九年级数学上册综合测试题(一)

合集下载

华师大版初中数学九上第23章综合测试试题试卷含答案1

华师大版初中数学九上第23章综合测试试题试卷含答案1

第23章综合测试一、选择题(共10小题)1.点()4,3P --所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限2.如图,矩形ABCD 的两边BC 、CD 分别在x 轴、y 轴上,点C 与原点重合,点2()1,A -,将矩形ABCD 沿x 轴向右翻滚,经过一次翻滚点A 对应点记为1A ,经过第二次翻滚点A 对应点记为2A …依此类推,经过5次翻滚后点A 对应点5A 的坐标为()A .(5,2)B .(6,0)C .(8,0)D .(8,1)3.如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可表示为()A .(0,3)B .(2,3)C .(3,2)D .(3,0)4.一个平行四边形三个顶点的坐标分别是(0,0),(2,0),(1,2),第四个顶点在x 轴下方,则第四个顶点的坐标为()A .(1,2)--B .(1,)2-C .(3,2)D .()1,2-5.如图,已知AD 是ABC △的中线,AE EF FC ==,下面给出三个关系式:①:1:2AG AD =;②:1:3GE BE =;③:4:3BE BG =,其中正确的是()A .①②③B .①②C .②③D .①③6.如图,在ABC △中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH BC ⊥于H ,16FD =,则HE 等于()A .32B .16C .8D .107.如图,在Rt ABC △中,90B ∠=︒,6AB =,8BC =,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是()A .10B .8C .6D .58.如图:已知10AB =,点C 、D 在线段AB 上且2AC DB ==;P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边AEP 和等边PFB ,连接EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是()A .5B .4C .3D .09.点5(2,)P -关于y 轴的对称点的坐标是()A .()2,5-B .(2,5)C .()5,2-D .(2,5)--10.将点1(1,)A -向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为()A .()2,1-B .(2,1)--C .(2,1)D .(2,)1-二、填空题(共8小题)11.点()2,3-=________;49的平方根为________.12.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P 的坐标是________.13.如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(2,2)--,白棋③的坐标是(1,4)--,则黑棋②的坐标是________.14.如图,在ABC △中,D ,E 分别是AB 和AC 的中点,F 是BC 延长线上一点,1CF =,DF 交CE 于点G ,且EG CG =,则BC =________.15.直角ABC △中,90BAC ∠=︒,D 、E 、F 分别为AB 、BC 、AC 的中点,已知3DF =,则AE =________.16.如图,ABC △中,D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若10AB =,8BC =,则EF 的长是________.17.若点,(3)2P a +与点1,1()Q b -+关于y 轴对称,则a b +=________.18.点4()1,A -向右平移2个单位后,再向上平移1个单位,得1A ,则1A 点的坐标为________.三、解答题(共8小题)19.已知平面直角坐标系中有一点1,23()M m m -+.(1)当m 为何值时,点M 到x 轴的距离为1?(2)当m 为何值时,点M 到y 轴的距离为2?20.如图所示,在直角坐标系中,第一次将OAB △变换成11OA B △,第二次将11OA B △变换成22OA B △,第三次将22OA B △变换成33OA B △,已知()1,3A ,1()2,3A ,2()4,3A ,3()8,3A ,()2,0B ,1()4,0B ,2()8,0B ,3()16,0B .(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律将44OA B △变换成55OA B △,则5A 的坐标是________,5B 的坐标是________.(2)若按第(1)题的规律将OAB △进行了n 次变换,得到n n OA B △,比较每次变换中三角形顶点坐标有何变化,找出规律,请推测n A 的坐标是________,n B 的坐标是________.21.如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是()2,0-,请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.22.如图所示,在ABC △中,点D 在BC 上且CD CA =,CF 平分ACB ∠,AE EB =,求证:12EF BD =.23.如图,在ABC △中,BC AC >,点D 在BC 上,且DC AC =.(1)利用直尺与圆规先作ACB ∠的平分线,交AD 于F 点,再作线段AB 的垂直平分线,交AB 于点E ,最后连接EF .(2)若线段BD 的长为6,求线段EF 的长.24.如图:E 在线段CD 上,EA 、EB 分别平分DAB ∠和CBA ∠,90AEB ∠=︒,设AD x =,BC y =,且2()340x y -+-=.(1)求AD 和BC 的长;(2)你认为AD 和BC 还有什么关系?并验证你的结论;(3)你能求出AB 的长度吗?若能,请写出推理过程;若不能,请说明理由.25.如图,在平面直角坐标系中,函数y x =的图象l 是第一、三象限的角平分线.实验与探究:由图观察易知()0,2A 关于直线l 的对称点A '的坐标为(2,0),请在图中分别标明()5,3B 、5()2,C -关于直线l 的对称点B '、C '的位置,并写出它们的坐标:B '________、C '________;归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点,()P m n 关于第一、三象限的角平分线L 的对称点P '的坐标为________.26.如图所示,在平面内有四个点,它们的坐标分别是0()1,A -,(2B +,()2,1C ,()0,1D .(1)依次连结A 、B 、C 、D ,围成的四边形是一个________形;(2)求这个四边形的面积;(3第23章综合测试答案解析一、1.【答案】C【解析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.解:因为点()4,3P --所横纵坐标分别为(负,负),符合在第三象限的条件.故选:C .2.【答案】D【解析】根据题意可以画出相应的图形,然后观察图形即可得到经过5次翻滚后点A 对应点A 5的坐标,从而解答本题.解:如下图所示:由题意可得上图,经过5次翻滚后点A 对应点5A 的坐标对应上图中的坐标,故5A 的坐标为:(8,1).故选项A 错误,选项B 错误,选项C 错误,选项D 正确.故选:D .3.【答案】C【解析】根据已知两点坐标建立坐标系,然后确定其它点的坐标.解:用(0,0)表示A 点,(0,4)表示B 点,则以点A 为坐标原点,AB 所在直线为y 轴,向上为正方向,x 轴是过A 点的水平直线,向右为正方向.所以点C 的坐标为(3,2).故选:C .4.【答案】B【解析】根据点在坐标可知,过(0,0),(2,0)的直线平行与x 轴且距离为2,第四个顶点在x 轴下方,所以平行四边形的对角线互相垂直平分,即第四个顶点的坐标为(1,)2-.解:根据题意可作图(如图),点在坐标可知,因为()1,2B ,而第四个顶点在x 轴下方,所以平行四边形的对角线互相垂直平分,即B 点、D 点关于x 轴对称,点D 的坐标为(1,)2-,故选B .5.【答案】D【解析】根据已知对各个关系式进行分析,从而得到正确的选项.解:AD 是ABC △的中线,BD DC ∴=,EF FC = ,DF ∴为CBE △的中位线,DF BE ∴∥,CDF CBE ∴△∽△,AGE ADF △∽△,::1:2GE DF AG AD ∴==,:1:2DF BE =,:1:4GE BE ∴=,:4:3BE BG ∴=,∴①③正确故选:D .6.【答案】B【解析】根据三角形中位线定理求出AC ,根据直角三角形的性质计算即可.解:D ,F 分别为BC ,AB 边的中点,232AC DF ∴==,AH BC ⊥ ,90AHC ∴∠=︒,又E 为AC 边的中点,1162HE AC ∴==.故选:B .7.【答案】C【解析】平行四边形ADCE 的对角线的交点是AC 的中点O ,当OD BC ⊥时,OD 最小,即DE 最小,根据三角形中位线定理即可求解.