浅析火电厂烟气脱硫脱硝一体化技术

合集下载

浅析火电厂脱硫脱硝技术与治理

浅析火电厂脱硫脱硝技术与治理

水利水电176 2015年41期浅析火电厂脱硫脱硝技术与治理张世伟山东南山集团东海热电有限公司,山东烟台 265713摘要:空气污染严重影响着人类的健康和生存,这一话题受到各界人士的关注。

火力发电厂排放的烟气中含有SO2、NOx以及一些粉尘性的颗粒,这是形成酸雨和雾霾的主要原因。

近几年我国的大气污染日趋严重,因此烟气脱硫脱硝已成为控制大气污染的必然趋势。

脱硫脱硝技术大致可以分为单独脱硫、单独脱硝、联合脱硫脱硝和同时脱硫脱硝等。

联合脱硫脱硝和同时脱硫脱硝又称为一体化技术,是目前国内外研究的重点。

本文主要综述传统的脱硫脱硝方法和近几年发展较快的烟气脱硫脱硝技术,分析其机理、技术特点和最新研究进展。

关键词:火力发电;有害气体;烟气脱硫脱硝技术;治理方法中图分类号:X773 文献标识码:A 文章编号:1671-5810(2015)41-0176-011 烟气治理方法火电厂排放的有害气体与烟气是相伴的,清理火电厂烟气,清除微粒杂质污染,是为了充分发挥烟气脱硫脱硝技术的应用。

使用除尘器对微粒杂质进行处理。

该方法主要是机械除尘、静电除尘、布袋除尘及湿式电除尘等。

机械除尘,是通过旋转运动产生离心力,吸附高温环境中漂流的尘埃物。

成本低、自动化程度低,多适用于小型火电厂。

其缺点是无法吸附直径小于10μm的微粒杂质,因此,机械除尘只是初级除尘。

静电吸尘,是利用静电吸附原理,在高温高压的锅炉管道中,将带有不同正负电荷的SiO、A12O3等粉尘,通过静电场的吸附作用,达到捕捉微粒杂质的目的。

该方法可以吸附直径10μm以下的灰尘,成本不算太高,多用于大中型锅炉设施。

布袋除尘是另一种高效的除尘方法,是使用无纺布、针刺毡等材料做成的布袋,对微粒杂质进行过滤吸收,除尘率可以达到99.9%以上,是目前使用最为广泛的方法。

其缺点是布袋受腐蚀、高温、水汽等影响较大,其使用的效率与方便性受到限制。

湿式电除尘,前面几种方法虽然有良好的除尘效果,但是都属于初级水平,不能达到精细化的除尘效果。

燃煤电厂烟气脱硫脱硝一体化技术发展趋势

燃煤电厂烟气脱硫脱硝一体化技术发展趋势

燃煤电厂烟气脱硫脱硝一体化技术发展趋势燃煤电厂是目前我国主要的电力发电方式之一,但是燃煤电厂排放的烟气中含有大量的二氧化硫和氮氧化物,这些物质对环境和人体健康造成了严重的影响。

为了保护环境和改善大气质量,燃煤电厂必须进行烟气脱硫脱硝处理。

一体化技术是当前脱硫脱硝技术的发展趋势之一,本文将就燃煤电厂烟气脱硫脱硝一体化技术的发展趋势进行分析。

一、烟气脱硫脱硝技术的发展现状目前,燃煤电厂烟气脱硫脱硝技术主要包括石膏法脱硫、氨法脱硫,氨法脱硝等技术。

石膏法脱硫是目前应用最为广泛的脱硫技术,通过喷雾塔将烟气中的二氧化硫与石灰浆液反应生成石膏,从而实现脱硫。

氨法脱硝是目前应用最为成熟的脱硝技术,它通过在烟气中喷入氨气与氮氧化物反应生成氮和水,从而达到脱硝的目的。

当前,烟气脱硫脱硝技术已经比较成熟,但还存在着材料耗损严重、能耗较高、设备占地面积大等问题。

二、发展趋势及关键技术路线1. 一体化技术烟气脱硫脱硝一体化技术是将脱硫和脱硝设备整合在一起,通过优化设计和工艺调控,使脱硫脱硝设备能够实现协同工作,提高设备利用率、减少设备占地面积,并降低投资和运行成本。

