a +b =10, c =25时的椭圆的标准方程是 .9、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ’,则线段PP ’的中点M 的轨迹方程为 .10、经过点M (3, -2), N (-23, 1)的椭圆的标准方程是 .11、椭圆的两焦点为F 1(-4, 0), F 2(4, 0),点P 在椭圆上,已知△PF 1F 2的面积的最大值为12,求此椭圆的方程。

人教版高二数学选修21椭圆专项基础测试卷

人教版高二数学选修21椭圆专项基础测试卷

人教版高二数学选修2-1椭圆专项基础测试卷
1 / 1 椭圆同步测试3
1.已知椭圆116
252
2=+y x 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为_______
2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是_____
3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是_____
4.椭圆
2255x ky -=的一个焦点是(0,2),那么k 等于_____
5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于_____
6.椭圆两焦点为 1(4,0)F -,2(4,0)F ,P 在椭圆上,若 △12PF F 的面积的最大值为12,则椭圆方程为______
7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|
的等差中项,则该椭圆方程是(_______)。

8.椭圆22
1259
x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为____
9.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另
外一个焦点在BC 边上,则△ABC 的周长是 ______
10.设(5,0)M -,(5,0)N ,△MNP 的周长是36,则MNP ∆的顶点P 的轨迹______。

(完整版)椭圆基础训练题(含答案提示),推荐文档

(完整版)椭圆基础训练题(含答案提示),推荐文档

提示:4c=d1+d2=2a,
∴e=
1 2
试卷
NewCyanine Education Advisory (changsha) Co.,Ltd
题目:16. 曲线 x 2 + y2 =1 与曲线 x 2 + y2 =1 (k<9),具有的等量关系是( )。
25 9
25- k 9 k
(A)有相等的长、短轴
a2
题目:12. 已知椭圆的对称轴是坐标轴,离心率 e= 2 ,长轴长为 6,那么椭圆的方程是( )。
3
(A) x 2 + y2 =1
36 20
(C) x 2 + y2 =1
95
(B) x 2 + y2 =1 或 x 2 + y2 =1
36 20
20 36
(D) x 2 + y2 =1 或 x 2 + y2 =1
95
59
答案:D
题目:13. 椭圆 25x2+16y2=1 的焦点坐标是( )。
(A)(±3, 0) (B)(± 1 , 0) (C)(± 3 , 0) (D)(0, ± 3 )
3
20
20
答案:D
题目:14. 椭圆 4x2+y2=4 的准线方程是( )。
(A)y= 4 3 x (B)x= 4 3 y (C)y= 4 3
16 9
16 9
题目:19. 已知椭圆的准线为 x=4,对应的焦点坐标为(2, 0),离心率为 1 , 那么这个椭圆的方
2
程为( )。
(A) x 2 + y2 =1
84
(B)3x2+4y2-8x=0
(C)3x2-y2-28x+60=0
(D)2x2+2y2-7x+4=0

(完整word版)椭圆基础训练题(含答案提示)(2),推荐文档

(完整word版)椭圆基础训练题(含答案提示)(2),推荐文档

椭圆基础训练题1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )(A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9x 2+25y 2=12.椭圆5x 2+4y 2=1的两条准线间的距离是( )(A )52 (B )10 (C )15 (D )3503.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )(A )21(B )22(C )23(D )334.椭圆25x 2+9y 2=1上有一点P ,它到右准线的距离是49,那么P 点到左准线的距离是( )。

(A )59(B )516 (C )441 (D )5415.已知椭圆x 2+2y 2=m ,则下列与m 无关的是( )(A )焦点坐标 (B )准线方程 (C )焦距 (D )离心率6.椭圆mx 2+y 2=1的离心率是23,则它的长半轴的长是( )(A )1 (B )1或2 (C )2 (D )21或17.椭圆的中心为O ,左焦点为F 1,P 是椭圆上一点,已知△PF 1O 为正三角形,则P 点到右准线的距离与长半轴的长之比是( )(A )3-1 (B )3-3 (C )3 (D )18.若椭圆my 12m 3x 22-+=1的准线平行于y 轴,则m 的取值范围是 。

9.椭圆的长半轴是短半轴的3倍,过左焦点倾斜角为30°的弦长为2则此椭圆的标准方程是 。

10. 椭圆的中心在原点,焦点在x 轴上,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距,又已知直线2x -y -4=0被此椭圆所截得的弦长为354,求此椭圆的方程。

11.证明:椭圆上任意一点到中心的距离的平方与到两焦点距离的乘积之和为一定值。

12. 已知椭圆的对称轴是坐标轴,离心率e =32,长轴长为6,那么椭圆的方程是( )。

(A ) 36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36y 2=1(C ) 9x 2+5y 2=1 (D )9x 2+5y 2=1或5x 2+9y 2=113. 椭圆25x 2+16y 2=1的焦点坐标是( )。