解:平行四边形ADCE 的对角线的交点是AC 的中点O ,当OD BC ⊥时,OD 最小,即DE 最小.OD BC ⊥ ,BC AB ⊥,OD AB ∴∥,又OC OA = ,OD ∴是ABC △的中位线,132OD AB ∴==,26DE OD ∴==.故选:C .8.【答案】C【解析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.解:如图,分别延长AE 、BF 交于点H .60A FPB ∠=∠=︒ ,AH PF ∴∥,60B EPA ∠=∠=︒ ,BH PE ∴∥,∴四边形EPFH 为平行四边形,EF ∴与HP 互相平分.G 为EF 的中点,G ∴也正好为PH 中点,即在P 的运动过程中,G 始终为PH 的中点,所以G 的运行轨迹为三角形HCD 的中位线MN ,10226CD =--= ,3MN ∴=,即G 的移动路径长为3.故选:C .9.【答案】D【解析】熟悉:平面直角坐标系中任意一点,()P x y ,关于y 轴的对称点的坐标是()x y -,.解:点5(2)P -,关于y 轴的对称点的坐标是:(25)--,.故选:D .10.【答案】A【解析】让A 点的横坐标减3,纵坐标加2即为点B 的坐标.解:由题中平移规律可知:点B 的横坐标为132-=-;纵坐标为121-+=,∴点B 的坐标是(21)-,.故选:A .二、11.【答案】二0.1-23±【解析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得答案;根据开立方运算,可得答案;根据开平方运算,可得答案.解:点(23)-,在第0.1=-;的平方根为23±.故答案为:二,0.1-,23±.12.【答案】(2018)0,【解析】利用点的坐标变换得到点的横坐标与运动的次数相同,纵坐标为1,0,2,0循环,则利用201845042=⨯+可确定第2018次运动后的纵坐标,问题得解.解:点P 坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则201850442=⨯+,所以,前504次循环运动点P 共向右运动50442016⨯=个单位,剩余两次运动向右走2个单位,且在x 轴上,故点P 坐标为(2018)0,故答案为:(2018)0,.13.【答案】(1)3-,【解析】以白棋①向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出黑棋②的坐标即可.解:建立平面直角坐标系如图,黑棋②的坐标是(1)3-,.故答案为:(1)3-,.14.【答案】2【解析】通过全等三角形DEG △和FCG △,可得出1CF DE ==;根据DE 是ABC △的中位线,可求出:1:2DE BC =.解:D 、E 分别是AB 和AC 的中点DE BC ∴∥,12DE BC =,ADE ABC ∴△∽△,GED GCF △≌△,1DE CF ∴==,12CF BC ∴=,2BC ∴=.故答案为2.15.【答案】3【解析】由三角形中位线定理得到12DF BC =;然后根据直角三角形斜边上的中线等于斜边的一半得到12AE BC =,则DF AE =.解:如图, 在直角ABC △中,90BAC ∠=︒,D 、F 分别为AB 、AC 的中点,DF ∴是ABC △的中位线,12DF BC ∴=,又 点E 是直角ABC △斜边BC 的中点,12AE BC ∴=,3DF = ,DF AE ∴=.故填:3.16.【答案】1【解析】根据三角形中位线定理求出DE 、DE AB ∥,根据平行线的性质、角平分线的定义得到4DF DB ==,计算即可.解:D 、E 分别是BC 、AC 的中点,152DE AB ∴==,DE AB ∥,142BD BC ==,ABF DFB ∴∠=∠,BF 平分ABC ∠,ABF DBF ∴∠=∠,DBF DFB ∴∠=∠,4DF DB ∴==,1EF DE DF ∴=-=.故答案为:1.17.【答案】1【解析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”列方程求出a 、b ,然后相加计算即可得解.解: 点2()3P a +,与点()11Q b -+,关于y 轴对称,21a ∴+=,13b +=,解得1a =-,2b =,所以1)21(a b +=-+=.故答案为:1.18.【答案】(1)5,【解析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算.解:点()14A -,向右平移2个单位后,再向上平移1个单位,得1A ,则1A 点的坐标为12,1()4-++,即(1)5,.故答案为:(1)5,.三、19.【答案】解:(1)||231m += ,231m +=或231m +=-,1m ∴=-或2m =-;(2)2|1|m -= 12m -=或12m -=-,3m ∴=或1m =-.【解析】(1)让纵坐标的绝对值为1列式求值即可;(2)让横坐标的绝对值为2列式求值即可.20.【答案】(1)(32,3)(64,0)(2)(2),3n 1(20),n +【解析】(1)对于1A ,2A ,n A 坐标找规律可将其写成竖列,比较从而发现n A 的横坐标为2n ,而纵坐标都是3,同理1B ,2B ,n B 也一样找规律.解:因为()1,3A ,1()2,3A ,2()4,3A ,3()8,3A …纵坐标不变为3,同时横坐标都和2有关,为2n ,那么5()32,3A ;因为()2,0B ,1()4,0B ,2()8,0B ,3()16,0B …纵坐标不变,为0,同时横坐标都和2有关为12n +,那么B 的坐标为5()64,0B ;故答案为:(32,3),(64,0);(2)根据第一问得出总结规律即可知A 的坐标是(2),3n ,B 的坐标是1(20),n +.解:由上题第一问规律可知n A 的纵坐标总为3,横坐标为2n ,n B 的纵坐标总为0,横坐标为12n +,n A ∴的坐标是(2),3n ,n B 的坐标是1(20),n +.故答案为:(2),3n ,1(20),n +.21.【答案】解:建立如图所示的平面直角坐标系:小广场(0,0)、雷达(4,0)、营房(2,)3-、码头(1,2)--.【解析】建立直角坐标系的关键是确定原点,x 轴和y 轴,确定单位长度即可得出答案.22.【答案】证明:CD CA = ,CF 平分ACB ∠,F ∴是AD 中点,AE EB = ,E ∴是AB 中点,EF ∴是ABD △的中位线,12EF BD ∴=.【解析】首先根据等腰三角形的性质可得F 是AD 中点,再根据三角形的中位线定理可得12EF BD =.23.【答案】解:(1)所作图形如下:(2)CF 平分ACB ∠,ACF BCF ∴∠=∠,又DC AC = ,CF ∴是ACD △的中线∴点F 是AD 的中点点E 是AB 的垂直平分线与AB 的交点∴点E 是AB 的中点EF ∴是ABD △中位线132EF BD ∴==.【解析】(1)用圆规在角的两边上分别截取相等的线段,以交点为圆心,大于两交点之间的距离的一半为半径画弧交于一点,连接顶点及交点即可得到角的平分线.(2)连接CE ,根据三角形中位线定理及角平分线的性质可以判定EF 是三角形的中位线,从而求出中位线的长.24.【答案】解:(1)AD x = ,BC y =,且2()340x y -+-=,3AD ∴=,4BC =.(2)AD BC ∥,理由是: 在AEB △中,90AEB ∠=︒,90EAB EBA ∴∠+∠=︒,又EA 、EB 分别平分DAB ∠和CBA ∠,180DAB ABC ∴∠+∠=︒.AD BC ∴∥.(3)能.如图,过E 作EF AD ∥,交AB 于F ,AD BC ∥(已证),EF AD ∥,AD EF BC ∴∥∥,则DAE AEF ∠=∠,EBC BEF ∠=∠,EA 、EB 分别平分DAB ∠和CBA ∠,EAF AEF ∴∠=∠,EBF BEF ∠=∠,AF EF FB ∴==,又EF AD BC ∥∥,EF ∴是梯形ABCD 的中位线,722AD BC EF +∴==,7AB ∴=.【解析】(1)根据题意可知30x -=,40y -=,易求解AD 和BC 的长;(2)根据90AEB ∠=︒,可得90EAB EBA ∠+∠=︒,因为EA 、EB 分别平分DAB ∠和CBA ∠,则180DAB ABC ∠+∠=︒,所以AD BC ∥;(3)如图,过E 作EF AD ∥,交AB 于F ,则DAE AEF ∠=∠,EBC BEF ∠=∠,因为EA 、EB 分别平分DAB ∠和CBA ∠,所以AF EF FB ==,再根据梯形中位线定理易求AB 的长.25.【答案】5()3,B ')2(5,C '-(),n m 【解析】根据平面直角坐标系内关于y x =对称的点的坐标的特点,横坐标变为纵坐标,纵坐标变为横坐标,即可得出答案.实验与探究:如图:5()3,B ',)2(5,C '-,归纳与发现:结合图形观察以上三组点的坐标可知坐标平面内任一点,()P m n 关于第一、三象限的角平分线L 的对称点P '的坐标为(),n m .26.【答案】(1)梯(2)),(10A - ,(2B +,()2,1C ,()0,1D ,3AB ∴=,2CD =,∴四边形ABCD 的面积1153()(32)1222AB CD OD =+⋅=+⨯=;(3)'(1A --,'(2,0)B ,'(2C ,'(D .【解析】(1)顺次连接AB 、BC 、CD 、DA ,结合图形可得四边形BCD 是梯形;解:如图所示;依次连结A 、B 、C 、D ,围成的四边形是一个梯形.故答案为梯;(2)求出AB 和CD 的长,根据梯形的面积计算公式求解即可;(3)将四边形各顶点的横坐标减去。

