有理数综合复习(习题)

合集下载

精品 七年级数学上册 有理数综合复习题

精品 七年级数学上册 有理数综合复习题

x 2 ( a b cd ) x ( a b) 2010 ( cd ) 2011 的值。
10.已 知 有 理 数 ( 1) 求
在数轴上的位置如图所示且 ( 2)
24.数轴上表示整数的点称为整点,一数轴规定单位长度为 1 厘米,若在这条数轴上随意画出一条 10 厘 米长的线段 AB,则线段 AB 盖住的整点有( A.8 个或 9 个 B.9 个或 10 个 ) C.10 个或 11 个 ) D.±7 或±3 D.11 个或 12 个
25.已知│m│=5,│n│=2,│m-n│=n-m,则 m+n 的值是( A.-7 B.-3 C.-3 或-7
2 2 2 2
2
5.计算下列各题: (1)
11 7 3 13 (48) 12 6 4 24
1 5 5 1 1 5 (2) 1 2 2 7 7 2 2 7
4
1 1 1 1 6 (3) 32 5 3 5 2 3 4 7 4 7
1 1 小且比 大,则这个分数是 4 3
10 小的所有整数的和是 3
3
11.已知 a 2 ,且 | a 2 | 4 ,则 a 的倒数的相反数是_________ 12.若 x 与 z 互为倒数,|y|=7,则 xz+y= 13.已知有理数 a, b, c 满足
|a| |b| |c| abc 1 ,则 _________ a b c | abc |

2y = 3
(2)添括号后整理: ① 6
2 x 3 x = 2 3
② 12
6 x 24 3 x = 24 3

中考数学复习《有理数》专项练习题-带有答案

中考数学复习《有理数》专项练习题-带有答案

中考数学复习《有理数》专项练习题-带有答案一、选择题1.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.−a可以表示正数D.0既是正数也是负数2.在数3 0 −π215110.2121121112 -8.24中,有理数有()A.1个B.2个C.3个D.4个3.2023年9月23日,第19届亚运会在杭州开幕.据报道,开幕式的跨媒体阅读播放量达到503000000次,将503000000用科学记数法表示为()A.503×106B.5.03×108C.5.03×109D.0.503×1094.下列各式中不成立的是().A.|−5|=5B.−|5|=−|−5|C.−|−5|=5D.−(−5)=55.如图,25的倒数在数轴上表示的点位于下列两个点之间()A.点E和点F B.点F和点G C.点G和点H D.点H和点I6.若|a﹣4|=|a|+|﹣4|,则a的值是()A.任意有理数B.任意一个非负数C.任意一个非正数D.任意一个负数7.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0B.ab<0C.b−a<0D.ab>08.计算(−2)2022+(−2)2023的结果是()A.−2B.2 C.−22022D.22023二、填空题9.绝对值小于5且大于2的整数是.10.−14−13(填<或>).11.在-3.6 -10% 227π 0 2这六个数中,非负有理数有个.12.若p,q互为倒数,m,n互为相反数,则pq-m-n-313= 13.若|m−2023|+(n+2024)2=0,则(m+n)2023=三、解答题14.计算题:(1)(−7)−(+5)+(−4)−(−10)(2)(12−59+712)×(−36)(3)16÷(−2)3−(−18)×(−4)(4)−13−(1−0.5)×13×[2−(−3)2]15.在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来﹣(﹣3) |﹣2| 0 (﹣1)3 -3.5 −85−2372.16.x和y互为相反数,m与n互为倒数,|a|=1,求a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013的值.17.某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:与标准质量的差/克−3−2−1.50 1 1.5 2.5袋数 1 4 3 4 3 2 3(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?18.四个有理数A、B、C、D,其中,与6相加得0的数是A,C是13的倒数.(1)如果A+C=2B,求B的值:(2)如果A×B= D,求D的值:(3)计算:(A-D)×C÷B.参考答案1.C2.D3.B4.C5.C6.C7.B8.C9.±3,±410.>11.312.−21313.-114.(1)解:(-7)-(+5)+(-4)-(-10)=(-7)+(-5)+(-4)+10=-6(2)解:(12−59+712)×(−36)= 12×(−36)−59×(−36)+712×(−36)=-18+20-21=-19(3)解:16÷(−2)3−(−18 )×(−4)=16÷(-8)- 12=(-2)- 12=-2 12(4)解:−13−(1−0.5)×13×[2−(−3)2]=-1- 12×13×(-7)=-1+ 76= 1615.解:∵−(−3)=3|−2|=2(−1)3=−1;∴在数轴上表示,如图所示:按从小到大的顺序用“<”把这些数连接起来为:−3.5<−85<(−1)3<−23<0<|−2|<−(−3)<72.16.解:∵x与y互为相反数,m与n互为倒数,|a|=1∴x+y=0,mn=1,a=±1∴a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013=a2﹣(0+1)a+02012+(﹣1)2013=a2﹣a﹣1.当a=1时,a2﹣a﹣1=12﹣1﹣1=﹣1.当a=﹣1时,a2﹣a﹣1=(﹣1)2﹣(﹣1)﹣1=1+1﹣1=1.∴a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013的值为1或﹣1.17.(1)解:(−3)×1+(−2)×4+(−1.5)×3+0×4+1×3+1.5×2+2.5×3 =−3−8−4.5+0+3+3+7.5=−2(克)即这批样品的总质量比标准总质量少,少2克;(2)解:200×20−2= 4000−2= 3998(克)3998÷20=199.9(克)即这批样品平均每袋的质量是199.9克.18.(1)解:∵与6相加得0的数是A, C是13的倒数.∴A=-6,C=3∵A+C=2B∴-6+3= 2B∴B=−32(2)解:∵A ×B=D ,且B=−32,A=-6 ∴D=-6×(−32)=9(3)解:∵A=-6,B=−32,C=3, D=9∴(A-D) ×C+B= (-6-9)×3÷(−32)=-15×3×(−23)=30。