一体化技术可以有效解决独立脱硫和脱硝设备之间的协同性问题,提高环保设备整体性能,是当前脱硫脱硝技术的发展方向。

2. 高效催化技术目前,氨法脱硝技术已经非常成熟,但其一次催化剂使用寿命短、能耗较高等问题亟待解决。

高效催化技术可以采用具有较高催化活性和稳定性的载体,提高催化剂的使用寿命,降低能耗,减少运行成本。

通过催化剂的改良设计和工艺参数的优化调控,提高脱硝效率,减少对环境的影响。

3. 低能耗脱硫技术当前,石膏法脱硫技术虽然应用广泛,但存在着石膏浆液配制和循环的能耗较高的问题,且脱硫效率不高。

低能耗脱硫技术可以通过对吸收剂的改进和工艺参数的优化,降低脱硫系统的能耗,同时提高脱硫效率,减少对环境的影响,是脱硫技术的发展趋势之一。

三、技术创新及应用前景目前,随着环保要求的日益严格,燃煤电厂对烟气脱硫脱硝技术的要求也越来越高,技术创新成为当前脱硫脱硝技术发展的关键。

燃煤电厂烟气脱硫脱硝一体化技术发展趋势

燃煤电厂烟气脱硫脱硝一体化技术发展趋势

燃煤电厂烟气脱硫脱硝一体化技术发展趋势烟气脱硫脱硝一体化技术是将烟气脱硫和脱硝这两个阶段融合起来,使二氧化硫和氮氧化物可以同时被去除。

相较于传统的分离式脱硫脱硝技术,一体化技术不仅可以大幅度降低设备的安装、维护和运行成本,而且节省了很多空间,缩短了设备的管道长度。

二、烟气脱硫脱硝一体化技术的技术原理烟气脱硫脱硝一体化技术主要采用了催化还原技术。

具体实现方法是在脱硫脱硝反应的催化剂上引入一定量的还原剂如氨气,使氧化还原反应在同一催化剂中同时进行,从而实现脱硫脱硝的一体化。

该技术能够同时将二氧化硫和氮氧化物以可再利用形式去除。

(一)研发新型催化剂:催化剂是烟气脱硫脱硝一体化技术的关键。

因此,在未来的研发过程中将聚焦于催化剂材料的开发和应用。

国内研究机构正在大力推进具有高催化活性的新型催化剂的研发,同时对导入新的催化剂氧化、还原机理进行深入探讨。

(二)集成化设计:随着科技的进步,烟气脱硫脱硝一体化技术的集成化设计将变得愈加普遍。

未来的烟气脱硫脱硝一体化设备将兼容多种现有的燃煤电厂装置,同时也会配置更多的监测和排放控制系统,以实现更高效的催化还原处理。

(三)做好运维管理:运维管理是烟气脱硫脱硝一体化技术的重要组成部分。

尽管一体化技术真正实现以后大大降低了原来分步处理的难度,但仍需注意设备的日常维护管理。

对于现有的燃煤电厂,普及相关操作培训是必行方案,以确保工作人员能够熟练操作。

四、结语随着环保意识的不断增强,烟气脱硫脱硝一体化技术的研究与应用将越来越普遍。

未来,我们应通过不断的技术创新和系统优化,努力实现对大气污染的高效清理,实现人们“蓝天白云”的梦想。

燃煤烟气脱硫脱硝一体化技术研究

燃煤烟气脱硫脱硝一体化技术研究

燃煤烟气脱硫脱硝一体化技术研究1. 引言1.1 背景介绍燃煤烟气脱硫脱硝一体化技术是当前环境保护领域的重要研究方向之一。

随着工业化进程的加快和能源需求的增长,燃煤发电已成为我国主要的电力供应方式之一。

燃煤燃烧释放出的烟气中含有大量的二氧化硫和氮氧化物等有害气体,对大气环境造成了严重污染,加剧了酸雨和雾霾的形成,对人类健康和生态环境造成了严重威胁。

为减少煤燃烧对环境的影响,燃煤烟气脱硫脱硝技术应运而生。

脱硫技术能有效去除烟气中的二氧化硫,脱硝技术则能有效去除烟气中的氮氧化物。

