新能源汽车汽车驱动电机介绍
新能源汽车电机驱动系统的工作原理

新能源汽车电机驱动系统工作原理一、电机工作原理新能源汽车电机是一种将电能转换为机械能的装置。
根据其工作原理,可分为直流电机、交流感应电机、永磁同步电机及开关磁阻电机等。
电机运行基于电磁感应原理,通过在电机定子绕组中通入交流电或直流电,产生一个旋转磁场,从而带动电机转子旋转。
电机的输出转速及转矩由施加在电机上的电流及电压决定。
二、电力电子变换器电力电子变换器是新能源汽车电机驱动系统的重要组成部分,其作用是将直流电转换为交流电,或将交流电转换为直流电。
通过电力电子变换器,可以实现对电机的精确控制,同时提高能量利用效率。
常见的电力电子变换器包括逆变器和整流器。
三、控制器对电机的控制策略电机控制器是新能源汽车电机驱动系统的核心部分,其主要功能是对电机进行控制和调节。
控制器通过采集车速、油门踏板位置等信号,结合控制算法,实现对电机的精确控制。
常见的控制策略包括矢量控制、直接转矩控制及智能控制等。
这些控制策略可根据实际需求进行选择和优化,以提高电机的性能和能效。
四、电池管理及能量控制新能源汽车的电池是其能量来源,因此,电池管理及能量控制也是电机驱动系统的重要环节。
电池管理系统通过对电池的电量、温度、充电状态等进行监测和控制,保证电池的安全运行和高效使用。
能量控制系统则根据车辆行驶状态、驾驶员需求等因素,对电机的输入功率进行控制和调节,以达到节能减排的效果。
五、冷却系统与热管理随着新能源汽车电机驱动系统的高效化和集成化发展,冷却系统与热管理也变得越来越重要。
冷却系统的作用是降低电机驱动系统的温度,防止过热对系统造成损害。
热管理则是对整个电机驱动系统的温度进行监测和控制,以保证系统的稳定运行。
热管理通常采用液冷和风冷两种方式,根据实际需求进行选择和优化。
六、系统集成与优化新能源汽车电机驱动系统是一个高度集成的系统,包括电机、电力电子变换器、控制器等多个部分。
为了提高系统的性能和能效,需要进行集成和优化。
系统集成过程中需要考虑各部分之间的匹配和协同工作,优化则主要针对系统的能效、可靠性、成本等方面进行。
新能源汽车电机驱动系统的组成及工作原理

新能源汽车电机驱动系统的组成及工作原理新能源汽车电机驱动系统是指由电机、电控器、电池组成的系统,用于驱动车辆的动力来源。
本文将介绍新能源汽车电机驱动系统的组成和工作原理。
一、组成新能源汽车电机驱动系统主要包括电机、电控器和电池三个部分。
1. 电机:电机是新能源汽车电机驱动系统的核心部件,负责将电能转换为机械能,驱动车辆运动。
根据不同的驱动方式,电机可以分为直流电机、交流异步电机和交流同步电机等不同类型。
2. 电控器:电控器是控制电机工作的关键设备,负责控制电机的启停、转速、转向等运行参数。
它接收来自车辆控制系统的指令,通过控制电机的工作状态来实现车辆的加速、减速和制动等功能。
3. 电池:电池是新能源汽车电机驱动系统的能量存储装置,用于提供电能供给电机工作。
目前常用的电池类型包括锂离子电池、镍氢电池和超级电容器等,其容量和性能直接影响着车辆的续航里程和动力性能。
二、工作原理新能源汽车电机驱动系统的工作原理可以简单分为三个步骤:电能转换、电能控制和能量调度。
1. 电能转换:电能转换是指将电池储存的直流电能转换为适合驱动电机的电能形式。
当车辆启动时,电池向电机供应电能,电机根据电控器的控制信号将电能转换为机械能,驱动车辆运动。
2. 电能控制:电能控制是指通过电控器对电机的工作进行控制。
电控器接收来自车辆控制系统的指令,根据指令调整电机的运行状态,包括控制电机的转速、转向和扭矩等参数,以实现车辆的加速、减速和制动等功能。
3. 能量调度:能量调度是指对电池组中的能量进行管理和分配。
电池组中的电能可以通过回馈制动、能量回收等方式进行回收利用,减少能量的浪费。