经典《有理数》总复习_拔高题及易错题精选附答案

经典《有理数》总复习_拔高题及易错题精选附答案

) +( 3 )]+[ ( 4 )+ ( )+ (15 )]
37
37
37
4
4
2
=0
1 (2) 0.125 12 ( 16) ( 2 2 )
解:原式 =[- 0.125× (- 16) ]×[ 12× ( =2× (- 30) =- 60
三、解答题 (共 82 分 )
1. ( 12 分)计算:
10
15
5
1
9
(1) ( 12 37 ) 3 37 ( 4.25) ( 37 ) ( 15 2 ) ( 4 )
10
15
1
51
9
解:原式 =( 12
1307
)+ (
3
5
37
)+(
15
4
4 )+ ( 137
)+ (15
9
21)+ (
4)
=[ ( 12 )+ (
它跳第 100 次落下时,落点处离 O 点的距离是
个单位.
三、解答题 (共 82 分 )
1. ( 12 分)计算:
10
15
5
1
9
(1) ( 12 37 ) 3 37 ( 4.25) ( 37 ) ( 15 2 ) ( 4 )
1 (2) 0.125 12 ( 16) ( 2 2 )
2. (5 分)计算 1- 3+ 5- 7+ 9- 11+… +97- 99.
值.其中 x 和 y 满足 (x 12)2 |1 3 y | 0 .
1
1111
1
1
(4) 2 1 3 2 4 3 … 1000 999
5. (6 分) 已知 a 1 b 2 2 0 ,求 (a+ b) 2016+ a2017.

