弹塑性力学之结构的塑性极限分析
塑性力学的基本概念和应用

塑性力学的基本概念和应用塑性力学是力学学科中的一个重要领域,研究物体在超过其弹性限度之后发生的塑性变形和力学行为。
它在工程领域中有着广泛的应用,可以用于设计和分析各种结构和材料。
本文将介绍塑性力学的基本概念和应用。
一、塑性力学的基本概念塑性力学研究材料在受力过程中的变形行为,重点关注材料的塑性变形和它们与应力应变关系之间的联系。
以下是塑性力学中的几个基本概念:1. 弹性和塑性:在外力作用下,材料会产生变形。
当外力移除后,材料能够完全恢复到其初始形状,这种变形称为弹性变形。
而当外力作用超过了材料的弹性限度时,材料会发生不可逆的塑性变形,导致永久性的形变。
2. 屈服点和屈服应力:材料在受力过程中,当应力达到一定数值时会开始产生塑性变形,此时的应力称为屈服应力。
屈服点是应力-应变曲线上的一个特定点,表示材料开始发生塑性变形的阈值。
3. 工程应力应变和真实应力应变:工程应力指材料在不考虑变形前尺寸的情况下受到的力与单位面积的比值,工程应变指材料在变形前尺寸和力的情况下的应变与原始尺寸比值。
真实应力和真实应变则考虑了材料在受力过程中的变形,分别是力和应变与变形的比值。
二、塑性力学的应用塑性力学在工程领域中有着广泛的应用,以下是其中几个典型的应用。
1. 金属成形加工:塑性力学在金属成形加工中扮演着重要的角色。
通过了解材料的塑性特性和应力应变关系,可以优化金属成形加工的工艺参数,提高材料的形变能力,减小残余应力,提高产品质量。
2. 板结构设计:在板结构的设计中,塑性力学可以用于评估结构的稳定性和承载能力。
通过分析材料的屈服点和塑性变形情况,可以确定合适的结构尺寸和加强措施,以满足结构的强度和刚度要求。
3. 地震工程:塑性力学在地震工程中的应用也很重要。
通过研究材料的塑性行为,可以评估结构在地震荷载下的响应和潜在破坏模式。
这有助于设计出抗震性能良好的建筑和结构,并提供灾害防护措施。
4. 仿真和模拟:在产品设计和工艺优化中,塑性力学可以被应用于数值模拟和仿真。
弹性变形与塑性变形

一、弹性和塑性的概念可变形固体在外力作用下将发生变形。
根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。
根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。
“弹性(Elastici ty)”和“塑性(Plasticity)”是可变形固体的基本属性,两者的主要区别在于以下两个方面:1)变形是否可恢复.......:弹性变形是可以完全恢复的,即弹性变形过程是一个可逆的过程;塑性变形则是不可恢复的,塑性变形过程是一个不可逆的过程。
2)应力和应变之间是否一一对应.............:在弹性阶段,应力和应变之间存在一一对应的单值函数关系,而且通常还假设是线性关系;在塑性阶段,应力和应变之间通常不存在一一对应的关系,而且是非线性关系(这种非线性称为物理非线性)。
工程中,常把脆性和韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。
通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。
二、弹塑性力学的研究对象及其简化模型弹塑性力学是固体力学的一个分支学科,它由弹性理论和塑性理论组成。
弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。
因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。
第四章 弹塑性体的本构理论

