弹塑性力学第十一章
(完整)弹塑性力学简答题

弹塑性力学简答题第一章 应力1、 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。
2、应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。
3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。
110220330S S S σσσσσσ=+=+=+.4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。
5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。
6、Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。
固体力学解答必须满足的三个条件是什么?可否忽略其中一个?第二章 应变1、从数学和物理的不同角度,阐述相容方程的意义。
从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值.从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续.2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。
应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关.3、应力状态是否可以位于加载面外?为什么?不可以.保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续.4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。
弹塑性力学第十一章标准详解

弹塑性⼒学第⼗⼀章标准详解第⼗⼀章习题答案11.3使⽤静⼒法和机动法求出图⽰超静定梁的极限载荷。
解1:(1)静⼒法⾸先该超静定梁(a )化为静定结构(b )、(c )。
分别求出其弯矩图,然后叠加,得该超静定梁的弯矩图(f )在极限情况下,A sB s M M M M =-=设C 点⽀反⼒为C R ,则:12C s R l Pl M -=- 1(2)C s R l l M -=由上⼆式得()()11142p M l l P l l l *-=-当P 值达到上述数值时,结构形成破坏机构,故P 为该梁的完全解。
(2)机动法设破坏机构如图(g ),并设B 点挠度为δ,则:11,(2)A C l l l θδθδ==-()1122B A C l l l l δθθθ=+=-外⼒功e W P δ=内⼒功()11142i A A B B s l l W M M M l l l θθδ-=+=-由e i W W =,可得极限载荷上限为()11142s l l P M l l l *-=-先将该超静定梁化为静定梁(b )、(c ),分别作弯矩图,叠加得该超静定梁的弯矩图(f )设A 点为坐标原点,此时弯矩⽅程为:()()()212B M x R l x q l x =---在极限状态时,有()0,0s x M M ==- ()11,s x x M x M == 令()0dM x dx=得1()B q l x R -= (1)⽽212B s R l ql M -=- (2)()()21112B s R l x q l x M ---= (3)联⽴解(1)、(2)、(3)得2122s s M qM ql l ??=-解得21122s M q l=取较⼤的值,可得0211.66sM q l ≈在以上0q 值作⽤下,梁已形成破坏机构,故其解为完全解。