有理数综合复习

有理数综合复习

有理数综合复习(人教版)一、单选题1.某大米包装袋上标注着“净重量:25kg±0.25kg”,则一袋这种合格的大米其实际净含量可能是( )A.25.28k gB.25.18k gC.24.69k gD.24.25k g2.下列判断正确的是( )A.-a一定小于0B.C. D.3.下列说法中,正确的是( )A.0是最小的有理数B.0是最小的整数C.-1的相反数与1的和是0D.0是最小的非负数4.下列说法正确的是( )A.-1是最大的负数B.两个数的和一定大于其中的任意一个数C.两个数的差一定小于被减D.所有的有理数都能用数轴上的点表示5.下列说法正确的是( )A.互为相反数的两个数一定不相B.绝对值等于它相反数的数是负数C.一个有理数不是整数就是分数D.6.下列说法不正确的是( )A.没有倒数的数是0B.倒数等于它本身的数是±1C.相反数等于它本身的数是0D.绝对值等于它本身的数只有正数7.为有理数,,,且,则这4个数从小到大的顺序是( )A.a<b<-b<-aB.-a<-b<b<aC.b<a<-a<-bD.b<-b<-a<a8.设有理数在数轴上的对应点如图所示,则下列说法正确的是( )A.B.C.D.9.若,则的值是( )A.-5B.-8C.5D.810.如果,那么代数式的值是( )A.-2014B.2014C.-1D.111.已知都是负数,且,则xyz是( )A.负数B.非负数C.正数D.非正数12.计算的结果是( )A.-25B.-19C.15D.2113.计算的结果是( )A.-22B.-32C.-10D.-3414.计算的结果是( )A.24B.16C.-16D.-2415.计算的结果是( )A.-2B.-3C.0D.16.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记水位比前一日下降数).则本周星期( )水位最低.A.二B.三C.五D.六17.某市客运管理部门对“十一”国庆假期七天客流变化量进行了不完全统计,数据如下(用正数表示客流量比前一天上升数,用负数表示比前一天下降数):则七天内游客人数最多的是( )日.A.1B.5C.6D.7一、单选题1.213000 000用科学记数法可表示为( )A.B.C. D.2.某年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( )A.B.C.D.3.我国是缺水国家,目前可利用淡水资源总量仅约为,则所表示的原数是( )A.8990B.899000C.89900D.89900004.表示( )A.-3与4的积B.4个-3的积C.4个-3的和D.3个-4的积5.表示( )A.5个-3的积的相反数B.5个3的积C.5个-3的和的相反数D.5与-3的积的相反数6.计算:=______;=______.( )7.计算:=______;=______.( )8.下列各数中,互为相反数的一对是()A. B. C. D.9.计算的结果为10.计算的结果为11.计算的结果为12.计算的结果为13.计算的结果为14.计算的结果为1.计算2.计算3.计算4.计算5.计算6.计算的7.计算8.计算9.计算10.计算11.计算12.计算13.计算14.计算15.已知,则等于()。

第一章有理数复习题

第一章有理数复习题

第一章 有理数复习题一、选择题1、下列说法正确的是( )A 、正数与负数统称为有理数B 、带负号的数是负数C 、正数一定大于0D 、最大的负数是-12、关于“0”下面说法正确的个数是( )(1)是整数,也是有理数。

