抽屉原理练习(教师用) - 副本

合集下载

(完整)抽屉原理讲义-教师

(完整)抽屉原理讲义-教师

第一抽屉原理原理1:把多于n+k个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。

原理2 :把多于mn(m乘以n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体.原理1 、2 、3都是第一抽屉原理的表述。

第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m-1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2).运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。

例如,属相是有12个,那么任意37个人中,有几个人属相相同呢?这时将属相看成12个抽屉,则一个抽屉中有 37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,(但这里需要注意的是,前面的余数1和这里加上的1是不一样的.)比如:由于一年最多有366天,因此在367人中至少有2人出生在同月同日.这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。

例1一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。

问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。

要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。

所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块.例2在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。

20150411抽屉原理教师版

20150411抽屉原理教师版

抽屉原理(一)抽屉原理又叫做重叠原则,在国外又叫做鸽舍原理或叫狄利克雷原则。

它的道理很简单,可它却很有用,在许多中小学竞赛中,常常用抽屉原理来分析和解答问题。

什么是抽屉原理呢?举例来说,将3支铅笔放入2个盒子里,想一想,有几种方法?稍加思索我们就会发现,有两种方法:一种方法是一个盒子里放1支铅笔,另一个盒子里放入2支铅笔;还有一种方法是一个盒子里放3支铅笔,另一个盒子里不放铅笔。

综合以上的情况可以得到这样一个结论:不论怎样把铅笔放到盒子里,总有一个盒子里至少有两支以上的铅笔……如果将100支铅笔放入99个盒子里,也总有一个盒子里至少有2只铅笔。

一般来说,如果铅笔的支数比盒子的个数多时,那么一定有一个盒子里有两支或更多的铅笔。

这就是我们要介绍的“抽屉”原理。

“抽屉原理”的第一类:把多于n支的铅笔(至少有n+1个)放进n个抽屉里,那么至少有一个抽屉里有2支或2支以上的铅笔。

一、填空题1.一个联欢会有100人参加,每个人在这个会上至少有一个朋友.那么这100人中至少有个人的朋友数目相同.2.在明年(即1999年)出生的1000个孩子中,请你预测:(1)同在某月某日生的孩子至少有个.(2)至少有个孩子将来不单独过生日.3.一个口袋里有四种不同颜色的小球.每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸次.4.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取颗.如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出颗.5.从1,2,3…,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有对.6.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有人的头发根数一样多.7.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有个.8.一付扑克牌共有54张(包括大王、小王),至少从中取张牌,才能保证其中必有3种花色.9.五个同学在一起练习投蓝,共投进了41个球,那么至少有一个人投进了个球.10.某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有名学生订的报刊种类完全相同.二、解答题11.任给7个不同的整数,求证其中必有两个整数,它们的和或差是10的倍数.12.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/50.13.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画).14.能否在8 8的棋盘上的每一个空格中分别填入数字1,或2,或3,要使每行、每列及两条对角线上的各个数字之和互不相同?请说明理由.———————————————答 案——————————————————————1. 2因为每个人至少有1个朋友,至多有99个朋友,将有1个朋友的人,2个朋友的人,…,99个朋友的人分成99类,在100个人中,总有两个人属于同一类,他们的朋友个数相同.2. (1)3;(2)636因为1999年有365天,故在1999年出生的孩子至少有313651000=+⎥⎦⎤⎢⎣⎡(个)孩子的生日相同;又因为1000-(365-1)=363,即至少有363个孩子将来不单独过生日.3. 91当摸出的2个球颜色相同时,可以有4种不同的结果;当摸出的2个球颜色不同时,最多可以有3+2+1=6(种)不同结果.一共有10种不同结果.将这10种不同结果看作10个抽屉,因为要求10次摸出结果相同,故至少要摸9⨯10+1=91(次).4. 4;7将三种不同颜色看作3个抽屉,对于第一问中为保证一次取到2颗相同颜色的珠子,一次至少要取1⨯3+1=4(颗)珠子.对于第二问为了保证一次取到两种不同颜色珠子各2颗,一次至少要取4+(1⨯2+1)=7(颗)珠子.5. 1将1~12这十二个数组成{}{}{}{}{}{}12,6,11,5,10,4,9,3,8,2,7,1这六对两数差为6的数组.任取7个数,必定有两个数差在同一组中,这一对数的差为6.6. 267将4千万人按头发的根数进行分类:0根,1根,2根…,150000根共150001类. 因为40000000=(266⨯150001)+99743>266⨯150001,故至少有一类中的人数不少于266+1=267(个),即该省至少有267个人的头发根数一样多.7. 7将每10块颜色相同的木块算作一类,共3类.把这三类看作三个抽屉,而现在要保证至少有三块同色木块在同一抽屉中,那么至少要有2⨯3+1=7(块).8. 29将4种花色看作4个抽屉,为了保证取出3张同色花,那么应取尽2个抽屉由的2⨯13张牌及大、小王与一张另一种花色牌.计共取2⨯13+2+1=29(张)才行.9. 9将5个同学投进的球作为抽屉,将41个球放入抽屉中,至少有一个抽屉中放了9个球,(否则最多只能进5⨯8=40个球).10. 6订阅报刊的种类共有7种:单订一份3种,订二份3种,订三分1种.将37名学生依他们订的报刊分成7类,至少有6人属于同一类,否则最多只有6⨯6=36(人).11. 将整数的末位数字(0~9)分成6类:{}{}{}{}{}{}.6,4,7,3,8,2,9,1,5,0在所给的7个整数中,若存在两个数,其末位数字相同,则其差是10的倍数;若此7数末位数字不同,则它们中必有两个属于上述6类中的某一类,其和是10的倍数.12. 将边长为1的正方形分成25个边条为51的正方形,在51个点中,一定有312551=+⎥⎦⎤⎢⎣⎡(个)点属于同一个小正方形.不妨设A 、B 、C 三点边长为51的小正方形EFGH 内,由于三角形ABC 的面积不大于小正方形面积EFGH 的21,又EFGH 的面积为251.故三角形ABC 的面积不大于501. 13. 考虑最极端的情况,有3个小朋友分到1本,有3个小朋友分到2本,…,有3个小朋友分到16本,最后两个小朋友分到17本,那么一共至少要3⨯(1+2+3+…+16)+2⨯17=442(本),而442>420,故一定有4个小朋友分了同样多的书.14. 注意到8行、8列及两对角线共有18条“线”,每条线上有8个数字,要使每条线上的数字和不同,也就是需要每条线上的数字和有18种以上的可能.但我们填入的数只有1、2、3三种,因此在每条线上的8个数字中,其和最小是8,最大是24,只有24-8+1=17(种).故不可能使得每行,每列及两条对角线上的各个数字之和互不相等.十八抽屉原理(二)抽屉原理还有另一种情况:如果把11个苹果放进5个抽屉,那么至少有1个抽屉要放3个或超过3个的苹果。