而脱硫脱硝一体化技术将脱硫和脱硝设备整合在一起,通过优化设计和运行参数,实现对烟气中二氧化硫和氮氧化物的同时高效减排,进一步降低燃煤燃烧对环境的影响。

本文将重点探讨燃煤烟气脱硫脱硝一体化技术的原理、发展趋势和应用案例,旨在为相关研究提供参考和借鉴。

【2000字】1.2 研究目的研究目的是为了探讨燃煤烟气脱硫脱硝一体化技术在环境保护和能源清洁利用方面的作用。

通过深入研究该技术的原理和发展趋势,我们希望能够为相关领域的科研工作者和工程技术人员提供实用的参考和指导,促进技术的进一步推广和应用。

我们也致力于探讨脱硫脱硝一体化技术在减少大气污染、改善空气质量、保护生态环境等方面的重要意义,为建设美丽中国、实现可持续发展提供有力支持。

通过本研究的开展,我们希望为燃煤烟气治理技术的创新和提升提供新思路和新方法,为推动我国环保产业的发展做出贡献。

1.3 国内外研究现状,格式等。

以下是关于【国内外研究现状】的内容:国内外对燃煤烟气脱硫脱硝一体化技术的研究现状表明,这一技术在减少大气污染物排放、改善空气质量方面具有重要意义。

国外先进国家在脱硫脱硝一体化技术领域已经取得了丰硕成果,不仅在技术水平上居世界领先地位,还在大规模应用上取得成功。

在国内,由于煤炭资源的丰富和燃煤发电规模庞大,燃煤烟气排放已成为重要的环境问题。

国内相关机构和企业也在积极开展燃煤烟气脱硫脱硝一体化技术的研究和应用工作。

火电厂烟气脱硫脱硝一体化技术探析

火电厂烟气脱硫脱硝一体化技术探析

火电厂烟气脱硫脱硝一体化技术探析火电厂是利用燃煤、燃油、天然气等燃料产生热能,再通过蒸汽轮机转化为电能的大型能源生产设施。

在这个过程中也会产生大量的烟气,其中含有二氧化硫、氮氧化物等有害气体,对环境和人体健康造成严重影响。

烟气脱硫和脱硝技术成为了火电厂环保治理的重要内容。

本文将探讨火电厂烟气脱硫和脱硝一体化技术的应用及发展。

一、火电厂烟气污染物排放的问题火电厂的燃烧过程中,产生的烟气中含有大量的二氧化硫和氮氧化物。

其中二氧化硫是燃料中硫分的氧化产物,而氮氧化物则是高温燃烧过程中空气中氮气和氧气发生反应形成的。

这些有害物质在排放到大气中后会与水汽结合形成酸雨,对植被、土壤、建筑物等造成腐蚀。

还会受紫外线照射而形成臭氧,对人体呼吸道和健康造成危害。

二、火电厂烟气脱硫技术脱硫是指对燃烧产生的含硫烟气进行处理,将其中的二氧化硫去除的技术。

在脱硫工艺中,常用的方法是采用石灰石-石膏湿法烟气脱硫技术。

这种技术通过将石灰石和烟气进行充分接触,利用石膏吸附二氧化硫而达到脱硫的效果。

也可以采用碱液喷射法、干法脱硫等方式进行处理。

在烟气脱硫过程中,一般采用石膏湿法脱硫技术。

其原理是将石灰石进行磨粉并与烟气进行充分接触,利用反应生成石膏来吸附二氧化硫。

而一体化脱硫技术则是将脱硫设备与发电设备结合在一起,形成一个整体化的环保体系,可以更加高效地完成脱硫工作。

脱硝是指对燃烧产生的含氮烟气进行处理,将其中的氮氧化物去除的技术。

脱硝技术的发展主要包括选择性催化还原(SCR)和选择性非催化还原(SNCR)两种方式。

选择性催化还原是通过在一定温度范围内将氨水与烟气中的氮氧化物进行催化还原反应,使其转化为氮气和水蒸气,从而实现脱硝的目的。

而选择性非催化还原则是通过在高温下直接喷射氨水或尿素水到燃烧烟气中,使其中的氮氧化物与氨水发生反应并被还原。

在烟气脱硝过程中,SCR技术是较为成熟和广泛应用的方法。