(2)不是正数,也不是负数。

(3)不是整数,是有理数。

(4)是整数,不是自然数A 、4B 、3C 、2D 、13、在有理数中,倒数等于本身的数有( )A 、1个B 、2个C 、3个D 、无数个4、下面说法中正确的是( )A 、一个数与它的倒数之积是1B 、一个数与它的相反数之和为0C 、两个数的和为-1,这两个数互为相反数D 、两个数的积为1,这两个数互为相反数5、a 和b 是满足ab ≠0的有理数,现有四个命题: ①422+-b a 的相反数是422+-b a ; ②a-b 的相反数是a 的相反数与b 的相反数的差;③ab 的相反数是a 的相反数和b 的相反数的乘积;④ab 的倒数是a 的倒数和b 的倒数的乘积.其中真命题有( )A 、1个B 、2个C 、3个D 、4个6、7-a 的相反数是-2,那么a 是( )A 、5B 、-3C 、2D 、17、已知字母 a 、b 表示有理数,如果 a+b =0,则下列说法正确的是( )A 、a 、b 中一定有一个是负数B 、a 、b 都为0C 、a 与 b 不可能相等D 、a 与b 的绝对值相等8、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数A 、1B 、2C 、3D 、49、在数轴上和表示-3的点的距离等于5的点所表示的数是( )A 、-8B 、2C 、-8和2D 、110、不超过3)23( 的最大整数是( ) A 、–4 B –3 C 、3 D 、411、绝对值大于2且小于5的所有整数的和是( )A 、 7B 、 -7C 、 0D 、 512、若|a+b|=-(a+b ),下列结论正确的是( )A 、a+b ≦0B 、a+b<0C 、a+b=0D 、a+b>013、如果a<0,那么a 和它的相反数的差的绝对值等于( )A 、aB 、0C 、-aD 、-2a14、若ab =|ab |,必有( )A 、ab<0B 、ab ≥0C 、a<0,b<0D 、a,b 同号15、已知一个数的平方等于它的绝对值,这样的数共有 ( )A 、1个B 、2个C 、3个D 、4个16、下列说法中正确的是( )A 、最大的负有理数是-1B 、任何有理数的绝对值都大于零C 、任何有理数都有它的相反数D 、绝对值相等的2个有理数一定相等17、下列说法正确的是( )A 、两数之和为正,则两数均为正B 、两数之和为负则两数均为负C 、两数之和为0,则两数互为相反数D 、两数之和一定大于每个加数18、如果减数为正数,那么差与被减数的大小关系是( )A 、差比被减数大B 、差比被减数小C 、差可能等于被减数D 、无法比较19、若a<b<0<c<d ,则以下四个结论中,正确的是( )A 、a+b+c+d 一定是正数B 、d+c-a-b 可能是负数.C 、d-c-b-a 一定是正数.D 、c-d-b-a 一定是正数.20、两个有理数的和除以它们的积所得的商为零,则这两个数( )A 互为倒数B 互为相反数C 互为相反数且都不等于零D 互为倒数且都不等于零21、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个;22、如果ab<0且a>b ,那么一定有 ( )A 、a>0,b>0B 、a>0,b<0C 、a<0,b>0D 、a<0,b<023、如果a 2=(-3)2,那么a 等于 ( )A 、3B 、-3C 、9D 、±324、若a 2>0,则a 3为( )A 、正数B 、负数C 、正数或负数D 、奇数25、近似数4.50所表示的真值a 的取值范围是 ( )A 、4.495≤a <4.505B 、4040≤a <4.60C 、4.495≤a ≤4.505D 、4.500≤a <4.505626、下面用数学语言叙述代数式a 1-b ,其中表达不正确的是 ( ) A 、比a 的倒数小b 的数 B 、1除以a 的商与b 的相反数的差C 、1除以a 的商与b 的相反数的和D 、b 与a 的倒数的差的相反数27、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为( )A 、121B 、321C 、641D 、128128、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价( )A 、高12.8%B 、低12.8%C 、高40%D 、高28%二、填空题1、(1)比-π大的负整数有_________ ____。