同时,还可以根据车辆的行驶状况和驾驶员的需求,合理分配电池组中的能量,以提高车辆的续航里程。
新能源汽车电机驱动系统是由电机、电控器和电池组成的系统,通过电能转换、电能控制和能量调度等环节,将电能转换为机械能,驱动车辆运动。
这种新型的动力系统具有环保、高效、低噪音等优点,是未来汽车发展的重要方向。
新能源汽车驱动电机分析报告

新能源汽车驱动电机分析报告
新能源汽车的驱动电机旨在提高普通汽车的能源效率,在利用传统汽车的动力机构集成更高效的电动汽车实现更低的排放量。
汽车驱动电机一般采用同步电机,其特点是体积小,重量轻,可提高汽车的行驶距离,有效减少汽车排放,提高行驶安全性。
同步电机是新能源汽车驱动系统的主要要素,它的功能是利用电动力来驱动汽车。
有三种不同类型的同步电机,分别是直流伺服电机、交流永磁同步电机和无级变速电机。
直流伺服电机技术能够在满足汽车的驱动要求的同时,具有较高的效率,可以高效利用新能源汽车的能源;同时,具有较强的可控性,可以根据不同的路况进行有效的驱动,增强新能源汽车的安全性;另外,它还具有较强的耐久性,可以在实际行驶中维持较高的发动机性能和效率。
交流永磁同步电机,又被称为高效电动机,整体效率可以达到95%以上,超过传统发动机效率的90%,能够有效增加新能源汽车的行驶距离;同时,它的可控性更强,能够根据不同的道路状况进行控制,在行驶速度变化时能够实现自动衔接,有效提高汽车的可控性;另外,它的噪音也更小,无刺激性,使汽车环境更安静。
新能源汽车驱动电机分类及其特点

新能源汽车驱动电机分类及其特点1.根据结构和工作原理分类驱动电机按照工作电源种类可分为直流电机和交流电机。
按结构和工作原理可分为直流电机、异步电机、同步电机。
目前,在新能源汽车领域,常用的驱动电机有直流电机(DC Motor)、感应电机(IM)、直流无刷电机(BLDC)、永磁同步电机(PMSM)以及开关磁阻电机(SRM)等。
(1)直流电机。
在电动汽车发展的早期,很多电动汽车都是采用直流电机方案。
主要是看中了直流电机的产品成熟,控制方式容易,调速优良的特点。
但由于直流电机本身的短板非常突出,其自身复杂的机械结构(电刷和机械换向器等),制约了它的瞬时过载能力和电机转速的进一步提高;而且在长时间工作的情况下,电机的机械结构会产生损耗,提高了维护成本。
此外,电机运转时的电刷火花会使转子发热,浪费能量,散热困难,还会造成高频电磁干扰,这些因素都会影响整车性能。
由于直流电机的缺点非常突出,目前的电动汽车已经将直流电机淘汰。
(2)交流异步电机。
交流异步电机是目前工业中应用十分广泛的一类电机,其特点是定、转子由硅钢片叠压而成,两端用铝盖封装,定、转子之间没有相互接触的机械部件,结构简单,运行可靠耐用,维修方便。
交流异步电机与同功率的直流电机相比效率更高,质量约轻了1/2。
如果采用矢量控制的控制方式,可以获得与直流电机相媲美的可控性和更宽的调速范围。
由于有着效率高、比功率较大、适合于高速运转等优势,交流异步电机是目前大功率电动汽车上应用较广的电机。
但在高速运转的情况下电机的转子发热严重,工作时要保证电机冷却,同时交流异步电机的驱动、控制系统很复杂,电机本体的成本也偏高,另外,运行时还需要变频器提供额外的无功功率来建立磁场,故相与永磁电机和开关磁阻电机相比,交流异步电机的效率和功率密度偏低,不是能效化的选择。
汽车一般以一定的高速持续行驶,所以能够让高速运转而且在高速时有较高效率的交流异步电机得到广泛应用。
(3)永磁同步电机。
新能源汽车驱动电机分类选型、优缺点和技术发展路线解析

新能源汽车驱动电机分类选型、优缺点和技术发展路线解析新能源汽车驱动电机主要分为三类:直流无刷电机(BLDC)、感应电机和永磁同步电机(PMSM)。
1. 直流无刷电机:直流无刷电机采用稀土磁材料,具有体积小、功率密度高、启动转矩大等优点。