高二椭圆基础练习题及答案

高二椭圆基础练习题及答案

高二椭圆基础练习题及答案练习题1:已知椭圆E的长轴长为6,短轴长为4。

若椭圆E的焦点F到点P 的距离等于点P到长轴的距离与点A到长轴的距离之和,且点A在椭圆E的右半部分上。

求椭圆E的方程。

解答:设椭圆E的焦点坐标为F(a,0),其中a为焦点到原点的距离。

设点P(x,y)。

根据题意,有:PF = PA + PA'根据椭圆的定义,有:PF = √[(x-a)^2 + y^2]PA = √[(x-a)^2 + (y-4)^2]PA' = √[(x+a)^2 + (y+4)^2]将上述式子代入PF = PA + PA',整理得:√[(x-a)^2 + y^2] = √[(x-a)^2 + (y-4)^2] + √[(x+a)^2 + (y+4)^2]对上式两边进行平方运算,得:(x-a)^2 + y^2 = [(x-a)^2 + (y-4)^2] + 2√[(x-a)^2 + (y-4)^2]√[(x+a)^2 + (y+4)^2] + (x+a)^2 + (y+4)^2对上式进行整理,得:0 = -8x^2 + 8a^2 - 32a - 64由于长轴长为6,短轴长为4,求平方可得:36 = 4a^2解得a = ±3/2将a = ±3/2 代入上式,得到两个椭圆E的方程:E1:-8x^2 + 18 - 48 = 0,即4x^2 = 15E2:-8x^2 + 18 + 48 = 0,即4x^2 = 33练习题2:已知椭圆E的焦点坐标为F(0,2),G(0,-2),长轴长为8。

设直线y = mx + 3与椭圆E相切于点P,求m的值。

解答:设点P(x,y),则点P在直线y = mx + 3上,故有:y = mx + 3又由于点P位于椭圆E上,满足椭圆的方程,即有:x^2/16 + y^2/4 = 1将y = mx + 3代入上式,得到关于x的二次方程:x^2/16 + (mx + 3)^2/4 = 1化简得:(4+m^2)x^2 + 24mx + 144 - 64 = 0上述方程为判别式为0的二次方程,故有:(24m)^2 - 4(4+m^2)(144 - 64) = 0进行整理得到最终的方程:208m^2 - 256 = 0解得m = ±8/√13练习题3:已知椭圆O的焦点坐标为F1(-4,0),F2(4,0),离心率为2/3。

椭圆基础训练题(含答案)

椭圆基础训练题(含答案)

椭圆基础训练题1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )(A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9x 2+25y 2=1答案:B2.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )(A )21(B )22(C )23(D )33答案:B3.椭圆mx 2+y 2=1的离心率是23,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D )21或1答案:B4. 已知椭圆的对称轴是坐标轴,离心率e =32,长轴长为6,那么椭圆的方程是( )。

(A ) 36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36y 2=1(C ) 9x 2+5y 2=1 (D )9x 2+5y 2=1或5x 2+9y 2=1答案:D5. 椭圆25x 2+16y 2=1的焦点坐标是( )。

(A )(±3, 0) (B )(±31, 0) (C )(±203, 0) (D )(0, ±203) 答案:D6. 椭圆22ax +22b y =1 (a >b >0)上任意一点到两个焦点的距离分别为d 1,d 2,焦距为2c ,若d 1, 2c , d 2,成等差数列则椭圆的离心率为( )。

(A )12 (B )22 (C )32(D )34答案:A提示:4c =d 1+d 2=2a , ∴e =217. P (x , y )是椭圆16x 2+9y 2=1上的动点,过P 作椭圆长轴的垂线PD ,D 是垂足,M 是PD 的中点,则M 的轨迹方程是( )。

(A )4x 2+9y 2=1 (B )64x 2+9y 2=1 (C )16x 2+9y 42=1 (D )16x 2+36y 2=1答案:C提示:设M (x , y )为轨迹上一点,则P (x , 2y ),代入到16x 2+9y 2=1得方程16x 2+9y 42=18. 椭圆4x 2+16y 2=1的长轴长为 ,短轴长为 ,离心率为 ,焦点坐标是 。

(完整word版)高二数学椭圆基础训练题(2)

(完整word版)高二数学椭圆基础训练题(2)

2.2椭圆基础训练题一、选择题(每题5分)1.已知椭圆221102x y m m +=--,长轴在y 轴上.若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 2.已知△ABC 的周长为20,且定点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)3.椭圆1162522=+y x 的离心率为( )A .35 B . 34 C .45 D .9254.已知两点)0,1(1-F 、)0,1(F ,且21F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )。