九年级数学上册第一章综合练习1新版新人教版

九年级数学上册第一章综合练习1新版新人教版

第一章特殊平行四边形总分120分120分钟一.选择题(共8小题,每题3分)1.在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D作DH⊥AB于H,则DH的长是()A.7.5 B.7 C.6.5 D.5.52.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个3.不能判断四边形ABCD是矩形的是(0为对角线的交点)()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.ABCD,AC=BD D.ABCD,OA=OC,OB=OD4.如图,在四边形ABCD中,AB=CD,AC⊥BD,添加适当的条件使四边形ABCD成为菱形.下列添加的条件不正确的是()A.AB∥CD B.AD=BC C.BD=AC D.BO=DO5.能判定四边形ABCD是菱形的条件是()A.对角线AC平分对角线BD,且AC⊥BDB.对角线AC平分对角线BD,且∠A=∠CC.对角线AC平分对角线BD,且平分∠A和∠CD.对角线AC平分∠A和∠C,且∠A=∠C6.已知如图,在矩形ABCD中有两个一条边长为1的平行四边形.则它们的公共部分(即阴影部分)的面积是()A.大于1 B.等于1 C.小于1 D.小于或等于17.矩形各内角的平分线能围成一个()A.矩形 B.菱形 C.等腰梯形 D.正方形8.如果一个平行四边形要成为正方形,需增加的条件是()A.对角线互相垂直且相等 B.对角线互相垂直C.对角线相等D.对角线互相平分二.填空题(共6小题,每题3分)9.如图,凸五边形ABCDE中,∠A=∠B=120°,EA=AB=BC=2,CD=DE=4,则它的面积为_________ .10.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是_________A、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④11._________ 的矩形是正方形,_________ 的菱形是正方形.12.若四边形ABCD是矩形,请补充条件_________ (写一个即可),使矩形ABCD是正方形.13.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:_________ ;②如果要得到菱形AEDF,那么△ABC应具备条件:_________ .14.在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件_________ 时,四边形PEMF为矩形.三.解答题(共11小题)15.(6分)如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.求证:四边形EFGH是正方形.16.(6分)已知:如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.①试说明四边形AEDF的形状,并说明理由.②连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?③在②的条件下,当△ABC满足什么条件时,四边形AEDF为正方形,不说明理由.17.(6分)已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE 于点E,求证:四边形ADCE是矩形.18.(6分)已知:如图,M为▱ABCD的AD边上的中点,且MB=MC,求证:▱ABCD是矩形.19.(6分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠C=45°,BC=4,AD=2.求四边形ABCD的面积.20.(8分)如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG⊥AD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?21.(8分)如图,E是等边△ABC的BC边上一点,以AE为边作等边△AEF,连接CF,在CF延长线取一点D,使∠DAF=∠EFC.试判断四边形ABCD的形状,并证明你的结论.22.(8分)如图,矩形ABCD的对角线AC、BD相交于点0,BE∥AC,EC∥BD,BE、EC相交于点E.试说明:四边形OBEC是菱形.23.(8分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,判断四边形CODE 的形状,并计算其周长.24.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.(1)求证:四边形BMDN是菱形;(2)若AB=6,BC=8,求MD的长.25.(8分)如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.第十九章矩形,菱形与正方形章末测试(一)参考答案与试题解析一.选择题(共8小题)1.在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D作DH⊥AB于H,则DH的长是()A.7.5 B.7 C.6.5 D.5.5考点:矩形的判定与性质;含30度角的直角三角形.专题:几何综合题.分析:过C作DH的垂线CE交DH于E,证明四边形BCEH是矩形.所以求出HE的长;再求出∠DCE=30°,又因为CD=11,所以求出DE,进而求出DH的长.解答:解:过C作DH的垂线CE交DH于E,∵DH⊥AB,CB⊥AB,∴CB∥DH又CE⊥DH,∴四边形BCEH是矩形.∵HE=BC=2,在Rt△AHD中,∠A=60°,∴∠ADH=30°,又∵∠ADC=90°∴∠CDE=60°,∴∠DCE=30°,∴在Rt△CED中,DE=CD=5.5,∴DH=2+5.5=7.5.故选A.点评:本题考查了矩形的判定和性质,直角三角形的一个重要性质:30°的锐角所对的直角边是斜边的一半;以及勾股定理的运用.2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个考点:矩形的判定与性质.分析:直接利用矩形的性质与判定定理求解即可求得答案.解答:解:①矩形是轴对称图形,两组对边的中点的连线所在的直线是它的对称轴,故错误;②两条对角线相等的平行四边形是矩形,故错误;③有两个邻角相等的平行四边形是矩形,故错误;④两条对角线相等且互相平分的四边形是矩形;正确;⑤两条对角线互相垂直平分的四边形是菱形;故错误.故选A.点评:此题考查了矩形的性质与判定定理.此题难度不大,注意熟记定理是解此题的关键.3.不能判断四边形ABCD是矩形的是(0为对角线的交点)()A.AB=CD,AD=BC,∠A=90° B. OA=OB=OC=ODC.ABCD,AC=BD D.ABCD,OA=OC,OB=OD考点:矩形的判定.分析:矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.据此判断.解答:解:A、由“AB=CD,AD=BC”可以判定四边形ABCD是平行四边形,又∠BAD=90°,则根据“有一个角是直角的平行四边形是矩形”可以判定平行四边形ABCD是矩形,故本选项不符合题意;B、根据“对角线互相平分且相等的四边形是矩形”可以判定平行四边形ABCD是矩形,故本选项不符合题意;C、根据ABCD得到四边形是平行四边形,根据AC=BD,利用对角线相等的平行四边形是矩形,故本选项不符合题意;D、只能得到四边形是平行四边形,故本选项符合题意;故选:D.点评:本题考查的是矩形的判定定理,但考生应注意的是由矩形的判定引申出来的各图形的判定.难度一般.4.如图,在四边形ABCD中,AB=CD,AC⊥BD,添加适当的条件使四边形ABCD成为菱形.下列添加的条件不正确的是()A.AB∥CD B.AD=BC C.BD=AC D.B O=DO考点:菱形的判定.分析:通过菱形的判定定理进行分析解答.解答:解:A项根据对角线互相垂直的平行四边形是菱形这一定理可以推出四边形ABCD为菱形,故本选项错误,B项根据对角线互相垂直的平行四边形是菱形这一定理可以推出四边形ABCD为菱形,故本选项错误,C项根据题意还可以推出四边形ABCD为等腰梯形,故本选项正确,D项根据题意可以推出Rt△AOD≌Rt△COB,即可推出OA=OC,再根据对角线互相垂直且平分的四边形是菱形这一定理推出四边形ABCD为菱形,故本选项错误,故选择C.点评:本题主要考查菱形的判定,关键在于熟练掌握菱形的判定定理.5.能判定四边形ABCD是菱形的条件是()A.对角线AC平分对角线BD,且AC⊥BDB.对角线AC平分对角线BD,且∠A=∠CC.对角线AC平分对角线BD,且平分∠A和∠CD.对角线AC平分∠A和∠C,且∠A=∠C考点:菱形的判定.专题:推理填空题.分析:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.据此判断即可.解答:解:A、C的反例如图,AC垂直平分BD,但AO≠OC;B只能确定为平行四边形.故选D.点评:主要考查了菱形的判定.菱形的特性:菱形的四条边都相等;菱形的对角线互相垂直平分,且每一条对角线平分一组对角.6.已知如图,在矩形ABCD中有两个一条边长为1的平行四边形.则它们的公共部分(即阴影部分)的面积是()A.大于1 B.等于1 C.小于1 D.小于或等于1考点:菱形的判定与性质.分析:利用割补法得出阴影部分面积为四边形EFMN的面积,进而利用直角三角形的性质得出EG <1,即可得出答案.解答:解:如图所示:作EN∥AB,FM∥CD,过点E作EG⊥MN于点G,可得阴影部分面等于四边形EFMN的面积,则四边形EFMN是平行四边形,且EN=FM=1,∵EN=1,∴EG<1,∴它们的公共部分(即阴影部分)的面积小于1.故选:C.点评:此题主要考查了平行四边形的性质以及平行四边形面积求法,得出阴影部分面等于四边形EFMN的面积是解题关键.7.矩形各内角的平分线能围成一个()A.矩形B.菱形C.等腰梯形D.正方形考点:正方形的判定;矩形的性质.分析:根据矩形的性质及角平分线的性质进行分析即可.解答:解:矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.故选:D.点评:此题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角8.如果一个平行四边形要成为正方形,需增加的条件是()A.对角线互相垂直且相等B.对角线互相垂直 C.对角线相等D.对角线互相平分考点:正方形的判定;平行四边形的性质.分析:根据正方形的判定:对角线相等且互相垂直平分的四边形是正方形对各个选项进行分析.解答:解:A、对角线相等的平行四边形是矩形,而对角线互相垂直的平行四边形是菱形,同时具有矩形和菱形的性质的平行四边形是正方形,故本选项正确;B、对角线互相垂直的平行四边形是菱形,而非正方形,故本选项错误;C、对角线相等的平行四边形是矩形,故本选项错误;D、平行四边形的对角线都互相平分,这是平行四边形的性质.故本选项错误;故选A.点评:此题主要考查正方形的判定:对角线相等的菱形是正方形.二.填空题(共6小题)9.如图,凸五边形ABCDE中,∠A=∠B=120°,EA=AB=BC=2,CD=DE=4,则它的面积为7 .考点:菱形的判定与性质;等边三角形的判定与性质.专题:计算题.分析:作辅助线延长EA,BC相交于点F,CG⊥EF于G,BH⊥EF于H,因为∠EAB=∠CBA=120°,可得∠FAB=∠FBA=60°,可得△FAB为等边三角形,容易证明四边形EFCD是菱形,所以S ABCDE=S CDEF﹣S△ABF由此即可求解.解答:解:如图,延长EA,BC相交于点F,CG⊥EF于G,BH⊥EF于H,因为∠EAB=∠CBA=120°,所以∠FAB=∠FBA=60°,所以△FAB为等边三角形,AF=FB=AB=2,所以CD=DE=EF=FC=4,所以四边形EFCD是菱形,所以S ABCDE=S CDEF﹣S△ABF点评:本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.10.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是 CA、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④考点:正方形的判定与性质;全等三角形的判定与性质;菱形的判定与性质;矩形的判定与性质.专题:证明题.分析:根据矩形、菱形、正方形的判定定理,对角线互相平分的四边形为平行四边形,再由邻边相等,得出是菱形,和一个角为直角得出是正方形,根据已知对各个选项进行分析从而得到最后的答案.解答:解:A、由①④得,一组邻边相等的矩形是正方形,故正确;B、由③得,四边形是平行四边形,再由①,一组邻边相等的平行四边形是菱形,故正确;C、由①②不能判断四边形是正方形;D、由③得,四边形是平行四边形,再由②,一个角是直角的平行四边形是矩形,故正确.故选C.点评:此题用到的知识点是:矩形、菱形、正方形的判定定理,如:一组邻边相等的矩形是正方形;对角线互相平分且一组邻边相等的四边形是菱形;对角线互相平分且一个角是直角的四边形是矩形.灵活掌握这些判定定理是解本题的关键.11.