人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.若气温上升2℃记作+2℃,则气温下降3℃记作()A.﹣2℃B.+2℃C.﹣3℃D.+3℃2.一个数的相反数是它本身,则该数为()A.0B.1C.﹣1D.不存在3.根据世界卫生组织的统计,截止10月28日,全球新冠确诊病例累计超过4430万,用科学记数法表示这一数据是()A.4.43×107B.0.443×108C.44.3×106D.4.43×1084.下列各组的两个数中,运算后的结果相等的是()A.23和32B.﹣33和(﹣3)3C.﹣22和(﹣2)2D.﹣|﹣2|和|﹣2|5.把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是()A.﹣5﹣4+7﹣2B.5+4﹣7﹣2C.﹣5+4﹣7﹣2D.﹣5+4+7﹣26.下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C.﹣1.5D.﹣37.下列各式比较大小正确的是()A.﹣<﹣B.﹣100>0.1C.|﹣|<D.|﹣7|>|﹣8|8.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷=36×﹣12×=16丁:(﹣3)2÷×3=9÷1=9A.甲B.乙C.丙D.丁9.已知a、b、c大小如图所示,则的值为()A.1B.﹣1C.±1D.010.等边△ABC在数轴上的位置如图所示,点A,C对应的数分别是0和﹣1,若△ABC绕顶点A沿顺时针方向连续翻转,翻转一次后点B对应的数为1,则翻转2021次后点B对应的数是()A.不对应任何数B.2019C.2020D.2021二.填空题11.的倒数等于.12.用四舍五入法将0.00519精确到千分位的近似数是.13.101﹣102+103﹣104+…+199﹣200=.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a,如1☆3=1×32+2×1×3+1=16.则(﹣2)☆3的值为.15.已知a<b,且|a|=6,|b|=3,则a+b的值为.三.解答题16.计算:(1)13+(﹣15)﹣(﹣23).(2)﹣17+(﹣33)﹣10﹣(﹣16).17.计算:(1)﹣14﹣(﹣2)3÷4×[5﹣(﹣3)2];(2).18.(6分)已知|a﹣2|与(b+2)2互为相反数,c、d互为倒数,x的绝对值为4,求的值.19.淇淇在计算:时,步骤如下:解:原式=﹣2022﹣(﹣6)+6÷﹣6………………①=﹣2022+6+12﹣18………………………②=﹣2048…………………………………③(1)淇淇的计算过程中开始出现错误的步骤是;(填序号)(2)请给出正确的解题过程.20.已知点A、B、C、D、E在数轴上分别对应下列各数:0,|﹣3.5|,(﹣1)2,﹣(+4),﹣2.(1)如图所示,在数轴上标出表示其余各数的点.(标字母)(2)用“<”号把这些数连接起来.21.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?22.定义一种新的运算:x★y=(x+2)×(y+2).(1)计算(﹣3)★(﹣4)与(﹣4)★(﹣3),此运算满足乘法交换律吗?(2)计算[(﹣3★(4)]★(﹣5)与(﹣3)★[(﹣4)★(﹣5)],此运算满足乘法结合律吗?23.已知|a|=5,|b|=2,回答下列问题:(1)由|a|=5,|b|=2,可得a=,b=;(2)若a+b>0,求a﹣b的值;(3)若ab<0,求|a+b|的值.24.如图,半径为1个单位长度的圆形纸片上有一点Q与数轴上的原点重合.(提示:圆的周长C=2πr,π取值为3.14)(1)把圆形纸片沿数轴向左滚动1周,点Q到达数轴上点A的位置,则点A表示的数是;(2)圆形纸片在数轴上向右滚动的周数记为正数,圆形纸片在数轴上向左滚动的周数记为负数,依次运动周数记录如下:+2,﹣1,﹣5,+4,+3,﹣2.当圆形纸片结束运动时,Q点运动的路程共是多少?此时点Q所表示的数是多少?参考答案一.选择题1.解:∵气温上升2℃记作+2℃,∴气温下降3℃记作﹣3℃.故选:C.2.解:∵0的相反数是0,∴一个数的相反数是它本身,则该数为0.故选:A.3.解:4430万=44300000=4.43×107.故选:A.4.解:A.23=8,32=9,∴23≠32,故此选项不符合题意;B.﹣33=﹣27,(﹣3)3=﹣27,∴﹣33=(﹣3)3,故此选项符合题意;C.﹣22=﹣4,(﹣2)2=4,∴﹣22≠(﹣2)2,故此选项不符合题意;D.﹣|﹣2|=﹣2,|﹣2|=2,∴﹣|﹣2|≠|﹣2|,故此选项不符合题意;故选:B.5.解:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)=﹣5+4﹣7﹣2=﹣10故选:C.6.解:A.2到原点的距离是2个长度单位,不符合题意;B.1到原点的距离是1个长度单位,不符合题意;C.