A .191622=+y xB .1121622=+y xC .13422=+y xD .14322=+y x 5.曲线221259x y +=与曲线221(9)259x y k k k+=<--的( )(A )长轴长相等 (B )短轴长相等 (C )焦距相等 (D )离心率相等6.椭圆1162522=+y x 的焦距是( ) A .3 B .6 C .8 D .107.若点O 和点F 分别为椭圆2212x y +=的中心和右焦点,点P 为椭圆上的任意一点,则OP FP ⋅u u u r u u u r的最小值为A .2.12C .2.1 8.已知椭圆的方程为22194x y +=,则该椭圆的长半轴长为( )A .3B .2C .6D .49.椭圆13422=+y x 的焦点坐标为( ) A .)0,1(± B .)0,2(± C .)0,2(± D .)1,0(±10.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A 、B 两点,且AB 错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修2 椭圆基础训练
一、选择题
1.( )已知椭圆
116
252
2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为
A .2
B .3
C .5
D .7
D 点P 到椭圆的两个焦点的距离之和为210,1037a =-=
2.( )若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为
A .
116922=+y x B .1162522=+y x C .1162522=+y x 或125
162
2=+y x D .以上都不对
C 2
2
2
2218,9,26,3,9,1a b a b c c c a b a b +=+====-=-=
得5,4a b ==,2212516x y ∴
+=或125
162
2=+y x 3.( )如果22
2=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是
A .()+∞,0
B .()2,0
C .()+∞,1
D .()1,0
D 焦点在y 轴上,则2221,20122y x k k k
+=>⇒<< 4.( )21,F F 是椭圆17
92
2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为 A .7 B .47 C .2
7
D .257
C 1212216,6F F AF AF AF AF =+==-
22202
2112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+
2211117
(6)48,,2
AF AF AF AF -=-+
=1772222S =⨯⨯= 5.( )椭圆
124
492
2=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直, 则△21F PF 的面积为A .20 B .22 C .28 D .24
D 2222
12121214,()196,(2)100PF PF PF PF PF PF c +=+=+==,相减得
12121
296,242
PF PF S PF PF ⋅==⋅=
二、填空题
6.椭圆
22189x y k +=+的离心率为1
2
,则k 的值为______________。

54,4
-
或 当89k +>时,22
2891,484c k e k a k +-====+;当89k +<时,22
29815,944
c k e k a --====-
7.若椭圆22
1x my +=
的离心率为2
,则它的长半轴长为_______________.
1,2或 当1m >时,22
1,111
x y a m
+==; 当01m <<时,22222
223111,1,,4,21144y x a b e m m a a a m m
-+===-===== 8.椭圆552
2=+ky x 的一个焦点是)2,0(,那么=k 。

1 焦点在y 轴上,则2225
1,14,151y x c k k k +==-==
9.设AB 是椭圆22
221x y a b
+=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点,
则AB OM k k ⋅=____________。

22b a - 设1122(,),(,)A x y B x y ,则中点1212
(,)22
x x y y M ++,
得2121,AB y y k x x -=-2121OM y y k x x +=+,222122
21
AB OM y y k k x x -⋅=-,222222
11,b x a y a b += 2
2
2
2
22
22,b x a y a b +=得2
2
2
2
2
221
21
()()0,b x x a y y -+-=即222
2122
221y y b x x a
-=-- 10.椭圆14
92
2=+y x 的焦点1F 、2F ,点P 为其上的动点,当∠1F P 2F 为钝角时, 点P 横坐标的取值范围是。

(55
- 可以证明12,,PF a ex PF a ex =+=-且2221212PF PF F F +<
而3,2,3a b c e ====,
则22222222()()(2),2220,1a ex a ex c a e x e x ++-<+<< 2
2111,,x x e e e
<-<<

e <<三、解答题
11.k 为何值时,直线2y kx =+和曲线2
2
236x y +=有两个公共点?有一个公共点?
没有公共点? 解:由22
2
236
y kx x y =+⎧⎨
+=⎩,得2223(2)6x kx ++=,即22
(23)1260k x kx +++=
222
14424(23)7248k k k ∆=-+=-
当2
72480k ∆=->,即,33k k >
<-或时,直线和曲线有两个公共点; 当
272480k ∆=-=,即33k k ==-或时,直线和曲线有一个公共点; 当
272480k ∆=-<,即33
k -<<
12.已知定点(A -,F 是椭圆
22
11612
x y +=的右焦点,在椭圆上求一点M , 使2AM MF +取得最小值。

解:显然椭圆
2211612x y +=的14,2,2a c e ===,记点M 到右准线的距离为MN 则1,22
MF e MN MF MN ===,即2AM MF AM MN +=+ 当,,A M N 同时在垂直于右准线的一条直线上时,2AM MF +取得最小值,
此时y y M A ==22
11612
x y +=得x M =±
而点M 在第一象限,M ∴。

相关文档
最新文档