(2)机动法如图(g )设在A 、C 两点形成塑性铰,2A B C θθθθθ=== 内⼒功为()23i s s s W M M M θθθ=--+=g 外⼒功为e W q x dx q l θθ**==由虚功原理i W W =得:0221211.66s s M M q q l l*=>≈该解与完全解的误差为 03%q q q **-≈解3:(1)静⼒法设坐标原点在C 点,此时弯矩⽅程为:BC 段(02x l ≤≤)21()2c M x R x qx =-AB 段(2l x l ≤≤)11()24c M x R x ql x l ?? =--在x ξ=处,M 为极⼤值,设ξ在BC 段,由()0x dM x dx ξ==得0c R q ξ-= cR qξ=(1)在极限情况下()s M l M =- , ()s M M ξ=即:238c s R l ql M -=- (2)21221889s M q l=取正号219.2s Mq l=由于此时形成破坏机构,故q 值完全解。
弹塑性力学

M bh s M p
2
13
对于静定梁,当跨中截面,即出现一个
塑性铰,则该梁形成破坏机构,丧失继 续承载的能力。若为超静定梁,则需要 形成足够多的塑性铰才能使梁成为破坏 机构。
14
10-1-3 弯矩与曲率的关系
当梁的截面处于弹性状态时, E ,可得
K
在z h处 = s时,由上式得
10
塑性铰
由于跨中截面的上下两个塑性区互相沟通将使跨
中左右两边的截面产生相对转动正如普通结构铰 的作用一样跨中出现了塑性铰。 塑性铰与结构铰的比较: 相同点:允许梁产生转动。 不同点:①结构铰不能承受弯矩,而塑性铰则 能承受基本不变的弯矩;②结构铰集中于一点, 而塑性铰则有一定的长度;③结构铰可在两个 方向产生转动,而塑性铰则是单向铰,且转动 方向与弯矩作用方向相同。
10-1 梁的弹塑性弯曲
SJ1217班 结构工程专业 第一组
当荷载达到一定值时,结构中的“危险点”将
进入塑性变形阶段,此种状态称为结构的弹性 极限状态,相应的荷载称为弹性极限荷载。 随着荷载的逐渐增大,结构中进入塑性状态的 材料越来越多,即塑性区域不断扩大。 如果材料是理想塑性的(理想刚塑性和理想弹 塑性的),则结构可能发生这样的变形,即当 荷载增加到某一数值时,变形将无限制的发展 而荷载却不能继续增加。此时,我们称结构达 到了塑性极限状态,相应的荷载称为塑性极限 荷载。
Ke M s = 3 1 Ks M p
1/2
当he 0时,M s M p , K s K p , 该截面出现无约束 的塑性变形(即形成塑性铰)。
16
弯矩与曲率的关系
Ks M s 3 1 Kp M p
弹塑性力学讲义 第一章绪论

3
每个分量用一个标量(具有两个下标)与两个并在一起基矢量(并矢) ,称为二阶 张量。矢量可称为一阶张量,标量为零阶张量。 5.2 求和约定 在张量表示说明中,看到张量分量表示是一组符号之和,很长,特别是高阶张量, 为了书写简捷,采用求和约定。 求和约定:当在同一项中,有一个下标字母出现两次时,则表示该项在该指标的取 值范围内遍历求和,且称此种在同一项重复出现一次的下标为哑标。如:
e1 e2 a2 b2 e3
a b ai ei b j e j ai b j eijk ek ai b j ekij ek , 则
c c k eijk ai b j ekij ai b j , a b a1 b1
ij
自动消失。ij 也称为换标符号。
eijk ( i,j,k =1,2,3)
定义: eijk
共有 27 个元素。
1 若(i , j , k ) (1,2,3)或 ( 2,3,1)或 (3,1,2)时 正排列顺序 -1 若(i , j , k ) ( 2,1,3)或(1, 3, 2)或(3, 2, 1)时 逆排列顺序 0 若 i , j , k中任意两指标相同时
(i=1,2,3),用 ri 表示矢径;
同样位移矢量 u,用 ui 表示位移,ij 表示应力
张量。
xi aij y j
i
x1 a11 y1 a12 y2 a13 y3 x2 a21 y1 a22 y2 a23 y3 x a y a y a y 31 1 32 2 33 3 3
矢量场的拉普拉斯算子定义为矢量场的梯度的散度:是一个向量
弹塑性力学习题答案

第二章 习题解答2-1解:已知 0,0,===-==y x xy y xf f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂xy y yxx x y yx τστσ23()()⎩⎨⎧++s xy y s yx x l m m l σστστσ 有:lq t x -=代入(*4理、几何方程得:E x u x ==∂∂ε11E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。