它在实际应用中有很好的脱硝效果,但也存在着催化剂磨损、氨逃逸和催化剂硫化等问题。

燃煤电厂烟气脱硫脱硝一体化技术发展趋势

燃煤电厂烟气脱硫脱硝一体化技术发展趋势

燃煤电厂烟气脱硫脱硝一体化技术发展趋势燃煤电厂烟气脱硫脱硝一体化技术是指利用化学方法将燃煤电厂烟气中的二氧化硫和氮氧化物去除掉的技术。

随着环保意识的增强和政府对环境保护的重视,燃煤电厂烟气脱硫脱硝一体化技术的发展趋势也变得愈发重要。

本文将从技术发展趋势、应用前景和挑战等方面进行探讨。

一、技术发展趋势1. 高效节能的脱硫脱硝技术随着技术的不断创新和发展,燃煤电厂烟气脱硫脱硝一体化技术将会朝着更高效节能的方向发展。

新型脱硫脱硝装置将更加具有高效和节能的特点,将有助于降低电厂的能耗,实现环境保护和节能减排的双重目标。

2. 多污染物一体化处理技术未来燃煤电厂烟气脱硫脱硝一体化技术或将向多污染物一体化处理技术发展。

不仅仅是对二氧化硫和氮氧化物的处理,还将涉及到其他污染物的处理,如颗粒物的去除等。

多污染物一体化处理技术将更好地解决电厂烟气中多种污染物排放的问题,实现一体化处理。

3. 智能化控制技术随着信息技术和智能化技术的发展,未来燃煤电厂烟气脱硫脱硝一体化技术也将朝着智能化方向发展。

通过引入先进的智能化控制技术,能够更加精准地控制各种反应参数,并实现对装置运行状态的智能监控和管理,提高设备运行效率和稳定性。

4. 循环利用废弃物利用技术未来的发展趋势还将涉及到对废弃物的循环利用技术。

燃煤电厂烟气脱硫脱硝一体化技术所产生的废渣等废弃物将通过科学的处理方法得到有效利用,实现资源的再利用,减少对环境的影响。

二、应用前景燃煤电厂烟气脱硫脱硝一体化技术的发展势头良好,具有广阔的应用前景。

随着环保政策的日益严格和执行力度的不断加强,作为主要污染源的燃煤电厂必须加大对烟气排放的控制力度,从而推动燃煤电厂烟气脱硫脱硝一体化技术的广泛应用。

随着技术的成熟和成本的下降,燃煤电厂面临的压力也将减小,从而增加了投资进行脱硫脱硝改造的动力。

燃煤电厂烟气脱硫脱硝一体化技术的应用也将有助于改善大气环境质量,减少二氧化硫和氮氧化物排放对大气污染的影响,有利于保障人民身体健康和生态环境。

烟气脱硫脱硝技术浅析

烟气脱硫脱硝技术浅析
了应 用 。
“ 十一 五” 期间. 国家将 主要污 染物排 放 总量显 著减少作 为 经 济 社 会 发 展 的 约 束 性 指 标 .着 力 解 决 突 出 环 境 问 题 . 在
认识 、 政策 、 体 制和能力 等方 面取得重 要进展 。 二氧 化硫排放 总量 比 2 0 0 5年分别下 降 1 4 . 2 9 %. 超 额完成减 排任务
术 进 行 简要 分 析
关 键词 烟 气脱 硫 烟 气脱硝 脱 硫 脱 硝 一 体 化
中图分类 号 : X 7 8 4
文献标识 码 : A
文章编 号 : 1 6 7 2 — 9 0 6 4 ( 2 0 1 3 ) 0 5 — 0 9 7 — 0 3
广泛 的应用 。 目前 采 用 的 脱 硫 技 术 主 要 分 为 湿 法 、 干法 、 半 干 法 。湿 法 主 要 有 石 灰 石 一 石 膏法 、 硫铵法 、 氧化镁 法 、 双碱法 、 有 机 胺 法 、离 子 液 法 。干 法 主 要 有 L I S循 环 流 化 床 法 、 E N S 法 、密 相 干 塔 法 、 G S C A双循环 循环 流化 床法 、 ME R O S烟 道 喷射法 、 活性 炭吸附法 、 N I D 烟 道 循 环 法 半于法 主要有 S D A 旋 转 喷 雾 法 等 烧 结 烟 气 S C R脱 硝 技 术 仅 在 台 湾 中 钢 进 行