第二部分弹塑性问题的有限元法第四章弹塑性体的本构理论第五章弹塑性体的有限元法第四章弹塑性体的本构理论4-1塑性力学的基本内容和地位塑性力学是有三大部分组成的:1) 塑性本构理论,研究弹塑性体的应力和应变之间的关系;2) 极限分析,研究刚塑性体的应力变形场,包括滑移线理论和上下限法;3) 安定分析,研究弹塑性体在低周交变载荷作用下结构的安定性问题。
塑性力学虽然是建立在实验和假设基础之上的,但其理论本身是优美的,甚至能够以公理化的方法来建立整个塑性力学体系。
塑性力学是最简单的材料非线性学科,有很多其它更复杂的学科,如损伤力学、粘塑性力学等,都是借用塑性本构理论体系而发展起来的。
4-2关于材料性质和变形特性的假定材料性质的假定1)材料是连续介质,即材料内部无细观缺陷;2)非粘性的,即在本构关系中,没有时间效应;3)材料具有无限韧性,即具有无限变形的可能,不会出现断裂。
常常根据材料在单向应力状态下的σ-ε曲线,将弹塑性材料作以下分类:硬化弹塑性材料理想弹塑性材料弹塑性本构理论研究的是前三种类型的材料,但要注意对于应变软化材料,经典弹塑性理论尚存在不少问题。
变形行为假定 1)应力空间中存在一初始屈服面,当应力点位于屈服面以内时,应力和应变增量的是线性的;只有当应力点达到屈服面时,材料才可能开始出现屈服,即开始产生塑性变形。
因此初始屈服面界定了首次屈服的应力组合,可表示为()00=σf(1)2) 随着塑性变形的产生和积累,屈服面可能在应力空间中发生变化而产生后继屈服面,也称作加载面。
对于硬化材料加载面随着塑性变形的积累将不断扩张,对于理想弹塑性材料加载面就是初始屈服面,它始终保持不变,对于软化材料随着塑性变形的积累加载面将不断收缩。
因此加载面实际上界定了曾经发生过屈服的物质点的弹性范围,当该点的应力位于加载面之内变化时,不会产生新的塑性变形,应力增量与应变增量的关系是线性的。
只有当应力点再次达到该加载面时,才可能产生新的塑性变形。
工程弹塑性力学课件

目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。
弹塑性力学基础理论与应用

弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。
本文将简要介绍弹塑性力学的基础理论和一些应用领域。
一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。
根据胡克定律,应力与应变成正比。
弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。
弹性模量是弹性力学的重要参数,表征了材料的刚度。
2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。
当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。
塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。
3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。
它考虑了材料在弹性和塑性行为之间的转换。
在某些情况下,材料可以同时表现出弹性和塑性特性。
弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。
二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。
通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。
在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。
2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。
结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。
通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。
3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。
弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。
在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。
4. 金属加工金属的塑性变形是金属加工过程中的核心问题。
弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。
总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。
弹塑性力学 弹性与塑性力学的解题方法

➢主应力法
➢ 主应力法是金属塑性成形中所经常使用的 一种简化方法。在分析问题时,认为剪应 力对材料的屈服影响很小,因而在屈服条 件中略去剪应力,这时平面应变问题中的 屈服条件可简化为
x - y = 2k
➢ 在分析中,还假设应力在一个方向的分布 是均匀的。因此在计算中,数学形式比较 简便。
➢ 平面应力问题,平面应变问题,结果转换 ➢ 平面问题的平衡方程(无体力)
x
xy
0
x y
yx x
y
y
0
➢ 艾里(Airy)应力函数
x
2
y 2
,
y
2
x 2
,
xy
2
xy
➢ 用应力函数表示的物理方程
➢ 变形协调条件
x
1 2G(1
)
2
y 2
2
x 2
y
2G
1 (1
)
2
x 2
几种应力函数所对应的边界条件
➢ = ax + by + c 矩形弹性体处于无应力状态,
即在边界上无面力。
➢ = ax2 + bxy + cy2 矩形弹性体受双向荷载。
a > 0, c > 0, b = 0
a = c = 0, b 0
➢ = ax3 + bx2y + cxy2 + dy3 复杂应力状态, 当a = c = b = 0, d 0时,xy = 6dy,为纯弯
2
y 2
xy
1 G
2
xy
4 x
y 4
4 y
x 4
弹塑性力学之结构的塑性极限分析