综合1)~4),。
q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。
2)验证相容方程:0)(2=+∇y x σσ 亦满足。
3)验证应力边界条件: i) 主要边界:()0,2=±=h y yx yτσ满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。
2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y xυσσ12即:2222 2-4、x, y n l σσ2==2l 应力主向成∴l σn3-3、解: 1由x=0得: 2由 得: Fx Ex Cx Bx Ax y ++++=∴注:公式中已略去ϕ中与应力分量无关的一次项和常数项。
《弹塑性力学》第十一章塑性力学基础

描述了塑性变形过程中应变和位移之 间的关系,是塑性力学的基本方程之 一。
塑性变形的增量理论
流动法则
描述了塑性变形过程中应力和应变增量之间的关系,是增量理论的核心。
屈服准则
描述了材料在受力达到屈服点时的行为,是增量理论的重要概念。
塑性变形的全量理论
全量应力和全量应变
描述了塑性变形过程中应力和应变的 状态,是全量理论的基本概念。
100%
材料性能
塑性力学为材料性能的描述提供 了理论基础,有助于深入了解材 料的变形和破坏行为。
80%
科学基础
塑性力学是连续介质力学的一个 重要分支,为研究物质宏观性质 的变化规律提供了科学基础。
塑性力学的发展历程
初创期
塑性力学作为独立学科始于20 世纪初,初期主要研究简单的 应力状态和理想塑性材料。
有限元法的优点在于其灵活性和通用性,可以处 理复杂的几何形状和边界条件,适用于各种类型 的塑性变形问题。
然而,有限元法在处理大规模问题时可能会遇到 计算效率和精度方面的问题,需要进一步优化算 法和网格划分技术。
边界元法在塑性力学中的应用
01
02
03
04
边界元法是一种仅在边界上离 散化的数值方法,通过将问题 转化为边界积分方程来求解。
发展期
随着实验技术的进步,塑性力 学在20世纪中叶得到了快速发 展,开始涉及更复杂的材料和 应力状态。
深化期
进入20世纪末至今,塑性力学 与计算机技术、先进材料等交 叉融合,研究领域不断扩大和 深化。
塑性力学的基本假设
02
01
03
连续性
材料内部是连续的,没有空洞或缝隙。
塑性变形不可逆
塑性变形发生后,不会消失或还原。
弹塑性力学部分习题

第六章 弹性力学平面问题的直 坐标系解答
§6-1平面问题的分类
§6-2平面问题的基本方程和边界条件
§6-3平面问题的基本解法
§6-4多项式应力函数运用举例
2018/10/7
8
第七章弹性力学平面问题的极坐 标系解答
§7-1平面极坐标下的基本公式 §7-2轴对称问题 §7-3轴对称应力问题——曲梁 的纯弯曲 §7-4圆孔的孔边应力集中问题 §7-5曲梁的一般弯曲 §7-6楔形体在楔顶或楔面受力
弹塑性力学
第 六 章 弹性力学平面问题的直角坐标系解答 第 七 章 弹性力学平面问题的极坐标系解答 第 八 章 等截面直杆的扭转 第 九 章 空间轴对称问题 第 十 章 弹性力学问题的能量原理 第 十一 章 塑性力学基础知识
2018/10/7
1
参考书目
1.徐芝纶, 弹性力学:上册 .第三版,高等教育
w k x, y
其中 k 为待定常数,(x‚y)为待定函数, 试写出应力分量的表达式和位移法方程。
2018/10/7
18
题1-6 半空间体在自重 g 和表面均布压力 q 作用下的位移解为 u = v = 0,
1 g 2 2 w q h z h z 2G 2
2018/10/7
在 V上
16
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
z l y
Fbz g
x
x
2018/10/7
17
题1-5 等截面直杆(无体力作用),杆轴 方向为 z 轴,已知直杆的位移解为
u kyz
v kxz
15第10章经典弹塑性本构关系、第11章岩土本构关系和第12章 弹塑性力学边值问题分析(第15讲)

A+
∂f ∂σ ij
Dijkl