相 当严 峻 . 大 气污 染治 理工 作任 务繁 重而 艰 巨 . 给 环 保 行 业 的 发 展 带 来 巨 大 的 机 遇 和 挑 战
2 烟 气 脱 硫 脱 硝 技 术
2 . 1 烟 气 脱硫
1 烟 气脱 硫 脱硝 现状
( 1 ) 电力行业 我 国火 电厂脱硫工 程 “ 十一 五 ” 期 间 经 历 了高 速 发 展 。 截 止 2 0 1 1年 底 我 国 燃 煤 脱 硫 机 组 共 4 4 6 8台 . 目前 已投 运 的 脱硫 机 组 达 6 . 7亿 k W . 火 电 整 体 脱 硫 比 例 8 7 . 9 %。 电力行业 已工业 化应用 的脱硫 技术主要 有石灰 石 f 石

火电厂烟气脱硫脱硝技术分析及未来发展趋势

火电厂烟气脱硫脱硝技术分析及未来发展趋势

火电厂烟气脱硫脱硝技术分析及未来发展趋势第一章烟气脱硫脱硝技术的意义火电厂排放的烟气中含有大量的二氧化硫和氮氧化物等有害物质,如果不采用有效的脱硫脱硝技术进行处理,将严重威胁人类的健康和大气环境的稳定。

因此,烟气脱硫脱硝技术是保障空气质量的重要手段。

第二章烟气脱硫技术分析(一)传统湿法脱硫技术传统湿法脱硫技术指采用富含碱性成分的吸收剂进行烟气脱硫处理,通过反应将二氧化硫变成硫酸盐,使之被吸附在吸收剂表面上。

此种技术的处理效率和工艺成熟度高。

(二)半干法脱硫技术半干法脱硫技术是在湿法脱硫技术的基础上进行改进,将湿法吸收剂的流动状态改变为干态,此种技术的处理效率和脱硫剂的利用率均相对较高。

(三)干法脱硫技术干法脱硫技术主要是指采用进口的催化剂对烟气中的二氧化硫进行氧化和催化,使之转移到含氧化钙的粒子表面上进行吸收。

此种技术消耗的水量较少,流程简化,适用于干旱地区。

第三章烟气脱硝技术分析(一)选择性催化还原脱硝技术选择性催化还原脱硝技术采用特定材料等代催化剂,通过催化将烟气中的氮氧化物转化为氮气、水和二氧化碳等物质。

此种技术具有高效率、高选择性、低耗能、低废弃物排放量等优点。

(二)尿素喷射脱硝技术尿素喷射脱硝技术是一种在燃烧室内直接喷射尿素水溶液来降低烟气中氮氧化物排放的一种技术。

此种技术对于机组的操作更为简便,并且对于调节室温应对突发情况也更加灵活。

第四章烟气脱硫脱硝未来发展趋势(一)绿色化绿色化是指烟气脱硫脱硝技术要达到的最终目的,在烟气脱硫脱硝技术发展的过程中,需要更加注重技术对环境的影响,减轻工艺的耗能量和节约消耗更少的资源。

(二)高效化随着技术的不断发展,烟气脱硫脱硝技术的效率也将得到进一步提升,未来的烟气脱硫脱硝工艺将会更加智能化,实现更高效的排放处理。

(三)多样化未来烟气脱硫脱硝技术将会出现多样化的发展趋势,根据不同的排放类型、设备规格和能源性质等不同的要素,制定出合适的烟气脱硫脱硝技术,以保障环境质量和人民健康。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析火电厂烟气脱硫脱硝一体化技术
火电厂在运行过程中会产生大量的烟气,这些烟气如果不进行系统的处理,会对环境以及人类的身体健康造成非常大的危害。