有一组邻边相等的矩形是正方形,有一个角为直角的菱形是正方形.考点:正方形的判定.分析:根据正方形的判定定理(有一组邻边相等的矩形是正方形,有一个角为直角的菱形是正方形)求解即可求得答案.解答:解:有一组邻边相等的矩形是正方形,有一个角为直角的菱形是正方形.故答案为:有一组邻边相等,有一个角为直角.点评:此题考查了正方形的判定.此题比较简单,注意熟记定理是解此题的关键.12.若四边形ABCD是矩形,请补充条件此题答案不唯一,如AC⊥BD或AB=AD等(写一个即可),使矩形ABCD是正方形.考点:正方形的判定.专题:开放型.分析:由四边形ABCD是矩形,根据邻边相等的矩形是正方形或对角线互相垂直的矩形是正方形,即可求得答案.解答:解:∵四边形ABCD是矩形,∴当AC⊥BD或AB=AD时,矩形ABCD是正方形.故答案为:此题答案不唯一,如AC⊥BD或AB=AD等.点评:此题考查了正方形的判定.此题比较简单,注意熟记定理是解此题的关键.13.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:∠BAC=90°;②如果要得到菱形AEDF,那么△ABC应具备条件:AD平分∠BAC.考点:菱形的判定;矩形的判定.分析:已知DE∥AB,DF∥AC,则有四边形AEDF是平行四边形.①因为有一直角的平行四边形是矩形,可添加条件:∠BAC=90°;②邻边相等的平行四边形是菱形,可添加条件:AD平分∠BAC.解答:解:∵DE∥AB,DF∥AC,AF、AE分别在AB、AC上∴DE∥AF,DF∥AE∴四边形AEDF是平行四边形①∵∠BAC=90°∴四边形AEDF是矩形;②∵AD是△ABC的角平分线,∴∠DAE=∠DAF∴∠ADE=∠DAE∴AE=DE∴▱AEDF是菱形.故答案为∠BAC=90°,AD平分∠BAC.点评:本题考查菱形和矩形的判定.本题是开放题,可以针对各种特殊的平行四边形的判定方法,给出条件,再证明结论.答案可以有多种,主要条件明确,说法有理即可.14.在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件AB=BC 时,四边形PEMF为矩形.考点:矩形的判定与性质.分析:根据已知条件、矩形的性质和判定,欲证明四边形PEMF为矩形,只需证明∠BMC=90°,易得AB=BC时能满足∠BMC=90°的条件.解答:解:AB=BC时,四边形PEMF是矩形.∵在矩形ABCD中,M为AD边的中点,AB=BC,∴AB=DC=AM=MD,∠A=∠D=90°,∴∠ABM=∠MCD=45°,∴∠BMC=90°,又∵PE⊥MC,PF⊥MB,∴∠PFM=∠PEM=90°,∴四边形PEMF是矩形.点评:此题考查了矩形的判定和性质的综合应用,是一开放型试题,是中考命题的热点.三.解答题(共11小题)15.如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.求证:四边形EFGH是正方形.考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析:此题先根据正方形ABCD的性质,可证△AEH≌△CGF≌△DHG(SAS),得四边形EFGH为菱形,再求一个角是直角从而证明它是正方形.解答:证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠EBF=∠HAE=∠GDH=∠FC G,又∵BE=CF=DG=AH,∴CG=DH=AE=BF∴△AEH≌△CGF≌△DHG,∴EF=FG=GH=HE,∠EFB=∠HEA,∴四边形EFGH为菱形,∵∠EFB+∠FEB=90°,∠EFB=∠HEA,∴∠FEB+∠HEA=90°,∴四边形EFGH是正方形.点评:本题主要考查了正方形的判定方法:一角是直角的菱形是正方形.16.已知:如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.①试说明四边形AEDF的形状,并说明理由.②连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?③在②的条件下,当△ABC满足什么条件时,四边形AEDF为正方形,不说明理由.考点:正方形的判定;平行四边形的判定;菱形的判定.分析:①根据DE∥AC,DF∥AB可判断四边形AEDF为平行四边形;②由四边形AEDF为菱形,能得出AD为∠BAC的平分线即可;③由四边形AEDF为正方形,得∠BAC=90°,即当△ABC是以BC为斜边的直角三角形即可.解答:解:①∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形;②∵四边形AEDF为菱形,∴AD平分∠B AC,则AD平分∠BAC时,四边形AEDF为菱形;③由四边形AEDF为正方形,∴∠BAC=90°,∴△ABC是以BC为斜边的直角三角形即可.点评:本题考查了正方形的性质、菱形的性质、平行四边形的性质以及矩形的性质.17.已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.考点:矩形的判定.分析:首先利用外角性质得出∠B=∠ACB=∠FAE=∠EAC,进而得到AE∥CD,即可求出四边形AEDB 是平行四边形,再利用平行四边形的性质求出四边形ADCE是平行四边形,即可求出四边形ADCE是矩形.解答:证明:∵AB=AC,∴∠B=∠ACB,∵AE是∠BAC的外角平分线,∴∠FAE=∠EAC,∵∠B+∠ACB=∠FAE+∠EAC,∴∠B=∠ACB=∠FAE=∠EAC,∴AE∥CD,又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD,又∵BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形,又∵∠ADC=90°,∴平行四边形ADCE是矩形.即四边形ADCE是矩形.点评:此题主要考查了平行四边形的判定与性质以及矩形的判定,灵活利用平行四边形的判定得出四边形AEDB是平行四边形是解题关键.18.已知:如图,M为▱ABCD的AD边上的中点,且MB=MC,求证:▱ABCD是矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:根据平行四边形的两组对边分别相等可知△ABM≌△DCM,可知∠A+∠D=180°,所以是矩形.解答:证明:∵四边形ABCD是平行四边形,∵AM=DM,MB=MC,∴△ABM≌△DCM.∴∠A=∠D.∵AB∥CD,∴∠A+∠D=180°.∴∠A=90°.∴▱ABCD是矩形.点评:此题主要考查了矩形的判定,即有一个角是90度的平行四边形是矩形.19.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠C=45°,BC=4,AD=2.求四边形ABCD的面积.考点:矩形的判定与性质;等腰直角三角形.分析:如上图所示,延长AB,延长DC,相交于E点.△ADE是等腰直角三角形,AD=DE=2,则可以求出△ADE的面积;∠C=∠AED=45度,所以△CBE是等腰直角三角形,BE=CB=4厘米,则可以求出△CBE 的面积;那么四边形ABCD的面积是两个三角形的面积之差.解答:解:延长AB,延长DC,相交于E点,得到两个等腰直角三角形△ADE和△CBE,由等腰直角三角形的性质得:DE=AD=2,BE=CB=4,那么四边形ABCD的面积是:4×4÷2﹣2×2÷2=8﹣2=6.答:四边形ABCD的面积是6.点评:此题考查了等腰直角三角形的性质以及三角形的面积公式的运用,解题的关键是作延长线,找到交点,组成新图形,是解决此题的关键.20.如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG⊥AD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?考点:矩形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.专题:证明题.分析:先根据题意推理出四边形AFCG是矩形,然后根据矩形的性质得到对角线相等;由第一问的结论和AC⊥FG得到四边形AFCG是正方形,然后即可得到△ABC是等腰直角三角形.解答:(1)证明:∵AD平分∠EAC,且AD∥BC,∴∠ABC=∠EAD=∠CAD=∠ACB,∴AB=AC;AF是BC边上的中线,∴AF⊥BC,∵CG⊥AD,AD∥BC,∴AF∥CG,∴四边形AFCG是平行四边形,∵∠AFC=90°,∴四边形AFCG是矩形;∴AC=FG.(2)解:当AC⊥FG时,△ABC是等腰直角三角形.理由如下:∵四边形AFCG是矩形,∴四边形AFCG是正方形,∠ACB=45°,∵AB=AC,∴△ABC是等腰直角三角形.点评:该题目考查了矩形的判定和性质、正方形的判定和性质、等腰三角形的性质,知识点比较多,注意解答的思路要清晰.21.如图,E是等边△ABC的BC边上一点,以AE为边作等边△AEF,连接CF,在CF延长线取一点D,使∠DAF=∠EFC.试判断四边形ABCD的形状,并证明你的结论.考点:菱形的判定;全等三角形的判定与性质;等边三角形的性质.专题:证明题.分析:在已知条件中求证全等三角形,即△BAE≌△CAF,△AEC≌△AFD,从而得到△ACD和△ABC 都是等边三角形,故可根据四条边都相等的四边形是菱形判定.解答:解:四边形ABCD是菱形.证明:在△ABE、△ACF中∵AB=AC,AE=AF∠BAE=60°﹣∠EAC,∠CAF=60°﹣∠EAC∴∠BAE=∠CAF∴△BAE≌△CAF∵∠CFA=∠CFE+∠EFA=∠CFE+60°∠BEA=∠ECA+∠EAC=∠EAC+60°∴∠EAC=∠CFE∵∠DAF=∠CFE∴∠EAC=∠DAF∵AE=AF,∠AEC=∠AFD∴△AEC≌△AFD∴AC=AD,且∠D=∠ACE=60°∴△ACD和△ABC都是等边三角形∴四边形ABCD是菱形.点评:本题考查了菱形的判定、等边三角形的性质和全等三角形的判定,学会在已知条件中多次证明三角形全等,寻求角边的转化,从而求证结论.22.如图,矩形ABCD的对角线AC、BD相交于点0,BE∥AC,EC∥BD,BE、EC相交于点E.试说明:四边形OBEC是菱形.考点:菱形的判定;矩形的性质.专题:证明题.分析:在矩形ABCD中,可得OB=OC,由BE∥AC,EC∥BD,所以四边形OBEC是平行四边形,两个条件合在一起,可得出其为菱形.解答:证明:在矩形ABCD中,AC=BD,∴OB=OC,∵BE∥AC,EC∥BD,∴四边形OBEC是平行四边形,∴四边形OBEC是菱形.点评:熟练掌握菱形的性质及判定定理.23.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,判断四边形CODE的形状,并计算其周长.考点:菱形的判定与性质;矩形的性质.分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.解答:解:∵CE∥BD,DE∥A C,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故答案为:8.点评:此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.24.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.(1)求证:四边形BMDN是菱形;(2)若AB=6,BC=8,求MD的长.考点:菱形的判定与性质;线段垂直平分线的性质;矩形的性质.分析:(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=(8﹣x)2+62,求出即可.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,在△DMO和△BNO中,,∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+62,解得:x=.答:MD长为.点评:本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用.注意对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.25.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.考点:正方形的判定与性质;全等三角形的判定与性质.专题:动点型.分析:(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形,故可根据正方形的定义证明四边形PQEF是否使正方形.(2)证PE是否过定点时,可连接AC,证明四边形APCE为平行四边形,即可证明PE过定点.解答:解:(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴BP=QC=ED=FA.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB.∴四边形PQEF是菱形,∵∠FPQ=90°,∴四边形PQEF为正方形.(2)连接AC交PE于O,∵AP平行且等于EC,∴四边形APCE为平行四边形.∵O为对角线AC的中点,∴对角线PE总过AC的中点.点评:在证明过程中,应了解正方形和平行四边形的判定定理,为使问题简单化,在证明过程中,可适当加入辅助线.。