小学数学 抽屉原理.题完整版教案 例题+练习+作业+答案

小学数学 抽屉原理.题完整版教案 例题+练习+作业+答案

抽屉问题(1)求结论【例题1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6÷5=1......1 ,1+1=2(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.在8个鱼缸里面,每个鱼缸放一条,就是8条金鱼;还剩下的一条,任意放在这8个鱼缸其中的任意一个中,这样至少有一个鱼缸里面会放有两条金鱼.【例题2】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.属相共12个,把12个属相作为12个“抽屉”,13个同学按照自己的属相选择相应的“抽屉”,根据抽屉原理,一定有一个“抽屉”中有两个或两个以上同学,也就是说至少有两个同学属相一样.【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?一年最多有366天,把366天看作366个“抽屉”,将367名学生看作367个“苹果”.这样,把367 个苹果放进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有2名同学的生日相同.【例题3】向阳小学有730个学生,问:至少有几个学生的生日是同一天?一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为730÷366=1......364,所以,至少有1+1=2(个)学生的生日是同一天.【巩固】试说明400人中至少有两个人的生日相同.将一年中的366天或365天视为366个或365个抽屉,400个人看作400个苹果,从最极端的情况考虑,即每个抽屉都放一个苹果,还有35个或34个苹果必然要放到有一个苹果的抽屉里,所以至少有一个抽屉有至少两个苹果,即至少有两人的生日相同.【例题4】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.方法一:情况一:这三个小朋友,可能全部是男,那么必有两个小朋友都是男孩的说法是正确的;情况二:这三个小朋友,可能全部是女,那么必有两个小朋友都是女孩的说法是正确的;情况三:这三个小朋友,可能其中1男2女那么必有两个小朋友都是女孩说法是正确的;情况四:这三个小朋友,可能其中2男1女,那么必有两个小朋友都是男孩的说法是正确的.所以,三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩的说法是正确的;方法二:三个小朋友只有两种性别,所以至少有两个人的性别是相同的,所以必有两个小朋友都是男孩或者都是女孩.【例题5】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.假设共有n个小朋友到公园游玩,我们把他们看作n个“苹果”,再把每个小朋友遇到的熟人数目看作“抽屉”,那么,n个小朋友每人遇到的熟人数目共有以下n种可能:0,1,2,……,n-1.其中0的意思是指这位小朋友没有遇到熟人;而每位小朋友最多遇见n-1个熟人,所以共有n个“抽屉”.下面分两种情况来讨论:⑴如果在这n个小朋友中,有一些小朋友没有遇到任何熟人,这时其他小朋友最多只能遇上n-2个熟人,这样熟人数目只有n-1种可能:0,1,2,……,n-2.这样,“苹果”数(n个小朋友)超过“抽屉”数(n-1种熟人数目),根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.⑵如果在这n个小朋友中,每位小朋友都至少遇到一个熟人,这样熟人数目只有n-1种可能:1,2,3,……,n-1.这时,“苹果”数(n个小朋友)仍然超过“抽屉”数(n-1种熟人数目),根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.总之,不管这n个小朋友各遇到多少熟人(包括没遇到熟人),必有两个小朋友遇到的熟人数目相等.【巩固】年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.数学小组共有20名同学,因此每个同学最多有19个朋友;又由于他们都有朋友,所以每个同学至少有1个朋友.因此,这20名同学中,每个同学的朋友数只有19种可能:1,2,3,……,19.把这20名同学看作20个“苹果”,又把同学的朋友数目看作19个“抽屉”,根据抽屉原理,至少有2名同学,他们的朋友人数一样多.【例题6】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?因为任何整数除以3,其余数只可能是0,1,2三种情形.我们将余数的这三种情形看成是三个“抽屉”.一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里.将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同(需要对学生利用余数性质进行解释:为什么余数相同,则差就能被整除).这两个数的差必能被3整除.【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.想一想,不同的自然数3除的余数有几类?在这道题中,把什么当作抽屉呢?把这四个连续的自然数分别除以3,其余数不外乎是0,1,2,把这3个不同的余数当作3个“抽屉”,把这4个连续的自然数按照被3除的余数,分别放入对应的3个“抽屉”中,根据抽屉原理,至少有两个自然数在同一个抽屉里,也就是说,至少有两个自然数除以3的余数相同.【例题7】证明:任取8个自然数,必有两个数的差是7的倍数.在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数.【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。