它的控制简单、成本较低,适用于小型和中型的电动汽车。
但直流无刷电机存在换向损耗、转速范围局限等问题,且转矩-速度特性难以控制。
2. 感应电机:感应电机具有结构简单、可靠性高的特点。
它采用感应转子,没有永磁体,无需传感器,维护成本低。
感应电机适用于大型电动汽车,但在低转速和高转速区域有不理想的性能,且对电机控制要求较高。
3. 永磁同步电机:永磁同步电机采用永磁体作为励磁源,具有高效率、高能量密度和大启动转矩等优点。
它的控制复杂,需要较高的电机控制算法和精确的转子位置传感器。
永磁同步电机适用于中型和大型电动汽车,但永磁体的价格较高,且在高温环境下容易磁化损耗。
不同类型的驱动电机在优缺点和技术发展路线上有所不同:- 直流无刷电机的优点是体积小、功率密度高,但其换向损耗较大,转速范围相对有限。
- 感应电机的优点是结构简单、可靠性高,但在低速和高速性能不理想,电机控制要求较高。
- 永磁同步电机的优点是高效率、高能量密度和大启动转矩,但缺点是控制复杂,需要较高的电机控制算法和精确的转子位置传感器。
在技术发展路线上,目前的趋势是发展高效、轻量化的驱动电机,提高电机的功率密度,同时降低成本。
同时,新材料和新工艺的开发也是一个重要方向,以提高电机的热稳定性和可靠性。
此外,电机控制算法和系统集成技术的不断提升也是未来的发展方向,以实现更精确和高效的电机控制。
总体而言,新能源汽车驱动电机的发展主要集中在提高性能、降低成本和提高可靠性方面。
新能源汽车驱动电机分类及其特点

新能源汽车驱动电机分类及其特点一、直流电机:直流电机是新能源汽车最早应用的电机之一,其特点是结构简单、可适应宽范围的工作条件。
直流电机具有起动扭矩大、调速性能好、控制方便等特点,适用于电动汽车的低速高扭矩运行。
直流电机的缺点是惯量大、效率低、寿命短、无法很好地适应高速运行的需求。
随着技术的进步,直流电机的性能逐渐改进,目前主要应用于中小型电动车和混合动力汽车。
二、交流异步电机:交流异步电机是目前新能源汽车中最为常用的驱动电机之一,其特点是结构简单、便于制造、效率高、运行稳定。
交流异步电机的优点是具有较高的功率密度和扭矩密度,适用于中高速运行的场景。
但是,交流异步电机的控制和调速性能相对较差,难以实现无级调速等高级控制功能。
三、交流同步电机:交流同步电机是新能源汽车中技术含量较高的一类电机,其特点是效率高、控制性能好、适应性强。
交流同步电机有较高的能量转换效率,通过电子控制可以实现精确的转速控制。
交流同步电机的缺点是在低转矩运行时效能下降,起动能力相对较弱。
交流同步电机主要用于高速电动汽车和纯电动轻型车辆。
四、永磁同步电机:永磁同步电机是新能源汽车中效率最高的一种驱动电机,其特点是高效率、高功率密度和起动加速性能好。
永磁同步电机的主要优点是具有较高的转矩和功率密度,且在宽速度范围内都能保持高效率。
永磁同步电机的缺点是制造和维护成本较高,且在高速运行时容易发生电磁噪音和磨损。
永磁同步电机广泛应用于电动汽车和混合动力汽车中。
综上所述,不同类型的新能源汽车驱动电机各有特点,适用于不同的工况和需求。
未来随着技术的发展,各类驱动电机将继续优化,以提升其效率和性能,推动新能源汽车行业的发展。
新能源汽车驱动电机的特点和测试要点

新能源汽车驱动电机的特点和测试要点特点:1.高效能:相比传统燃油汽车的内燃机,新能源汽车驱动电机具有高效能特点。
电动机可以将电能直接转化为动能,而且在能源利用效率上有较高的优势。
2.高动力密度:新能源汽车驱动电机具有较高的功率密度和转矩密度,可以实现更高的加速度和更强的爬坡能力。
这使得新能源汽车具备了优秀的动力性能。
3.无污染排放:新能源汽车驱动电机采用电能驱动,不像传统燃油汽车那样存在尾气排放问题。
它可以显著减少空气污染和温室气体排放,对改善环境质量有重要意义。