九年级数学上册期末复习综合测试题(含答案)

九年级数学上册期末复习综合测试题(含答案)

(第4题)九年级数学上册期末复习综合测试题(含答案)一、选择题(本大题共6小题,每小题2分,共12分.) 1.一元二次方程 x 2=x 的根是( )A .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=x 2=0D .x 1=x 2=12.一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为( )A .12B .23C .15D .253.若一组数据 2,3,4,5,x 的方差比另一组数据 5,6,7,8,9 的方差大,则 x 的值可能是( ) A .1B .4C .6D .84.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则 ∠AOB 的度数是( )A .70°B .72°C .74°D .76°5.若关于x 的一元二次方程ax 2+k =0的一个根为2,则二次函数y =a (x +1)2+k 与x 轴的交点坐标为( ) A .(-3,0)、(1,0) B .(-2,0)、(2,0) C .(-1,0)、(1,0)D .(-1,0)、(3,0)6.如图,在Rt △ABC ,∠ACB =90°,AC =4,BC =3,点D ,E 分别在AB ,AC 上,连接DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分∠EFB ,则AD 的长为( ) A . 157B .207C .258D .259二、填空题(本大题共10小题,每小题2分,共20分.) 7(第12题)l 1 l 2l 3A BCEFD (第11题)8.若a b =43,则a -b b= .9.设x 1、x 2是方程x 2+mx -m +3=0的两个根,则x 1+x 2-x 1x 2= .10.把抛物线y =-x 2向左平移2个单位,然后向上平移3个单位,则平移后该抛物线相应的函数表达式为 .11.如图,l 1∥l 2∥l 3,若AD =1,BE =3,CF =6,则ABBC的值为 .12.如图,点A 、B 、C 在⊙O 上,⊙O 的半径为3,∠AOC =的长为 . 13.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是 .14.如图,弦AB 是⊙O 的内接正六边形的一边,弦AC 是⊙O 的内接正方形的一边,若 BC =2+23,则⊙O 的半径为 .15.如图,正方形ABCD 的边长是4,点E 在DC 上,点F 在AC 上,∠BFE =90°,若 CE =116.如图,在矩形ABCD 中,AB =2,AD =4,点E 、F 分别为AD 、CD 边上的点,且EF 的长为2,点G 为EF 的中点,点P 为BC 上一动点,则P A +PG 的最小值为 . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x 2-4x -5=0; (2)x 2-4=2x (x -2).18.(8分)甲乙两人在相同条件下完成了5次射击训练,两人的成绩(单位:环)如下(1)甲射击成绩的中位数为 环,乙射击成绩的众数为 环;(2)计算两人射击成绩的方差;(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?19.(8分)某校开展秋季运动会,需运动员代表进行发言,从甲、乙、丙、丁四名运动员中随机抽取.(1)若随机抽取1名,甲被抽中的概率为 ; (2)若随机抽取2名,求甲在其中的概率.20.(7分)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且∠BCE +∠BDE =180°. (1)求证:△ADE ∽△ACB ;(2)连接BE 、CD ,求证:△AEB ∽△ADC .21.(8分)如图是二次函数y =-x 2+bx +c 的图像. (1)求该二次函数的关系式及顶点坐标; (2)当y >0时 x 的取值范围是 ;(3)当m <x <m +4时,-5<y ≤4,则m 的值为 .22.(7分)在Rt △ABC ,∠BAC =90°,AB =AC ,D 、E、F 分别为BC 、AB 、AC 边上的点,且∠EDF =45°.(1)求证:△EBD ∽△DCF ;(2)当D 是BC 的中点时,连接EF ,若CF =5,DF =4,则EF 的长为 .23.(8分)某超市销售一种商品,成本为每千克50元.当每千克售价60元时,每天的销售量为60千克,经市场调查,当每千克售价增加1元,每天的销售量减少2千克. (1)为保证某天获得750元的销售利润,则该天的销售单价应定为多少? (2)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?24.(8分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点P ,连接BC ,过点D 作DE ⊥CD ,交⊙O 于点E ,连接AE ,F 是DE 延长线上一点,且∠BCD =∠F AE . (1)求证:AF 是⊙O 的切线;(2)若AF =2,EF =1,求⊙O 的半径.25.(8分)已知二次函数y =(x -2)(x -m )(m 为常数). (1)求证:不论m 为何值,该函数的图像与x 轴总有公共点;(2)若M (-1,0), N (3,0),该函数图像与线段MN 只有1个公共点,直接写出 m 的取值范围;(3)若点A (-1,a ),B (1,b ),C (3,c )在该函数的图像上,当abc <0时,结合函数图像,直接写出m 的取值范围.26.(8分)如图,四边形ABCD 内接于⊙O ,AB =AC ,BD ⊥AC ,垂足为E . (1)求证:∠BAC =2∠DAC ; (2)若AB =10,CD =5,求BC 的长.27.(10分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1) 如图①,在△ABC 中,∠C =90°,AB =5,AC =3,则BC 边上的伴随圆的半径为 . (2)如图②,△ABC 中,AB =AC =5,BC =6,直接写出它的所有伴随圆的半径. (3)如图③,△ABC 中,∠ACB =90°,点E 在边AB 上,AE =2BE ,D 为AC 的中点,且∠CED =90°.①求证:△CED 的外接圆是△ABC 的AC 边上的伴随圆; ②DE的值为 .参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.9 8.13 9.-3 10.y =-(x +2)2+3 11.2312.2π 13.m ≥-1 14. 2 2 15.322 16.4 2 -1三、解答题(本大题共11小题,共88分) 17.(8分)(1)解:x 2-4x -5=0 x 2-4x +4=5+4(x -2)2=9 ········································································································ 1分x -2=±3 ········································································································ 2分 ∴ x 1=5,x 2=-1. ··························································································· 4分 (2)解:x 2-4=2x (x -2) x 2-4=2x 2-4xx 2-4x +4=0 ··································································································· 5分 (x -2)2=0 ········································································································ 6分 ∴ x 1=x 2=2. ··································································································· 8分 18.(8分)(1)7;8 ········································································································ 2分 (2)s 2甲=(7-8)2+(7-8) 2+(10-8)2+(9-8)2+(7-8)25=1.6环2. ······························ 4分s 2乙=(8-8)2+(8-8) 2+ (7-8)2+(8-8)2+(9-8)25=0.4环2. ······································ 6分(3)选择乙.因为甲乙两人平均数相同均为8,说明两人实力相当,但s 2乙<s 2甲,乙的成绩更加稳定,所以选乙. ······················································································· 8分19.(8分)(1)14. ·········································································································· 2分(2)解:随机抽取两名运动员,共有6种等可能性结果:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁).其中满足“有甲运动员”(记为事件A )的结果只有3种,所以P (A )=12. ·································································································· 8分20.(7分)(1)证明:∵ ∠BCE +∠BDE =180°, ∠EDA +∠BDE =180°,∴ ∠EDA =∠BCE . ·························································································· 1分 又 ∠A =∠A , ································································································· 2分 ∴ △ADE ∽△ACB . ·························································································· 3分 (2)∵ △ADE ∽△ACB , ∴ AD AC =AE AB, ·········································· 4分 ∴AD AE =ACAB, ······································· 5分 又 ∠A =∠A , ········································ 6分 ∴ △AEB ∽△ADC . ································· 7分21.(8分)(1)将(0,3)、 (3,0)代入,得⎩⎨⎧3=c ,0=-9+3b +c································································································· 1分解得⎩⎨⎧c =3,b =2····································································································· 2分∴ y =-x 2+2x +3 ····························································································· 3分 ∴ 顶点坐标为(1,4) ························································································ 4分 (2)-1<x <3. ······························································································ 6分 (3)-2或0 ···································································································· 8分 22.(7分)(1)解:∵∠BAC =90°,AB =AC ,∴ ∠B =∠C =45°. ··························································································· 1分 ∴ 在△BDE 中,∠BED +∠BDE =180°-∠B =135°, ∵ ∠EDF =45°,∴ ∠BDE +∠CDF =135°,∴ ∠BED =∠CDF . ·························································································· 3分 ∵ ∠B =∠C ,∴ △EBD ∽△DCF . ·························································································· 5分 (2 ········································································································ 7分23.(8分)(1)解:设每千克的销售价增加x 元,根据题意,得(60+x -50) (60-2x )=750 ··················································································· 2分 ∴ x 1=5,x 2=15. ····························································································· 3分 60+5=65或60+15=75 ···················································································· 4分 答:销售单价为65或75元时获得利润750元. (2)解:每千克的销售价增加x 元,利润为w 元.w =(60+x -50) (60-2x ) ···················································································· 6分 =-2(x -10)2+800 ···························································································· 7分 ∵ a =-2<0,∴ 当x =10时,w 有最大值800. ········································································ 8分 60+10=70答:当销售单价为70元时获得最大利润,为800元. 24.(8分) (1)连接BD .∵ AB 为⊙O 的直径,CD ⊥AB ,∴ ⌒BC = ⌒BD , ························································· 1分 ∴ ∠BDC =∠BCD .∵ 四边形ABDE 为⊙O 的内接四边形,∴ ∠BDE +∠BAE =180°,即∠BDC +∠CDF +∠BAE ····· 2分∵ DE ⊥CD , ∴ ∠CDF =90°, ∴ ∠BDC +∠BAE =90°.∵ ∠BCD =∠F AE , ·························································································· 3分 ∴ ∠BAE +∠F AE =90°,即∠F AB =90°, ∴ AF ⊥AB . 又 点A 在⊙O 上,∴ AF 与⊙O 相切. ·························································································· 4分 (2)过点O 作OG ⊥DF 垂足为G . ∵ ∠F AB =∠D =∠APD =90°, ∴ 四边形APDF 是矩形, ∴ ∠F =90°.∵ ∠F AB =∠F =∠OGF =90°, ∴ 四边形AOGF 是矩形,∴ AF =OG ,AO =GF . ···················································· 5分 设OE =OA =r ,则GE =r -1.在Rt △OGE 中,由勾股定理得OG 2+GE 2=OE 2, ···················································· 6分 即4+(r -1)2=r 2, ···························································································· 7分 解得r =5 2 . ····································································································· 8分25.(8分)(1)令y =0,即(x -2)(x -m )=0 ········································································· 1分 ∴ x 1=2,x 2=m . ····························································································· 2分 当m =2时,x 1=x 2,方程有两个相等的实数根; 当m ≠2时,x 1≠x 2,方程有两个不等的实数根. ∴ 不论m 为何值,方程总有实数根;∴ 不论m 为何值,该函数的图像与x 轴总有公共点. ·············································· 3分 (2)m =2或m >3或m <-1. ··········································································· 6分 (3)-1<m <1或m >3. ·················································································· 8分 26.(8分)。