﹣1.5到原点的距离是1.5个长度单位,不符合题意;D.﹣3到原点的距离是3个长度单位,符合题意;∴在数轴上所对应的点与原点的距离最远的点表示的数是﹣3.故选:D.7.解:A.∵|﹣|=,|﹣|=,而,∴,故本选项不合题意;B.﹣100<0.1,故本选项不合题意;C.|﹣|==,而,∴,故本选项符合题意;D.∵|﹣7|=7,|﹣8|=8,∴|﹣7|<|﹣8|,故本选项不合题意;故选:C.8.解:甲:9﹣32÷8=9﹣9÷8=7,原来没有做对;乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;丙:(36﹣12)÷=36×﹣12×=16,做对了;丁:(﹣3)2÷×3=9÷×3=81,原来没有做对.故选:C.9.解:根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选:A.10.解:由题意得:2021÷3=673•2,所以:翻转2021次后点B对应的数是2020,故选:C.二.填空题11.解:的倒数是:2.故答案为:2.12.解:将0.00519精确到千分位的近似数是0.005.故答案为:0.005.13.解:原式=(﹣1)+(﹣1)+…+(﹣1)=﹣50,故答案为:﹣5014.解:∵a☆b=ab2+2ab+a,∴(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32.15.解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a+b=﹣9或a+b=﹣3,故答案为:﹣9或﹣3.三.解答题16.解:(1)13+(﹣15)﹣(﹣23)=13+(﹣15)+23=21.(2)﹣17+(﹣33)﹣10﹣(﹣16)=﹣17+(﹣33)+(﹣10)+16=﹣44.17.解:(1)原式=﹣1﹣(﹣8)÷4×(5﹣9)=﹣1﹣(﹣8)÷4×(﹣4)=﹣1﹣8÷4×4=﹣1﹣8=﹣9;(2)原式===﹣9+(﹣)×12=﹣9+(﹣13)=﹣22.18.解:由题意得:|a﹣2|+(b+2)2=0,cd=1,x=4或﹣4,则a﹣2=0,b+2=0,解得a=2,b=﹣2,则当x=4时,原式=0+(﹣1﹣1)×4﹣5=﹣8﹣5=﹣13;当x=﹣4时,原式=0+(﹣1﹣1)×(﹣4)﹣5=8﹣5=3.故的值是﹣13或3.19.解:(1)∵(﹣1)2022=1,(﹣2)3=﹣8,6÷(﹣)=6÷=36,∴原式=1﹣(﹣8)+6÷,∴开始出现错误的步骤是①,故答案为:①;(2)原式=1﹣(﹣8)+6÷=1+8+6×6=1+8+36=45.20.解:(1)如图所示:(2)用“<”号把这些数连接起来:﹣(+4)<﹣2<0<(﹣1)2<|﹣3.5|.21.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0,所以,小虫最后能回到出发点O;(2)根据记录,小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm,所以,小虫离开出发点的O最远为12cm;(3)根据记录,小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm),所以,小虫共可得到54粒芝麻.22.解:(1)此运算满足乘法交换律,理由如下:(﹣3)★(﹣4)=(﹣3+2)×(﹣4+2)=(﹣1)×(﹣2)=2;(﹣4)★(﹣3)=(﹣4+2)(﹣3+2)=(﹣2)×(﹣1)=2.故此运算满足乘法交换律.(2)运算不满足乘法结合律,理由如下:[(﹣3)★(﹣4)]★(﹣5)=[(﹣3+2)(﹣4+2)]★(﹣5)=2★(﹣5)=(2+2)(﹣5+2)=4×(﹣3)=﹣12;(﹣3)★[(﹣4)★(﹣5)]=(﹣3)★[(﹣4+2)(﹣5+2)]=(﹣3)★6=(﹣3+2)(6+2)=﹣1×8=﹣8.故此运算不满足乘法结合律.23.解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2.故答案为:±5,±2;(2)∵a+b>0,∴a=5,b=±2,当a=5,b=2时,a﹣b=5﹣2=3;当a=5,b=﹣2时,a﹣b=5﹣(﹣2)=5+2=7;综上,a﹣b=3或7.(3)∵ab<0,∴a=5,b=﹣2或a=﹣5,b=2.当a=5,b=﹣3时,|a+b|=|5﹣2|=3;当a=﹣5,b=3时,|a+b|=|﹣5+2|=3;∴|a+b|=3.24.解:(1)∵2πr=2×3.14×1=6.28,∴点A表示的数是﹣6.28,故答案为:﹣6.28;(2)∵|+2|+|﹣1|+|﹣5|+|+4|+|+3|+|﹣2|=17,∴17×2π×1=106.76,∴当圆片结束运动时,Q点运动的路程共有106.76,∵2﹣1﹣5+4+3﹣2=1,∴1×2π×1≈6.28,∴此时点Q所表示的数是6.28.答:当圆片结束运动时,Q点运动的路共是106.76,此时点Q所表示的数是6.28.。