4.高可靠性和耐久性:新能源汽车驱动电机的可靠性和耐久性要求较高,可以在各种恶劣的环境下正常运行。
此外,电机随着技术的发展,其寿命和可靠性也在不断提高。
5.低噪音:与传统的内燃机相比,新能源汽车驱动电机噪音较低。
这为驾驶者提供了更加安静和舒适的驾驶环境。
测试要点:1.效率测试:测试电机的效率可以评估其能量转化和能源利用效率。
常用的测试方法包括负载测试、电流测试和功率测试,以验证电机在不同运行状态下的效率。
2.动力测试:测试电机提供的最大功率和最大转矩,可以评估电机的动力性能。
测试包括加速测试、爬坡测试和最高速度测试等,以确定电机在各种工况下的动力性能。
3.耐久性测试:通过长期运行或模拟实际使用条件下的驱动电机的测试,以验证电机在使用寿命内的可靠性和耐久性。
测试项目包括温度测试、振动测试和高低温环境适应性测试等。
4.噪音测试:测试电机的噪音水平,以评估其在运行时产生的噪音。
通过声学测试仪器对电机在不同负载和转速下的噪音进行测量,并与国家标准进行对比。
5.安全性测试:测试电机在故障状态下的安全性能,以保证在发生意外情况时的安全性。
测试项目包括过电流保护、过温保护和短路保护等。
总之,新能源汽车驱动电机的特点和测试要点是与环保和能源问题密切相关的。
通过对驱动电机的各方面测试,可以确保其性能正常、可靠和安全,推动新能源汽车的进一步发展和应用。
新能源汽车驱动电机的工作原理与调试

新能源汽车驱动电机的工作原理与调试随着对环境保护和能源消耗的日益关注,新能源汽车逐渐成为未来汽车产业的发展方向。
而新能源汽车的核心组成部分之一就是驱动电机,它负责将电能转化为机械能,推动车辆的运动。
本文将着重介绍新能源汽车驱动电机的工作原理以及调试过程。
一、驱动电机的工作原理1. 类型和结构根据不同的工作原理,驱动电机主要分为直流电动机和交流电动机两大类。
直流电动机包括永磁直流电动机和励磁直流电动机,而交流电动机则包括感应电动机和永磁同步电动机。
无论是直流电动机还是交流电动机,它们的结构都包括定子和转子两部分。
定子是固定部分,由电枢绕组和磁极组成,而转子则是旋转部分,通常由永磁体或者绕组组成。
当电流通过定子的电枢绕组产生磁场时,与之相互作用的磁场将导致转子旋转。
这样,驱动电机就能够将电能转化为机械能,从而推动车辆的运动。
2. 工作原理根据电机的类型和结构,其工作原理有一定差异。
这里将重点介绍感应电动机和永磁同步电动机的工作原理。
感应电动机的工作原理是基于法拉第电磁感应定律。
当感应电动机的定子上通过三相交流电流时,产生的磁场会感应出转子内的电流。
根据洛伦兹力定律,这些电流与定子产生的磁场相互作用,从而使转子开始旋转。
感应电动机是目前应用最广泛的一种驱动电机,其结构简单可靠。
永磁同步电动机则是利用定子和转子之间的磁场相互作用来推动转子旋转。
定子上的线圈通过交流电流产生磁场,而转子则是由永磁体组成,它的磁场与定子磁场相互作用,从而产生转矩,使车辆运动起来。
相较于感应电动机,永磁同步电动机具有更高的效率和更好的动态响应。
二、驱动电机的调试过程1. 参数设置在驱动电机的调试过程中,首先需要设置合适的参数。
这些参数包括电流限制、转速控制和保护策略等。
电流限制是为了保证电机工作在安全范围内,避免超载和过热;转速控制是为了调整电机的输出功率和驱动性能;保护策略则是为了延长电机的使用寿命,防止潜在故障。
2. 传感器校准在调试驱动电机之前,需要先对相关传感器进行校准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整车控制器(VCU)根据驾驶员意图发出各种指令,电机控制器响应并反馈,实时 调整驱动电机输出,以实现整车的怠速、前行、倒车、停车、能量回收以及驻坡等功能。 电机控制器另一个重要功能是通信和保护,实时进行状态和故障检测,保护驱动电机系统 和整车安全可靠运行。
.4.