新人教版九年级上册数学期末综合测试题一

新人教版九年级上册数学期末综合测试题一

新人教版九年级上册数学期末综合测试题一一、选择题(每小题4分,共40分)1.在a 2□4a □4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是( )A .12 B .13C .14D .1 2.用配方法解方程x 2-2x -3=0,配方后的方程可以是( )A .(x -1)2=4 B .(x +1)2=4 C .(x -1)2=6 D .(x -1)2=163.现给出以下几个命题:(1)长度相等的两条弧是等弧;(2)相等的弧所对的弦相等;(3)圆中90°的角所对的弦是直径;(4)矩形的四个顶点必在同一个圆上;(5)在同圆中,相等的弦所对的圆周角相等.其中真命题的个数为( ) A .1B .2C .3D .44.直角坐标系内,点P(-2,3)关于原点的对称点Q 的坐标为( )A .(2,-3)B .(2,3)C .(3,-2)D .(-2,-3) 5.如图,AB ⊥CD ,∠BAD =300,则∠AEC 的度数等于( )A .30°B .50°C .60°D .70° 6.关于x 的二次方程01)1(22=-++-a x xaA. 1B. -1C. 1或-1D.217.如图,四边形ABCD 是正方形,△ADE 绕着点A 旋转90°后到达△ABF 的位置, 连接EF ,则△AEF 的形状是( )A .等腰三角形B .锐角三角形C .等腰直角三角形D .等边三角形8.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D .下列四个结论中正确的结论有( )个①EF 是△ABC 的中位线. ②以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切; ③设OD=m ,AE+AF=2n ,则S △AEF =mn ; ④A BOC ∠+=∠21900; (A )1个 (B )2个 (C )3个 (D )4个9.如图,王大爷家屋后有一块长12m ,宽8m 的矩形空地,他在以BC 为直径的半圆内种菜, 他家养的一只羊平时拴在A 处,为了不让羊吃到菜,拴羊的绳长可以选用( ) A .3mB .5mC .7mD .9m10.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有(A .1个B .2个C .3个D .4个二、填空题(每小题4分,共20分)11.圆锥的侧面展开的面积是212cm π,母线长为cm 4,则圆锥的高为 ________ cm .12.函数x x y+-=22图象的对称轴是 ,最大值是.13.用1、3、5这三个数组成一个三位数,数字可重复使用,这样组成的三位数,各个数位上的数字完全相同的概率是 。

(北师大版)初中数学九年级上册 第一章综合测试 (含答案)

(北师大版)初中数学九年级上册 第一章综合测试 (含答案)