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2.下列式子简化不正确的是()A.+(﹣5)=﹣5B.﹣(﹣0.5)=0.5C.﹣(+1)=1D.﹣|+3|=﹣33.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.104.下列结论中不正确的是()A.最小的正整数为1B.最大的负整数为﹣1C.绝对值最小的有理数为0D.倒数等于它本身的数为15.﹣的倒数的绝对值是()A.﹣2021B.C.2021D.﹣6.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+B.﹣C.×D.÷7.以下说法,正确的是()A.数据475301精确到万位可表示为480000B.王平和李明测量同一根钢管的长,按四舍五入法得到结果分别是0.80米和0.8米,这两个结果是相同的C.近似数1.5046精确到0.01,结果可表示为1.50D.小林称得体重为42千克,其中的数据是准确数8.有一种放射性物质,它的质量缩减为原来的一半所用的时间是一个不变的量﹣﹣120年,它的质量由96克变为6克,所需要的时间是()A.240年B.480年C.600年D.960年二.填空题9.如果规定从原点出发,向南走为正,那么﹣100m表示的意义是.10.(﹣2)2|﹣3|(用“>”或“<”填空).11.在﹣5,,0,1.6这四个有理数中,整数是.12.在数轴上,如果点A所表示的数是﹣2,那么到点A距离等于3个单位的点所表示的数是.13.计算:﹣32×(﹣2)3=.14.计算(﹣9)÷×的结果是.15.计算:=.16.在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下98990000农村贫困人口全部脱贫,将数据98990000用科学记数法表示为.17.把有理数130542按四舍五入法精确到千位的近似值为.18.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有人.三.解答题19.把下列各数分别填在相应的大括号里.13,,﹣31,0.21,﹣3.14,0,21%,,﹣2020.负有理数:{…};正分数:{…};非负整数:{…}.20.(每题要写出必要的解题步骤)(1)(﹣3.1)+(6.9)(2)90﹣(﹣3)(3)(4)﹣7+13﹣6+20(5)(﹣2)4+3×(﹣1)6﹣(﹣2)(6)﹣8721+53﹣1279+43(7)(8).21.请把下面不完整的数轴补充完整,并在数轴上标出下列各数:﹣,﹣(﹣2),3,﹣150%,|﹣0.5|.22.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元/件)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?23.小明觉得像0.0000057这样的数写起来很麻烦,当他学习了科学记数法以后,发现0.0000057==,所以发明了一种“类科学记数法”,类比科学记数法,将0.0000057写成5.7÷106.(1)将下列各数用“类科学记数法”表示,0.02=;0.000407=;(2)若一个数0.0……035用“类科学记数法”表示为3.5÷106,则原数中“0”的个数为;(3)比较大小:9÷1081÷107,0.000106 9.8÷105;(4)纳米是长度度量单位.1纳米=1.0÷109米,一种病毒的直径平均为200纳米.200纳米这个数据用“类科学记数法”可表示为米.24.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+(b﹣4)2=0.(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以3个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=2时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由若能,请求出甲,乙两小球到原点的距离相等时t的值.③若当甲和乙开始运动时,挡板也从原点以1个单位/秒的速度向右运动,直接写出甲,乙两小球到挡板的距离相等时t的值.参考答案一.选择题1.解:根据题意,若收入80元记作+80元,则﹣50元表示支出50元.故选:C.2.解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.3.解:AB=4﹣(﹣6)=10.故选:D.4.解:最小的正整数为1,是正确的;最大的负整数为﹣1于是正确的;绝对值最小的有理数为0,其它数的绝对值都大于0,因此选项C是正确的;倒数等于它本身的数为±1,因此选项D是错误的;故选:D.5.解:﹣的倒数为﹣2021,﹣2021的绝对值为2021,故选:C.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:A、数据475301精确到万位可表示为4.8×105,所以A选项错误;B、0.80m精确到0.01m,而0.8m精确到0.1m,所以B选项错误;C、近似数1.5046精确到0.01,结果可表示为1.50,所以C选项正确;D、小林称得体重为42千克,其中的数据是近似数.故选:C.8.解:减少一半为一个半衰期,设经过x个半衰期,根据题意,得:96×=6,,x=4,一个半衰期120年.所以需要的时间是4×120=480(年).故选:B.二.填空题9.