C33DB 驱动电机系统技术指标参数
9~16V
标称容量 重量
防护等级
85kVA 9kg IP67
.5.
第二章 驱动电机系统关键部件简介
C33DB 驱动电动机采用永磁同步电机(PMSM)
具有效率高、体积小、重量轻及可靠性高等优点;是动力系统的重要执行机构, 是电能与机械能转化的部件,且自身的运行状态等信息可以被采集到驱动电机控制器。 依靠内置传感器来提供电机的工作信息,这些传感器包括: ü 旋转变压器:用以检测电机转子位置,控制器解码后可以获知电机转速; ü 温度传感器:用以检测电机的绕组温度,控制器可以保护电机避免过热。
.22.
检修——驱动电机高压接口定义
高压连接器
.23.
检修——C33DB(大洋/大郡)
交流高压接口
C33DB(大洋) 直流高压接口
C30/33DB(大郡)
建议检修时先确认插件是否连接到位。
.24.
电机控制器(MCU)
.25.
第三章 驱动电机系统控制策略简介
控制策略
基于STATE机制的驱动电机系统上下电控制策略:基于整车STATE机制上下电策略要求,约束 了该机制下MCU在整车上下电过程各STATE中应该执行的动作、需要实现逻辑功能、允许及禁止 的诊断等。
1
12
13
23
24
35
建议检修时先确认插件是否连接到位,是否有“退针”现象。
.19.
检修——驱动电机控制器低压插件
连接器型号:AMP 35pin C-776163-1
编 号
信号名称
说明
12 激励绕阻R1
11 激励绕阻R2
35 余弦绕阻S1
34 余弦绕阻S3 电机旋转变压器接口
23 正弦绕阻S2
22 正弦绕阻S4
上下电逻辑流程图
.26.
驱动电机系统上电流程
.27.
驱动电机系统下电流程
.28.
驱动电机系统驱动模式
整车控制器根据车辆运行的不同情况,包括车速、挡位、电池SOC值来决 定,电机输出扭矩/功率。
当电机控制器从整车控制器处得到扭矩输出命令时,将动力电池提供的直 流电,转化成三相正弦交流电,驱动电机输出扭矩,通过机械传输来驱动车辆。
.16.
检修——确认低压信号线束连接
驱动电机系统状态和故障信息会通过整车CAN网络上传给整车控制器 (VCU),传输通道是两根信号线束,分别是电机到控制器的19PIN插件和 控制器到VCU的35PIN插件。驱动电机低压插件。
.17.
检修——确认低压信号线束连接
驱动电机低压接口定义
建议检修时先确认插件 是否连接到位,是否有“退 针”现象。
.14.
C33DB 装车的驱动电机状态
部件名称 驱动电动机 驱动电动机 驱动电动机 驱动电动机
零件号
型号
E00013180 TZ30S01
E00013995 TZ20S02
E00013182 TZ30S01
E00013996 TZ20S02
编号
AD33D XXXXX XXXX
AD33D XXXXX XXXX
类型 基速 转速范围 额定功率 峰值功率 额定扭矩 峰值扭矩 重量 防护等级
径 X 总长)
永磁同步 2812rpm 0~9000rpm
30kW 53kW 102Nm 180Nm 45kg IP67
(Φ)245X(L)280
控制器
直流输入电压
336V
工作电压范围
265~410V
控制电源
12V
控制电源电压 范围
BD33D XXXXX XXXX
BD33D XXXXX XXXX
铭牌 新能源股份
新能源 新能源股份
新能源
供应厂家 大洋 大洋 大郡 大郡
.15.
C33DB 装车的驱动电机控制器状态
部件名称
零件号
型号
编号
驱动电机控 制器
E00008441 KTZ3328S01
AK33D XXXXX XXXX
驱动电机控 制器
.9.