∂g ∂σ kl
dσ ij
= Dijkl dε kl − Dijkl
∂g ∂σ kl
∂f ∂σ ij
Dijkl
A+
∂f ∂σ ij
Dijkl
∂g ∂σ kl
d ε kl
=
( Dijkl
−
Dijkl A+
∂g ∂σ kl ∂f ∂σ ij
∂f ∂σ ij
Dijkl
Dijkl
¾塑性应变εijp硬化定律: ¾塑性功Wp硬化定律: ¾ 塑性体应变εvp 硬化定律
2
¾塑性应变εijp硬化定律:
ξβ
=
ξβ
(ε
p ij
)
由
dΦ
= ∂Φ ∂σ ij
d σ ij
+ ∂Φ ∂ξβ
d ξβ
=
∂Φ ∂σ ij
d σ ij
+ ∂Φ ∂ξβ
∂ξβ
∂ε
p ij
dε
p ij
=0
得:
∂Φ ∂σ ij
=
dsij
/
2G,
dε
p ij
= deipj ,
dεm
=
1 3K
dσ
m
∂f / ∂sij = sij ,
dε
p ij
=
dλsij
展开为
dε
p x
=
dε
p y
=
dε
p z
=
dγ
p xy
=
dγ
p yz
=
dγ
p zx
=
dλ
sx
sy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mp,当荷载增加到 极限荷载时,跨中 MP
Pe<P<PP
弯矩达到Mp 。
A
C
B
极限荷载 Pp 的确 MP
Pl 4
定可采用静力法,
也可采用虚功法 。
MP
2021/3/9
39
§11-2 一维问题弹塑性分析
静力法
P
根据平衡方程
A l/2 C l/2
应力较少)屈服条件是不变的。当应力满足
屈服条件时,卸载将有残余变形,即塑性变
形存在。卸载按线性弹性。
C
s A B
’s s
A
B
C
o
p
e
p
e
o O’
p e
软钢 -
合金钢 -
2021/3/9
5
§11-1 金属材料的力学实验及几种简化力学模型
而对于合金钢,无明显屈服,当 s时进
入强化阶段,在加载即发生弹性变形和塑性变
z a
2021/3/9
36
§11-2 一维问题弹塑性分析
2.4 超静定梁的极限荷载
超静定梁由于具有多余约束,因此必须有 足够多的塑性铰出现,才能使其变为机构。
下面举例说明这个过程。
P
一端固定、一端简支 A 的等截面梁,跨中受集
l/2 C
l/2
B
中荷载作用。
2021/3/9
37
§11-2 一维问题弹塑性分析
第十一章 塑性力学基础
§11-1 金属材料的力学实验及几种简化力学模型 §11-2 一维问题弹塑性分析
§11-3 应力、应变偏量的不变量和等效应力 e等 效应变 e、罗德(Lode)参数
§11-4 屈服条件 §11-5 理想弹塑性厚壁筒受内压力 §11-6 弹塑性应力应变关系增量理论
2021/3/9
’s s
A
BC
合金钢 -
o
O’
p e
当应力-应变曲线在OA范围内变化,材料
为弹性变化。当应力达到 s时(软钢有明显
屈服发生(AB段),合金钢无明显屈服发生) 将发生塑性变形。确定材料发生塑性变形的
条件为
2021/3/9
3
§11-1 金属材料的力学实验及几种简化力学模型
f () = - s = 0 初始屈服条件(函数)
P Pe (1 a b)b Pa (P Pe )b
EA
EA(1 a b)
2021/3/9
18
§11-2 一维问题弹塑性分析
(3)塑性解:
N1=sA , N2=sA
P Pp
Pe
则最大荷载 Pp=2sA
——极限荷载
e
这时杆件变形显著增加,丧失承载能力
2021/3/9
19
§11-2 一维问题弹塑性分析
响为主要的;
M
x
M
y
2021/3/9
21
§11-2 一维问题弹塑性分析
2.2梁具有两个对称轴截面的弹塑性弯曲:
(1) 梁的弯矩
M
x
M
在线弹性阶段
y
b
弹性极限状态(设矩形截面): M=Me
hz y
在 截 面 上 y=h/2 处 , max
s
Meh 2I
Me bh2 6
或 M e ——s 最b6h大2 弹性弯矩
得
N1 P /(1 a b)
最大弹性荷载
N2 (P a b) (1 a b)
Pe N1(1 a b) s A(1 a b)
力P 作用点的伸长为
e
N1a EA
Pea (1 a )EA
sa
E
b
2021/3/9
16
§11-2 一维问题弹塑性分析