第一单元综合测试一、单选题(每小题2分,共20分)1.菱形、矩形、正方形都具有的性质是( ) A .四条边相等,四个角相等 B .对角线相等 C .对角线互相垂直D .对角线互相平分2.如图,在菱形ABCD 中,5AB =,120BCD ∠=︒,则ABC △的周长等于( )A .20B .15C .10D .53.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的( )A .15B .14C .13D .3104.如图,菱形ABCD 的周长为24 cm ,对角线AC ,BD 相交于点O ,点E 是AD 的中点,连接OE ,则线段OE 的长等于( )A .3 cmB .4 cmC .2.5 cmD .2 cm5.如图,在矩形ABCD 中,3AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为( )A .3B .CD .6.顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( ) A .菱形 B .对角线互相垂直的四边形 C .矩形D .对角线相等的四边形7.如图,把一张长方形纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A .15°或30°B .30°或45°C .45°或60°D .30°或60°8.如图,在菱形ABCD 中,AE BC ⊥于点E ,AF CD ⊥于点F ,且E ,F 分别为BC ,CD 的中点,则EAF ∠等于( )A .75°B .45°C .60°D .30°9.如图,在矩形纸片ABCD 中,4AB =,8BC =,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( )A .AF AE =B .ABE AGF △≌△C .EF =D .AF EF =10.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AEF △是等边三角形,连接AC 交EF 于点G ,下列结论:①BE DF =;②15DAF ∠=︒;③AC 垂直平分EF ;④BE DF EF +=;⑤2CEF ABE S S =△△.其中正确结论有( )A .2个B .3个C .4个D .5个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则α∠也随之变化,两条对角线长度也在发生改变.当α∠的度数为________时,两条对角线长度相等.12.如图,在菱形ABCD 中,60B ∠=︒,4AB =,则以AC 为边的正方形ACEF 的周长为________.13.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,DE AC ⊥于点E ,:1:2EDC EDA ∠∠=,且10AC =,则EC 的长度是________.14.如图,点E 在正方形ABCD 的边CD 上,若ABE △的面积为18,4CE =,则线段BE 的长为________.15.菱形ABCD 在直角坐标系中的位置如图所示,其中点A 的坐标为()1,0,点B 的坐标为(,动点P 从点A 出发,沿A B C D A B →→→→→→⋯⋯的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 019 s 时,点P 的坐标为________.16.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中F ,连接DF ,4DF =.设AB x =,AD y =,则()224x y +-的值为________.17.如图,在矩形ABCD 中,3AB =,2BC =,点E 为AD 的中点,F 为BC 边上任一点,过F 分别作EB ,EC 的垂线,垂足分别为点G ,H ,则FG FH +=________.18.如图,在Rt ABC △中,90ACB ∠=︒,以斜边AB 为边向外作正方形ABDE ,且正方形的对角线交于点O ,连接OC .已知5AC =,OC =,则另一直角边BC 的长为________.三、解答题(19,20题每题9分,21题10分,22,23题每题12分,24题14分,共66分) 19.如图,四边形ABCD 是菱形,DE AB ⊥交BA 的延长线于点E ,DF BC ⊥交BC 的延长线于F . 求证:DE DF =.20.如图,点O 是菱形ABCD 对角线的交点,过点C 作CE OD ∥,过点D 作DE AC ∥,CE 与DE 相交于点E .(1)求证:四边形OCED 是矩形.(2)若4AB =,60ABC ∠=︒,求矩形OCED 的面积.21.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC 的平行线交DC 的延长线于点E . (1)求证:BD BE =.(2)若10BE =,6CE =,连接OE ,求ODE △的面积.22.如图,将矩形纸片ABCD 沿对角线BD 折叠,使点A 落在平面上的F 点处,DF 交BC 于点E . (1)求证:DCE BFE △≌△.(2)若2CD =,30ADB ∠=︒,求BE 的长.23.如图,在菱形ABCD 中,4AB =,120BAD ∠=︒,以点A 为顶点的一个60°的EAF ∠绕A 旋转,EAF ∠的两边分别交BC ,CD 于点E ,F ,且E ,F 不与B ,C ,D 重合,连接EF . (1)求证:BE CF =.(2)在EAF ∠绕A 旋转的过程中,四边形AECF 的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.24.在正方形ABCD 的外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接BE ,DE ,其中DE 交直线AP 于F .(1)依题意补全图①;(2)若20,PAB ∠=︒求ADF ∠的度数;(3)如图②,若4590PAB ︒∠︒<<,用等式表示线段AB ,EF ,FD 之间的数量关系,并给出证明.第一章综合测试答案解析一、 1.【答案】D 2.【答案】B 3.【答案】B 4.【答案】A【解析】∵菱形ABCD 的周长为24 cm ,()244 6 cm AB =÷=∴,OB OD =又E ∵为AD 边的中点,OE ∴是ABD △的中位线.()116 3 cm 22OE AB ==⨯=∴. 故选A . 5.【答案】D 6.【答案】D 7.【答案】D 8.【答案】C 9.【答案】D【解析】如图,由折叠的性质得12∠=∠.AD BC ∵∥,31∠=∠∴.23∠=∠∴.AE AF =∴.故选项A 正确.由折叠的性质得CD AG =,90D G ∠=∠=︒.AB CD =∵,AB AG =∴.又AE AF =∵,90B ∠=︒,()Rt Rt ABE AGF HL △≌△∴.故选项B 正确.设DF x =,则GF x =,8AF x =-. 又4AG AB ==∵,∴在Rt AGF △中,根据勾股定理得()22284x x -=+.解得3x =.85AF x =-=∴. 则5AE AF ==,BE =∴过F 作FM BC ⊥于点M ,则4FM =,532EM =-=.在Rt EFM △中,根据勾股定理得EF ===,则选项C 正确.5AF =∵,EF =,AF EF ≠∴.故选项D 错误.10.【答案】C【解析】∵四边形ABCD 是正方形,AB BC CD AD ===∴,90B BCD D BAD ∠=∠=∠=∠=︒. AEF ∵△是等边三角形,AE EF AF ==∴,60EAF ∠=︒. 30BAE DAF ∠+∠=︒∴.在Rt ABE △和Rt ADF △中,AE AFAB AI =⎧⎨=⎩()Rt Rt ABE ADF HL △≌△∴.BE DF =∴(故①正确), BAE DAF ∠=∠.30DAF DAF ∠+∠=︒∴,即15DAF ∠=︒(故②正确). BC CD =∵,BC BE CD DF -=-∴,即CE CF =,又AE AF =∵,AC ∴垂直平分EF (故③正确).设EC x =,由勾股定理,得EF AE =,EG CG ==∴.AG x =∴.AC ∴.AB BC ==∴.22x xBE x +-=-=∴.BE DF x +-∴(故④错误).易知22CEF xS =△,22224ABE x S ==△, 222ABECEF x S S ==△△∴(故⑤正确).综上所述,正确的有4个. 二、11.【答案】90° 12.【答案】16 13.【答案】2.5 14.【答案】【解析】设正方形的边长为a ,18ABE S =△∵,236ABE ABCD S S ==△正方形∴,236a =∴.0a ∵>,6a =∴.在Rt BCE △中,4CE =∵,90C ∠=︒,BE ===15.【答案】14⎛ ⎝⎭.16.【答案】16【解析】∵四边形ABCD 是矩形,AB x =,AD y =,∴CD AB x ==,BC AD y ==,90BCD ∠=︒.又BD DE ⊥∵,F 是BE 的中点,4DF =,4BF DF EF ===∴,44CF BC y =-=-∴.在Rt DCF △中,222DC CF DF +=,即()2244216x y +-==.()22416x y +-=∴. 17.【解析】如图,连接EF ,∵四边形ABCD 是矩形,∴3CD AB ==,2AD BC ==,90A D ∠=∠=︒.∵点E 为AD 的中点,1AE DE ==∴,BE =∴,CE ==CE BE =∴. BCEBEFCEFSSS=+∵,111222BC AB BE FG CE FK ⋅=⋅+⋅∴,()BC AB BE FG FH ⋅=+∴,即)23FG FH ⨯+,解得FG FH +=18.【答案】7【解析】如图,过点O 作OM CA ⊥,交CA 的延长线于点M ,过点O 作ON BC ⊥于点N ,易证OMA ONB △≌△,CN OM =,OM ON =∴,MA NB =. 又90ACB ∠=︒∵,90OMA ONB ∠=∠=︒,OM ON =,∴四边形OMCN 是正方形.OCM ∴△为等腰直角三角形.OC =∵6CM OM ==∴.651MA CM AC =-=-=∴.617BC CN NB OM MA =+=+=+=∴.故答案为7. 三、19.【答案】证明:连接DB .∵四边形ABCD 是菱形, BD ∴平分ABC ∠.又DE AB ⊥∵,DF BC ⊥,DE DF =∴. 20.【答案】(1)证明:CE OD ∵∥,DE AC ∥,∴四边形OCED 是平行四边形.又∵四边形ABCD 是菱形,AC BD ⊥∴,即90COD ∠=︒,∴四边形OCED 是矩形.(2)解:∵在菱形ABCD 中,4AB =,4AB BC CD ===∴.又60ABC ∠=︒∵,ABC ∴△是等边三角形,4AC =∴,122OC AC ==∴,OD ==∴∴矩形OCED 的面积是2=21.【答案】(1)证明:∵四边形ABCD 是矩形,AC BD =∴,AB CD ∥.又BE AC ∵∥,E 在DC 的延长线上.∴四边形ABEC 是平行四边形,AC BE =∴,BD BE =∴.(2)解:如图,过点O 作OF CD ⊥于F .∵四边形ABCD 是矩形,90BCD ∠=︒∴,90BCE ∠=︒∴.在Rt BCE △中,根据勾股定理可得8BC =.∵BE BD =,6CD CE ==∴, 12DE =∴.OD OC =∵,CF DF =∴,又OB OD =,OF ∴为BCD △的中位线,142OF BC ==∴, 111242422ODE S DE OF =⋅=⨯⨯=△∴. 22.【答案】(1)证明:∵在矩形ABCD 中,AD BC ∥,90A C ∠=∠=︒, ADB DBC ∠=∠∴.根据折叠的性质得ADB FDB ∠=∠,90F A ∠=∠=︒,DBC FDB ∠=∠∴,C F ∠=∠.BE DE =∴.在DCE △和BFE △中,DEC BEF C F DE BE ∠∠∠∠=⎧⎪=⎨⎪=⎩DCE BFE △≌△∴.(2)解:在Rt BCD △中,2CD =∵,30DBC ADB ∠=∠=︒,4BD =∴.BC =∴在Rt ECD △中,易得30EDC ∠=︒.2DE EC =∴.()2222EC EC CD -=∴.又2CD =∵,CE =∴BE BC EC =-∴ 23.【答案】(1)证明:如图,连接AC .∵四边形ABCD 为菱形,120BAD ∠=︒,AB BC CD DA ===∴,60BAC DAC ∠=∠=︒∴, ABC ∴△和ADC △都是等边三角形,60ABE ACF ∠=∠=︒∴,1260∠+∠=︒.3260EAF ∠+∠=∠=︒∵,13∠=∠∴.60ABC ∠=︒∵,AB BC =,ABC ∴△为等边三角形.AB AC =∴,ABE ACF △≌△∴.BE CF =∴.(2)解:四边形AECF 的面积不变.由(1)知ABE ACF △≌△,则ABE ACF S S =△△,故AEC ACF AEC ABE ABC AECF S S S S S S =+=+=△△△△△四边形. 如图,过A 作AM BC ⊥于点M ,则2BM MC ==,AM =∴11422ABC S BC AM =⋅=⨯⨯=△∴故S 四边形AECF = 24.【答案】解:(1)如图①.(2)如图②,连接AE ,∵点E 是点B 关于直线AP 的对称点, 20PAE PAB ∠=∠=︒∴,AE AB =.∵四边形ABCD 是正方形,AE AB AD ==∴,90BAD ∠=︒.AED ADE ∠=∠∴,130EAD DAB BAP PAE ∠=∠+∠+∠=︒. 180130252ADF ∠-︒︒=︒=∴. (3)2222EF FD AB +=.证明如下:如图③,连接AE ,BF ,BD ,由轴对称和正方形的性质可得,EF BF =,AE AB AD ==, 易得ABF AEF ADF ∠=∠=∠.90BAD ∠=︒∵,90ABF FBD ADB ∠+∠+∠=︒∴.90ADF ADB FBD ∠+∠+∠=︒∴.90BFD ∠=︒∴.在Rt BFD △中,由勾股定理得222BF FD BD +=. 在Rt ABD △中,由勾股定理得22222BD AB AD AB =+=, 2222EF FD AB +=∴.。

2017-2018学年九年级数学北师大版上册 第1-3章综合测试题(原卷版)

2017-2018学年九年级数学北师大版上册 第1-3章综合测试题(原卷版)

第1-3章综合测试题一、选择题(每小题3分,共30分)1. 某校甲、乙、丙、丁四名同学在运动会上参加4×100米接力比赛,其中甲跑第一棒,那么乙跑第二棒的概率为()A.124B.112C.16D.132. 如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A. 63米B. 6米C. 33米D. 3米3. 某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为().A. 8%B. 18%C. 20%D. 25%4. 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB的长为2,则FM的长为( )A. 2B.C.D. 15. 如图所示,矩形ABCD中,AE平分BAD∠交BC于E,15CAE︒∠=,则下面结论:①ODC∆是等边三角形;②=2BC AB;③135AOE︒∠=;④AOE COES S∆∆=,其中正确结论有()A. 1个B. 2个C. 3个D. 4个6. 在方程x2+x=y5x-2x2=3,(x-1)(x-2)=0,x2-1x=4,x(x-1)=1中,是一元二次方程的有()A. 1个B. 2个C. 3个D. 4个7. 若关于x 的方程x 2+3x+a=0有一个根为-1,则另一个根为( )A. -2B. 2C. 4D. -48. 在Rt △ABC 中,∠ACB=90°,点D 为斜边AB 的中点,如果CD=3,那么AB 的长是( )A. 1.5B. 3C. 6D. 129. 如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,若OA=2,则BD 的长为( )A. 4B. 3C. 2D. 1 10. 如图,要证明平行四边形ABCD 为正方形,那么我们需要在四边形ABCD 是平行四边形的基础上,进一步证明( )A. AB =AD 且AC ⊥BDB. AB =AD 且AC =BDC. ∠A =∠B 且AC =BDD. AC 和BD 互相垂直平分 二、填空题(每小题3分,共24分)11. 正方形ABCD 的边长AB =4,则它的对角线AC 的长度为_______.12. 若代数式x 2+9的值与-6x 的值相等,则x 的值为________.13. 如图,ABCD 的对角线相交于点O ,请你添加一个条件___(只添一个即可),使ABCD 是矩形.14. 已知x 1=3是关于x 的一元二次方程x 2-4x+c=0的一个根,则方程的另一个根x 2是_______ 15. 一个不透明的箱子里放有2个白球,1个黑球和1个红球,它们除颜色外其余都相同.箱子里摸出1个球后不放回,摇匀后再摸出1个球,求两次摸到的球都是白球的概率。