塑性极限载荷
4"6
确定塑性区位置
截面的上下两塑性区相连,使 跨中左右两截面产生像结构
・特点:
-塑性较的存在是由于该截面 上的弯矩等于塑性极限弯矩; 故不能传递大于塑性极限弯 矩的弯矩。
<]
ax(x9z\ay=az= rxy=ryz= rzx=0
♦:・小挠度假设:在梁达到塑性极限状态瞬 间之前,挠度与横截面尺寸相比为一微 小量,可用变形前梁的尺寸进行计算。
二.弹性阶段
—
P1
6M
♦ Mises屈服条件:
xmax
bh2
弹性极限弯矩
二
2bh2
弹性极限载荷
三.弹塑性阶段(约束塑性变形阶段)
>Mp塑性区扩展
第十章结构的塑性极限分析
矗塑性极限分析定理和方法
❖梁的极限分析❖圆板的极限分析
❖梁模型法计算圆板和环板的塑性极限 載荷
§10-1梁的弹塑性弯曲
1.基本假定
•:•平截面假设:在变形过程中,变形 前为平面的横截面,变形后仍保持 为平面,且与变形后梁的轴线垂直。
z5=— P
・纵向纤维互不挤压:不计挤压应力, 横截面上只有正应力。
heh/2
陆=2町(yxzdz+ 2町aszdz
0he
陆
0叽he
“Me
Ms=—-
s2
h2
弹塑性区交界线:
h/2
(Jszdz
陆=
£
弹塑性区交界线:饥=±丄3
h~2\
<]
►P(lΒιβλιοθήκη 2x)2ALPl/4
四.全塑性阶段
X—6
x = 0
塑性极限弯矩
n
A
塑性力学 第二章梁的弹塑性弯曲及