(2)弹塑性解Pp P Pe : P = Pe 后,P 可继续增大,而 N1=sA 不增加
形,卸载按线弹性。对于强化特性明显的材料,
由O’点继续加载,在O’B段又是线性弹性变化,
当 达到B点再次发生塑性变形,
’s s
A
B
o
O’
p e
C - ’s=0——后继屈服函数 ’s=’s( p)
2021/3/9
6
§11-1 金属材料的力学实验及几种简化力学模型
当卸载后,反向加载时,有些金属材料反
2021/3/9
22
§11-2 一维问题弹塑性分析
s
s
+ h/2
s
y0 -
y0
y
+
s
x
s
y y0
弹塑性阶段:Mp M Me
弯矩继续增大,截面上塑性区域向中间扩展, 塑性区域内的应力保持不变,截面上弯矩为
2021/3/9
23
§11-2 一维问题弹塑性分析
s
s
+ h/2
s
y0 y0
+
s
y
x
s
y y0
作业:图示桁架各杆截面面积为 A , 材料为理 想弹塑性 ,求荷载 P 与 C 点竖向位移 关系。
A
DB
l
C
P
2021/3/9
20
§11-2 一维问题弹塑性分析
2.梁的弹塑性弯曲 2.1 假设: (1)材料为理想弹塑性;
(2)平截面假设(适用于l h);
s
-s
(3) 截面上正应力 x 对变形影
(2)梁弹塑性弯曲时的变形
在线弹性阶段,梁弯矩和曲率的关系为线性关系
M=EI ( M Me ), 或
M
EI
将应力与弯矩关系式 My代入上式,可得
I
Ey
2021/3/9
28
§11-2 一维问题弹塑性分析
在弹塑性阶段,由于梁弯曲 时截面仍然保持平面,可得
s 或
Ey0
s
y0 y0
+
s
y
x
s
y y0
2021/3/9
14
§11-2 一维问题弹塑性分析
(1)弹性解:
当杆处于弹性阶段,杆两部分的伸长为
a
N1a EA
b
N2b EA
代入变形协调方程为
N1a N2b 0 或
EA EA
a N2 N1 b
由于b a,所以 N1 N2 ,将 N2 N1 a b
代入平衡方程。
2021/3/9
15
§11-2 一维问题弹塑性分析
M
A
x
ydA
2b
y0
0
s
y y0
ydy
h2
y0
s ydy
b
s
h2 4
y02 3
当y0=h/2时: M M e
b
s
h2 4
h2 12
s
bh 6
2
——最大弹性弯矩
2021/3/9
24
§11-2 一维问题弹塑性分析
s
s
s
+ h/2
s
y0 -
-
y0 +
s
y
x
s
y y0
+
s
M
2021/3/9
34
§11-2 一维问题弹塑性分析
b
F2
s
-
-
-
h
z
+
+ F1
+
y
s
s
s
在塑性流动阶段:受拉区应力和受压区应力均为 常数,中性轴的位置由截面上合力为零来确定:
F1 = F2 或 s A1 = s A2
得 A1 = A2 ——中性轴的位置由受拉区截面面
积等于受压区截面面积确定。
2021/3/9
1
§11-1 金属材料的力学实验及几种简化力学模型
1.1单向拉压实验:
不同材料在单向拉压实验中,有不同的 应力-应变曲线。
C
s A B
’s s
A
B
C
o
p
e
p
e
软钢 -
o O’
p e
合金钢 -
2021/3/9
2
§11-1 金属材料的力学实验及几种简化力学模型
C
软钢 - s A B
o
p
e
p
e
2021/3/9
30
§11-2 一维问题弹塑性分析
s
-
+
+ -
+ +
s
- = +-
s
M I
y
y y0
x
y
s 0
y M I
y
y0 y y0
s
M I
y
y y0
2021/3/9
31
§11-2 一维问题弹塑性分析
2.3 梁具有一个对称轴截面的弹塑性弯曲:
M
x
y
b
M
z
h
y
具有一个对称轴截面梁的弹塑性弯曲特点: 随着弯矩的增大,中性轴的位置而变化。
当软钢应力达到A点后,软钢有明显屈服 (塑性流动)阶段。
经过屈服阶段后,荷载可再次增加(称为
强化阶段,BC段),但强化阶段 增幅较少。
A
s
B
C
’s s
A
B
软钢 -
o
p
e
p
e
o
O’
p e
C
合金钢 -
2021/3/9
4
§11-1 金属材料的力学实验及几种简化力学模型
对于此种材料(有明显屈服流动,强化阶段
映出反向加载的屈服极限 ’’s s —— 称为