北师大版初中九年级数学上册阶段素养综合测试卷(一)课件

北师大版初中九年级数学上册阶段素养综合测试卷(一)课件

12. (2023浙江绍兴柯桥期中,15,★☆☆)如图,在△ABC中,∠ACB=90°,∠B=44°,D为
线段AB的中点,则∠ACD=
46 °.
答案 46 解析 在△ABC中,∠ACB=90°,∠B=44°,∴∠A=46°. ∵Rt△ABC中,D为线段AB的中点,∴CD=AD, ∴∠ACD=∠A=46°.故答案是46.
有下列四个推断: ①对于任意四边形ABCD,四边形MNPQ都是平行四边形; ②若四边形ABCD是平行四边形,则MP与NQ交于点O; ③若四边形ABCD是矩形,则四边形MNPQ也是矩形; ④若四边形MNPQ是正方形,则四边形ABCD也一定是正方形.所有正确推断的序
号是 A.①②
B.①③
C.②③
D.③④
合,∴NQ与AC交于点O,∴MP与 NQ交于点O,∴②正确;③若四边形ABCD是矩 形,则AC=BD,∴MN=MQ,∴四边形MNPQ是菱形,但不一定是矩形,∴③不正确; ④∵四边形MNPQ是正方形,∴MQ=MN,∠QMN=90°,∴AC=BD,AC⊥BD,即四边 形ABCD的对角线互相垂直且相等,不能说明四边形ABCD是正方形,∴④不正 确.
B. 有两个相等的实数根
C. 没有实数根
D. 无法确定
解析 A 由数轴得m>0,n<0,m+n<0,∴mn<0,∴Δ=(-mn)2-4·(m+n)>0,∴方程有两
个不相等的实数根.
故选A.
10. (2023北京交大附中期中,8,★★★)如图,四边形ABCD的对角线AC,BD交于点 O,点M,N,P,Q分别为边AB,BC,CD,DA的中点.
8. (2020浙江衢州中考,7,★★☆)某厂家2020年1~5月份的口罩产量统计如图所 示,设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程

北师大版初中数学九年级上册第一章综合测试试卷-含答案01

北师大版初中数学九年级上册第一章综合测试试卷-含答案01

第一章单元综合测试一、单选题1.已知四边形ABCD 是平行四边形,AC ,BD 相交于点O ,下列结论错误的是( ) A .OA OC =,OB OD =B .当AB CD =时,四边形ABCD 是菱形C .当90ABC ∠=︒时,四边形ABCD 是矩形D .当AC BD =且AC BD ⊥时,四边形ABCD 是正方形2.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,8AC =,6BD =,点E 是CD 上一点,连接OE ,若OE CE =,则OE 的长是( )A .2B .52C .3D .4 3.如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 单位中点,过点E 作EF BD ⊥于F ,EG AC ⊥与G ,则四边形EFOG 的面积为( )A .14SB .18SC .112S D .116S 4.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点.若菱形ABCD 的周长为32,则OE 的长为( )A .3B .4C .5D .65.如图,正方形ABCD 的面积为1,M 是AB 的中点,则图中阴影部分的面积是( )A .310B .13C .25D .496.如图,正方形ABCD 的边长8AB =,E 为平面内一动点,且4AE =,F 为CD 上一点,2CF =,连接EF ,ED ,则2EF ED +的最小值为( )A .B .C .12D .10二、填空题7.如图,在菱形ABCD 中,50B ∠=︒,点E 在CD 上,若AE AC =,则BAE ∠=________.8.如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC ,ED 分别交于点M ,N .已知4AB =,6BC =,则MN 的长为________.9.如图,在矩形ABCD 中,9AB =,AD =,点P 是边BC 上的动点(点P 不与点B ,点C 重合),过点P 作直线PQ BD ∥,交CD 边于Q 点,再把PQC △沿着动直线PQ 对折,点C 的对应点是R 点,则CQP ∠=________.10.如图,正方形ABCD 中,点E 为对角线AC 上一点,且AE AB =,则BEA ∠的度数是________度.三、作图题11.在正方形ABCD 中,E 是CD 边上的点,过点E 作EF BD ⊥于F .(1)尺规作图:在图中求作点E ,使得EF EC =;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接FC ,求BCF ∠的度数.四、综合题12.如图,ABCD 的对角线AC ,BD 相交于点O ,过点O 作EF AC ⊥,分别交AB ,DC 于点E 、F ,连接AF 、CE .(1)若32OE =,求EF 的长;(2)判断四边形AECF 的形状,并说明理由.13.如图,在ABC △中,AB AC =,点D 、E 分别是线段BC 、AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:A BDE F E △≌△;(2)求证:四边形ADCF 为矩形.14.如图,四边形ABCD 的对角线AC ,BD 交于点O ,过点D 作DE BC ⊥于E ,延长CB 到点F ,使BF CE =,连接AF ,OF .(1)求证:四边形AFED 是矩形;(2)若7AD =,2BE =,45ABF ∠=︒,试求OF 的长.15.如图,点E 是正方形ABCD 外一点,点F 是线段AE 上一点,且EBF △是等腰直角三角形,其中90EBF ∠=︒,连接CE 、CF(1)求证:ABF CBE △≌△;(2)判断CE 与EF 的位置关系,并说明理由.16.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:HEA CGF ∠∠=;(2)当AH DG =时,求证:菱形EFGH 为正方形.第一章单元综合测试答案解析一、 1.【答案】B【解析】∵四边形ABCD 是平行四边形,OA OC =∴,OB OD =,故A 正确,∵四边形ABCD 是平行四边形,AB CD =,不能推出四边形ABCD 是菱形,故B 错误,∵四边形ABCD 是平行四边形,90ABC ∠=︒, ∴四边形ABCD 是矩形,故C 正确,∵四边形ABCD 是平行四边形,AC BD =,AC BD ⊥, ∵四边形ABCD 是正方形.故D 正确.故答案为:B . 2.【答案】B【解析】∵四边形ABCD 是菱形,8AC =,6BD =,142CO AC ==∴,132OD BD ==,AC BD ⊥,5DC =∴,90EOC DOE ∠+∠=︒,90DCO ODC ∠+∠=︒,OE CE =∵,EOC ECO ∠=∠∴,DOE ODC ∠=∠∴,DE OE =∴,1522OE CD ==∴故答案为:B . 3.【答案】B【解析】∵四边形ABCD 是菱形,OA OC =∴,OB OD =,AC BD ⊥,12S AC BD =⨯, EF BD ⊥∵于F ,EG AC ⊥于G ,∴四边形EFOG 是矩形,EF OC ∥,EG OB ∥,∵点E 是线段BC 的中点,EF ∴、EG 都是OBC △的中位线,1124EF OC AC ==∴,1124EG OB BD ==,∴矩形EFOG 的面积11111=44828EF EG AC BD AC BD S ⎛⎫=⨯=⨯=⨯⨯ ⎪⎝⎭;答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃科源教育九年级数学上册综合测试题(一)
(试卷满分150分。

考试时间120分钟)
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项. 1.点M (1,-2)关于原点对应的点的坐标是( )
A .(-1,2)
B .(1,2)
C .(-1,-2)
D .(-2,1) 2.下列图形中,是中心对称图形的是( )
3.将函数132
+-=x y 的图象向右平移2个单位得到的新图象的函数解析式为( ) A. ()12
32
+--=x y B. ()1232
++-=x y C.232
+-=x
y D. 232--=x y
4.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( ) A.80° B.70° C.60° D.50°
5.下列事件中,必然发生的事件是( )
A .明天会下雨
B .小明数学考试得99分
C .今天是星期一,明天就是星期二
D .明年有370天
6.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( ) A .-1 B .0 C .1 D .-2
7.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )
8.如果关于x 的方程()0337
2
=+---x x m m
是关于x 的一元二次方程,那么m 的值为( )
A .±3
B .3
C .﹣3
D .都不对
9.如果一个扇形的半径为1,弧长是3
π
,那么此扇形的圆心角的大小为( )
A.30°
B.45°
C.60°
D.90°
10.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) A. 014001302=-+x x B. 0350652=-+x x C. 014001302=--x x D. 0350652=--x x 二、填空题(每题3分,共24分)
11.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为_________。

12.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为_________。

13.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(m ,0),则代数式m 2﹣m+2017的值为_________。

14.不透明的袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别. 从袋子中随机取出1个球,则它是红球的概率为_________。

15.已知抛物线y =ax 2+bx +c (a≠0)与x 轴交于A ,B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x =2,则线段AB 的长为_________。

16.如图,将Rt △ABC 绕点A 按顺时针旋转一定角度得到Rt △ADE ,点B 的对应点D 恰好落在BC 边上.若AC =3,∠B =60°,则CD 的长为_________。

17.如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且∠AEB =60°,则∠P =_________。

18.抛物线的图象如图,则它的函数表达式是__________________.当x_________时,y >0.
第16题图 第17题图 第18题图 三、解答题(共66分) 19.解方程
(1)0142
=-+x x (2)()()0343-2
=-+x x x
20.如图,AB 是 ⊙O 的直径C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交⊙O
于E ,连接CE.
(1)判断CD 与⊙O 的位置关系,并证明你的结论;
(2)若E 是弧AC 的中点,⊙O 的半径为1,求图中阴影部分的面积。

21.A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5.它们除了数字外没有任何区别。

(1)随机地从A中抽取一张,求抽到数字为2的概率;
(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜。

请问这样的游戏规则对甲乙双方公平吗?为什么?
(3)如果不公平请你修改游戏规则使游戏规则对甲乙双方公平。

22、如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°. (1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.
23.我市“利民快餐店”试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日纯收入.(日纯收入=每天的销售额﹣套餐成本﹣每天固定支出)
(1)若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的纯收入不少于800元,则每份套餐的售价应不低于多少元?(2)该店既要吸引顾客,使每天销售量较大,又要有较高的日纯收入.按此要求,每份套餐的售价应定为多少元?此时日纯收入为多少元?
24.如图,二次函数c
bx
x
y+
+
-
=2
2
1
的图象经过A(2,0),B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.
25.在平面直角坐标系中,已知抛物线4
2-
+
=bx
ax
y经过A(﹣4,0),C(2,0)两点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,点B是抛物线与y轴交点.判断有几个位置能够使以点P、Q、B、
O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.。

相关文档
最新文档