本文结合实际生活中火电厂烟气脱硫脱硝一体化技术进行研究,针对各种方法的工作原理以及优点进行介绍,进而提高空气净化的效果。

标签:火电厂;脱硫脱硝;一体化技术
1.火电厂烟气脱硫脱硝一体化技术的重要性
在火电厂烟气中,因为燃料燃烧程度的不同,从而产生的烟气组成成分以及含量也不相同。

火电厂排放的烟气主要含有二氧化硫、氧化氮等,这些物质如果不进行系统的处理,就会飘散到空中,污染大气环境,进而引发酸雨等自然灾害。

针对排放的烟气,我国各地区对其排放标准进行了不同的规定。

对于不同情况的烟气用到的处理方法也不相同,所以在烟气处理时要根据二氧化硫、氧化氮的情况选择合适的净化技术。

同时火电厂排放的烟气对人类也会造成非常大的危害,当空气中烟气的浓度达到一定数值后,人类长时间的呼吸会引发慢性中毒,从而对人类的神经系统和造血系统造成危害。

现阶段的火电厂在脱硫脱硝时一般会采用分别处理的方法,这种方法虽然获得了一定的成果,但是由于设备庞大、技术复杂、成本过高,给火电厂的发展造成了非常大的影响。

根据这种情况,需要相关技术人员结合传统技术,研发新型设备,改良传统工艺,优化脱硫脱硝技术,使火电厂能够运用相关设备对烟气进行一体化脱硫脱硝,从而在净化烟气的基础下,降低对火电厂发展的影响。

2.火电厂脱硫脱硝技术的应用
2.1脱硫技术的应用
我国现在运用的脱硫技术主要有半干法和湿法两种,其中半干法是在喷雾中添加干燥剂,然后再把吸收液添加到相关设备中,再进行后续的脱硫;或者是运用其他干燥方法把吸收塔中的物质进行分离;亦或是把工业废气和S02进行融合,从而进行化学反应,达到脱硫的反应。

湿法脱硫技术一般是在比较大的锅炉的生产中运用,其包括海水脱硫技术和双碱法脱硫技术,这种方法的工作原理是运用某种物质在排烟通道尾部对烟气进行处理,保证脱硫剂和脱硫产物都处于潮湿的状态,这种方法可以使脱硫率达到90%以上。

图1烟气脱硝技术流程图
2.2脱硝技术的应用
火电厂在运营过程中会在发电过程中产出大量的氧化氮,利用脱硝技术可以对烟气中的氮氧化物进行消除,从而防止其对环境产生污染和对人类的身体造成
损害。

在现阶段,火电厂运用的脱硝技术主要是半干脱硝法和湿法脱硝法两种,这两种方法在工作原理方面有比较大的差异,其中湿法相比于半干法具有成本大的特点。

脱硝技术在火电厂的使用主要是在燃烧前、燃烧中和燃烧后三部分。

有些火电厂的工作人员一般都是在燃烧前就开始进行脱硝技术,从而降低其对空气造成的污染。

其脱硝技术的流程图可以参考图1。

在运用这种方法的时候要保证炉膛内的温度达到850摄氏度至1250摄氏度,在不加入催化剂的情况下,向炉膛内加入氨气或者是尿素等化学还原剂,从而使炉膛中的烟气产生化学反应,达到脱硝的作用。

这种方法可以使烟气脱硝率达到80%以上,而且还不会在脱硝过程中产生其它有害的污染物,防止出现二次污染的情况。

除此以外,这种脱硝技术的设备运行比较稳定,维护工作也比较方便。

3.火电厂烟气脱硫脱硝一体化技术常见方法
脱硫脱硝一体化技术的主要构成部分就是物料平衡计算和热量平衡计算。

其中,物料平衡计算就是依据质量守恒定律进行工艺设计、定量计算输入、输出和物流的过程,而热量平衡计算就是找出工艺过程中需要的热量以及对热量利用的方法,从而做到降低热量的消耗,从而达到节能减排的效果。