当载荷P先加到P 然后又卸载到零时, 当载荷P先加到P,然后又卸载到零时,自由端 的残余挠度? 的残余挠度?
13 2 δ = L Ke 54
0 s
§2.3 强化材料矩形截面梁的弹塑性纯弯曲
一般强化材料: 一般强化材料:
σ = Eε[1−ω(ε)],
在纯弯曲条件下,单调加载时,弯矩表达式为: 在纯弯曲条件下,单调加载时,弯矩表达式为:
二、弹性阶段
将
σ = Eε = E(Ky +ε0) 由 N =0 得 ε0 = 0
(5) 代入(3)、(4) )、(4
(6)
h M = 2bEK∫ 0/ 2 y2dy = EJK
1 3 J = bh ——截面的惯性矩 12 说明弯矩和曲率之间有线性关系
代入式( 代入式(5)
σ = M y,
J
(7)
说明应力分布与y 说明应力分布与y成比例
h y= 2
由
M* M* yh = σs J 2 Me
和
M* 1< ≤ .5 1 Me 得 M* σ 0 h =σs (1) <0 Me 2
外层的正应力改变了符号但未出现 反向屈服 3.当再次施加的正向弯矩值不 3.当再次施加的正向弯矩值不 超过M* M*时 梁将呈弹性响应。 超过M*时,梁将呈弹性响应。
+
−σ s
M* σs Me +
+
-
+
-
=
-
σs
M* − σs Me 图 4
4.如卸载到零以后再施加反向弯矩, 4.如卸载到零以后再施加反向弯矩,则开始时的 如卸载到零以后再施加反向弯矩 响应仍是弹性的, 响应仍是弹性的,当△M满足 ∆M σs +( )σs = -σs 或 ∆M = -2Me Me 外层纤维开始反向屈服, 外层纤维开始反向屈服,即弯矩的变化范围不大 Me时 结构将是安定的。 于2Me时,结构将是安定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pe P PP
P
o
x
Me he2 Ms 34 2 2 h he 1 2 P (l x ) 3 h 2 Pe l
x l
z
Ms M p
M Pp l Me Pe l
Pe 2 Pp 3
Mp ss
Me
h/ 2
l 3
P o l/2 z
x
l 6
x l/2
P
x
l/2 z
l/2
7
例题:悬臂梁在自由端受集中力,求弹性极限载荷、塑 性极限载荷、弹塑性分界线。 P o l z x
h z b y
解: M Pl max
P M max l
bh2 Me ss 6
M max
bh2 Pe ss 6l
bh2 Mp ss 4 bh2 Pp ss 4l 8
b h z x l/2 l/2
y
纵向纤维互不挤压:不计挤压应力, 横截面上只有正应力。
sx
sx
s x ( x, z),s y s z xy yz zx 0
小挠度假设:在梁达到塑性极限状态瞬 间之前,挠度与横截面尺寸相比为一微 小量,可用变形前梁的尺寸进行计算。
ss
h/ 2
l 6 确定塑性区位置
z ss
6
• 塑性铰:在全塑性阶段,跨中 截面的上下两塑性区相连,使 跨中左右两截面产生像结构 (机械)铰链一样的相对转动 --塑性铰。 • 特点: – 塑性铰的存在是由于该截面 上的弯矩等于塑性极限弯矩; 故不能传递大于塑性极限弯 矩的弯矩。 – 塑性铰是单向铰,梁截面的 转动方向与塑性极限弯矩的 方向一致。否则将使塑性铰 消失。
塑性极限载荷:
塑性极限状态对应的载荷。
10
塑性极限分析的基本假定:
(1)材料是理想刚塑的,不计弹性变形和强化效应。 (2)变形是微小的。 (3)比例加载。(所有外载荷都按同一比例增加。)
结构在塑性极限状态应满足的条件:
(1)平衡条件:平衡微分方程和静力边界条件。 (2)极限条件:达到塑性极限状态时内力场不违背的条件(屈 服条件。) (3)破坏机构条件:塑性极限状态下结构丧失承载能力时形成 破坏机构的形式。(表征结构破坏时的运动趋势或规律,要求 不引起物体的裂开或重合-几何方程,且被外界约束的物体表 面上满足位移和速度边界条件。)
P
x
l 6
he 0
bs s 3h2 4he2 12
Ms
o l/2 z l/2
x
bh2 MP ss 塑性极限弯矩 4 3Me Mp 2 4 M P bh2 PP s s 塑性极限载荷 l l
PP M 2 Pe l l 2 Me 4
z ss
9
§10-2 塑性极限分析定理与方法
一.有关塑性极限分析的基本概念
弹塑性分析方法的缺点:
(1)分析三个状态:弹性状态、弹塑性状态、塑性状态。 (2)了解整个加载过程。 (3)材料本构关系是非线性的,只能求解简单问题。
塑性极限状态:
理想塑性体承受的载荷达到一定的数值时,即使载荷不再 增长,塑性变形也可自由发展,整个结构不能承受更大的载荷, 这种状态称为塑性极限状态。
V
ST
V
Fi
ST
Su
ui
V
虚变形(位移):结构约束所允许的无限小位移。
12
证明:
平衡方程: Green 公式:
V
* f i ui*dV Fi ui*dS s ij ij dV ST V
s ij x j
fi 0
边界条件:
s ij l j Fi
f dV fl j dS x j V S
4
弹塑性区交界线:
he 1 P (l 2 x ) 3 h 2 2Me
P o l/2 z l/2
x
x
P l Me 2 2
he h 2
x
x
h he 2
x0
h Pl he 3 2 2Me
Pl/4
Me
5
四.全塑性阶段
x0
4 M e 2bh Pe ss l 3l 弹性极限载荷sss Nhomakorabeass
s
3
三.弹塑性阶段(约束塑性变形阶段)
M s Me
he
塑性区扩展
h/ 2
ss
he h / 2
M s 2b s x zdz 2b s s zdz
0 he
zs M s 2b s zdz 2b s s zdz he 0 he
塑性极限分析的完全解:
满足平衡条件、极限条件、破坏机构条件的解。
11
二.虚功原理和虚功率原理
虚功原理:在外力作用下处于平衡的变形体, 若给物体一微小的虚变形(位移)。则外力的 虚功必等于应力的虚功(物体内储存的虚应变 * 能)。 f i ui*dV Fi ui*dS s ij ij dV
第十章 结构的塑性极限分析
梁的弹塑性弯曲 塑性极限分析定理和方法 梁的极限分析 圆板的极限分析 梁模型法计算圆板和环板的塑性极限 载荷
1
§10-1 梁的弹塑性弯曲
一.基本假定 平截面假设:在变形过程中,变形 前为平面的横截面,变形后仍保持 为平面,且与变形后梁的轴线垂直。 z x P
Pl/4
d 2w M ( x) 2 dx EI 1
2
二.弹性阶段
Mz s x E x I 6M s x max 2 bh Ez
bh I 12
3
P x
l/2
b h y z
l/2
Mises屈服条件: s x max s s
bh2 Me ss 6
2
ss
弹性极限弯矩
i i i i ij j
V
f u dV F u dS f u dV s
i i ST V ST
l ui dS
ui u j 1 ij 2 x j xi
h/ 2
he
z ss P o l/2 z l/2 x
Ms
bs s 3h2 4he2 12 Me he2 Ms 34 2 2 h
弹塑性区交界线: he
bh2 Me ss 6
P l M x x 2 2
1 P (l 2 x ) 3 h 2 2Me