小学奥数-抽屉原理(教师版)

小学奥数-抽屉原理(教师版)

抽屉原理如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。

如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。

如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。

这些简单内的例子就是数学中的“抽屉原理”。

抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。

这样n个抽屉中所放物品的总数就不会超过n件。

这与有多于n个物品的假设相矛盾。

说明抽屉原理1成立。

抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+l。

假定这n个抽屉中,每一个抽屉中的物品都不到(m+l)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件。

这与多于m×n件物品的假设相矛盾。

说明原来的假设不成立。

所以抽屉原理2成立。

运用抽屉原理解题的关键是选好“抽屉”,而构造“抽屉”的方法多种多样,会因题而异。

运用原理1还是原理2要看题目的问题和哪一个更直观。

抽屉原理2实际上是抽屉原理1的变形。

【例1】★某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?【解析】平年一年有365天,闰年一年有366天。

把天数看做抽屉,共366个抽屉。

把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。

【小试牛刀】某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?【解析】1992年共有366天,把它看成是366个抽屉,把370个人放入366个抽屉中,至少有一个抽屉里有两个人,因此其中至少有2个学生的生日是同一天的。

【例2】★某班学生去买语文书、数学书、外语书。

买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?【解析】首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
抽屉原则练习题
1、试说明:
⑴我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。

⑵从任意5双手套中任取6只,其中至少有2只恰为一双手套
⑶从数1,2,。。。,10中任取6个数,其中至少有2个数为奇偶性不同。
2、在2010年出生的1000个孩子中,请你预测:
(1)同在某月某日出生的孩子至少有个?

(2)至少有多少个孩子将来不单独过生日?
3、某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的
一种或几种,那么其中至少有名学生订的报刊种类完全相同?

4、一付扑克牌共有54张(包括大王、小王),至少从中取张牌,才能保证其中必有3
种花色.

5、“六一”儿童节布置会场,学校把鲜花插在9个花瓶里,最少要有多少朵鲜花才
能保证至少有一个花瓶里有6朵或6朵以上的鲜花?
2

6、幼儿园大班的老师把61件玩具分给小朋友玩,要使其中至少有一个小朋友分到
了3个玩具或3个以上的玩具,那么最多应有几个小朋友?

7、口袋中有三种颜色的筷子各10根,问:
⑴至少取多少根才能保证三种颜色都取到?

⑵至少取多少根才能保证有2双颜色不同的筷子?
⑶至少取多少根才能保证有2双颜色相同的筷子?
8、将400张卡片分给若干名同学,每人都能分到,但都不超过11张,至少有多少
名同学得到的卡片相同。

9、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的
球中有两个球的颜色相同,则最少要取出多少个球?


10.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的
点数?
3

11、一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:
一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?

12、篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意
拿两个水果,那么至少有多少个小朋友拿的水果是相同的?

13.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每
个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

14.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女
生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________
人。

15、 一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽
几张牌,才能保证有4张牌是同一种花色的?

16. 某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,
并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有___46___人带苹果。
4

17. 一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论
怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个
数是偶数,那么小明至少把这些水果分成了_______堆。

18. 有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时
候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。

相关文档
最新文档