在现阶段比较常见的脱硫脱硝一体化技术主要有以下几种:
3.1SNRB净化
SNRB净化工艺是在旧有的脱硫脱硝技术上,结合选择性催化还原技术,提出了新型的高温烟气净化技术,运用高温布袋除尘器对二氧化硫、氧化氮进行一体化消除。

在运用这一技术时可以在排放烟气的通道内加入碱性物质对烟气中的二氧化硫进行消除,然后再喷入氨气,同时在其中悬浮选择性催化剂,在催化剂的作用下,使烟气里的氮氧化物和氨气进行反应,从而达到脱硝的情况。

3.2活性炭法
活性炭主要是由木炭、煤炭以及石油焦等含碳的物质经过热解、活化加工制作而成,这种物质拥有比较大的表面积以及良好的孔隙结构。

运用活性炭法进行脱硫脱硝主要是利用活性炭的大表面积、优秀的孔隙、丰富的表面积团等特点,去除火电厂烟气中的二氧化硫和氧化氮等污染物。

当烟气进入到一体化设备时,设备里的活性炭可以吸收烟气中的SO2,然后在活性炭的催化作用下使其被氧化成三氧化硫,然后再通过水蒸气的作用形成了硫酸,从而达到了脱硫的目的。

在处理氧化氮时可以在脱硫脱硝一体化设备后部加入氨气,在活性炭的作用下使氧化氮和氨气形成反应,从而到达消除氧化氮的目的。

3.3高能辐射法
高能辐射法主要分为电子束照射法和脉冲电晕等离子体法,二者主要的区别在于其在不同的装置中发生反应。

本文结合实际情况对二者进行简单的介绍,电子束照射法主要是運用粒子加速器把烟气中的二氧化硫和氮氧化物进行氧化反应,从而形成三氧化硫和二氧化氮,溶解到水蒸气中形成硫酸和硝酸,然后再把
处理后的烟气排放到大气中;脉冲电晕等离子体法运用高压脉冲设备进行脱硫脱硝,运用这些高科技设备处理烟气可以很好的净化烟气,同时不会产生二次污染。

3.4湿法脱硫
脱硝技术湿法脱硫脱硝技术是运用氧化性特别强的材料把二氧化硫和氮氧化物进行氧化,从而形成容易溶于水的物质,从而达到吸收脱硫脱硝的目的。

一般情况下氧化反应都是在氧化塔中进行,在吸收酸性物质时要在碱性吸收塔中进行。

通过运用现阶段的技术可以使脱硫脱硝在一套设备中进行,其效率可以达到95%,并且在反应过程中不会出现催化剂中毒、失活的现象。

同时这种方法的实用性强,对环境不会有太高的要求,从而降低了火电厂的造价成本。

但是湿法脱硫脱硝技术中运用的氯酸氧化剂价格非常高,且腐蚀性比较强,如果处理不好就会对设备造成非常大的腐蚀,或者是产生的酸性物质造成二次污染。

结合现阶段的技术可以在现有的湿法脱硫脱硝技术中加入吸收剂,使吸收剂能够和氧化氮反应,在加速氧化氮吸收速度的同时,还可以降低二次污染的影响。

结束语
综上所述,火力发电厂的日常工作中,会排放大量的废气,废气中的二氧化硫和氮氧化物会对环境造成严重污染。

但是目前我国对于电能的需求越来越高,火电厂作为我国发电的主体,如果不能对废气中的有害物质进行合理的处理,就会对环境造成很严重的破坏,因此,我们的工作重点是尽量减少废气中有害物质的排放,尽可能的将这些有害物质进行转化和吸附。

必须根据电厂本身的情况选择脱硫和脱硝方法,不仅要符合国家排放标准,还必须考虑成本问题,以便同时进行保护环境和发电厂的发展。

脱硫脱硝方法不应太复杂,应该做到排放物无毒无害,防止排放的废物破坏环境。

参考文献:
[1]李长青.火电厂烟气脱硫脱硝一体化技术探析[J].山东工业技术,2018,No.265(11):165.
[2]冯威.火电厂烟气脱硫脱硝一体化技术的发展[J].广州化工,2013,41(8):50-51。

相关文档
最新文档