C33DB驱动电机控制器采用三相两电平电压源型逆变器
使用以下传感器来提供驱动电机系统的工作信息,包括: ü 电流传感器:用以检测电机工作的实际电流(包括母线电流、三相交流电流) ü 电压传感器:用以检测供给电机控制器工作的实际电压(包括动力电池电压、
12V蓄电池电压) ü 温度传感器:用以检测电机控制系统的工作温度(包括IGBT模块温度、电机
控制器板载温度)
.10.
C33DB 驱动电机控制器结构
.11.
C33DB 驱动电机控制器结构
.12.
C33DB 驱动电机控制器主要零件
.13.
C33DB驱动电机系统工作原理
在驱动电机系统中,驱动电机的输出动作主要是靠控制单元给定命令执 行,即控制器输出命令。控制器主要是将输入的直流电逆变成电压、频率可 调的三相交流电,供给配套的三相交流永磁同步电机使用。
33
屏蔽层
24 12V_GND
1
12V+
控制电源接口
连接器型号:AMP 35pin C-776163-1
编 号
信号名称
说明
32
CAN_H
31
CAN_L
30
CAN_PB
CAN总线接口
29 CAN_SHIELD
10
TH
9
TL
电机温度传感器接口
28
屏蔽层
8
485+Βιβλιοθήκη 7485-RS485总线接口
15 HVIL1(+L1) 26 HVIL2(+L2)
.29.
.6.
C33DB 驱动电动机结构
.7.
C33DB 驱动电动机主要零件
.8.
C33DB驱动电机控制器采用三相两电平电压源型逆变器
驱动电机系统的控制中心,又称智能功率模块,以IGBT(绝缘栅双极型晶 体管)模块为核心,辅以驱动集成电路、主控集成电路。
对所有的输入信号进行处理,并 将驱动电机控制系统运行状态的信息 通过CAN2.0网络发送给整车控制器。 驱动电机控制器内含故障诊断电路。 当诊断出异常时,它将会激活一个错 误代码,发送给整车控制器,同时也 会把存储该故障码和数据。
高低压互锁接口
.20.
检修——驱动电机控制器低压插件
建议检修时先确认插件是否连接到位,是否有“退针”现象。
.21.
检修——确认高压动力线束连接
动力电池的直流电通过高压盒提供给驱动电机控制器, 在电机控制器上布置有 2 个安菲诺高压连接插座。
驱动电机控制器提供三相交流电到驱动电机,主要依靠 规格 35m ㎡的三根电缆及高压连接器,除大洋的驱动电机 在C30DB上采用安菲诺独立插头外(对应的控制器上布置有 3个安菲诺高压连接插座),其余的都是LS整体式插头。上 述高压连接器均具备防错差功能。
新能源汽车汽车 驱动电机介绍
.1.
01 驱动电机系统概述 02 驱动电机系统关键部件简介 03 驱动电机系统控制策略简介
.2.
第一章 驱动电机系统概述
驱动电机系统是纯电动汽车三大核心部件之一,是车辆行驶的主要执行机构,其特性 决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。可见,驱动 电机系统是纯电动汽车中十分重要的部件。驱动电机系统由驱动电动机(DM)、驱动电机 控制器(MCU)构成,通过高低压线束、冷却管路,与整车其它系统作电气和散热连接。
E00008453 KTZ3322S02
AK33D XXXXX XXXX
驱动电机控 制器
驱动电机控 制器
E00008450 KTZ3328S01 E00008454 KTZ3322S02
BK33D XXXXX XXXX
BK33D XXXXX XXXX
铭牌 新能源股份
新能源 新能源股份
新能源
供应厂家 大洋 大洋 大郡 大郡
连接器型号:Amphenol RTOWO1419NP03
编号
信号名称
说明
A
激励绕阻R1
B
激励绕阻R2
C
余弦绕阻S1
D
余弦绕阻S3
电机旋转变压器接口
E
正弦绕阻S2
F
正弦绕阻S4
G
TH0
H
TL0
电机温度接口
L
HVIL1(+L1)
M
HVIL2(+L2)
高低压互锁接口
.18.
检修——驱动电机控制器低压插件