解:如果规定从原点出发,向南走为正,那么﹣100m表示的意义是向北走100米.故答案为:向北走100米.10.解:∵(﹣2)2=4,|﹣3|=3,∴(﹣2)2>|﹣3|.故答案为:>.11.解:在﹣5,,0,1.6这四个有理数中,在,1.6是分数,﹣5、0是整数.故答案是:﹣5、0.12.解:﹣2+3=1,﹣2﹣3=﹣5,则A表示的数是:1或﹣5.故答案为:1或﹣513.解:﹣32×(﹣2)3=﹣9×(﹣8)=72.故答案为:72.14.解:(﹣9)÷×=(﹣9)××=﹣6×=﹣4,故答案为:﹣4.15.解:原式=﹣×(﹣)==10.故答案为:10.16.解:98990000=9.899×107,故答案为:9.899×107.17.解:130542≈1.31×105(精确到千位),故答案为:1.31×105.18.解:由题意,得22+4+(﹣8)+6+(﹣5)+2+(﹣3)+1+(﹣7)=12(人),故答案为:12三.解答题19.解:负有理数:{,﹣31,﹣3.14,﹣2020…};正分数:{0.21,21%,…};非负整数:{13,0…}.故答案为:,﹣31,﹣3.14,﹣2020;0.21,21%,;13,0.20.解:(1)(﹣3.1)+(6.9),=+(6.9﹣3.1),=3.8;(2)90﹣(﹣3),=90+3,=93;(3)(﹣)×8=﹣6;(4)﹣7+13﹣6+20,=﹣13+33,=20;(5)(﹣2)4+3×(﹣1)6﹣(﹣2),=16+3×1+2,=16+3+2,=21;(6)﹣8721+53﹣1279+43,=﹣8721﹣1279+53+43,=﹣10000+97,=﹣9903;(7)﹣22×(﹣)+8÷(﹣2)2,=﹣4×(﹣)+8÷4,=2+2,=4;(8)﹣12+3×(﹣2)3+(﹣6)÷(﹣)2,=﹣1+3×(﹣8)+(﹣6)×9,=﹣1﹣24﹣54,=﹣79.21.解:数轴补充完整如下图所示:22.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.23.解:(1)0.02=2÷102,0.000407=4.07÷104,故答案为:2÷102;4.07÷104;(2)∵3.5÷106=0.0000035,∴原数中“0”的个数为6个,故答案为:6;(3)9÷108=0.00000009,1÷107=0.0000007,∵0.00000009<0.0000007,∴9÷108<1÷107,9.8÷105=0.000098,∵0.000106>0.000098,∴0.000106>9.8÷105,故答案为:<;>;(4)∵1纳米=1.0÷109米,∴200纳米=200×1.0÷109=2.0÷107米,故答案为:2.0÷107.24.解:(1)∵|a+2|+|b﹣4|=0,∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=2+1=3,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动3个单位,此时,乙小球到原点的距离=4﹣3=1,当t=2时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动2个单位,此时,甲小球到原点的距离=2+2=4,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动6个单位,此时,乙小球到原点的距离=3×2﹣4=2,故答案为:3,1,4,2;②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6;故当t=秒或t=6秒时,甲乙两小球到原点的距离相等;(3)B碰到挡板需要4÷(3+1)=1(秒),A碰到挡板需要2÷2=1(秒),∴t=1时,甲,乙两小球到挡板的距离相等,①都向左运动时,则2+t+t=4﹣3t﹣t,即6t=2,解得t=,②反弹时,则t﹣1+t﹣1=(3﹣1)(t﹣1),即2t=2t,∴当t≥1时,甲,乙两小球到挡板的距离相等,∴t值为或t≥1时,甲,乙两小球到挡板的距离相等.。

有理数复习(有答案)

有理数复习(有答案)

>有理数综合复习基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于( )。

2、若∣a ∣=-a,则a ( )0.3、任何有理数的绝对值都是( )。

4、如果a+b=0,那么a 、b 一定是( )。

5、将毫米的厚度的纸对折20次,列式表示厚度是( )。

~6、已知||3,||2,||a b a b a b ==-=-,则a b +=( )7、|2||3|x x -++的最小值是( )。

8、在数轴上,点A 、B 分别表示2141,-,则线段AB 的中点所表示的数是( )。

9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则()20102a b mn p p++-=( )。

10、若abc ≠0,则||||||a b c a b c++的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、53、…,其中从左到右第100个数是( )。

二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。

》3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。

4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

>5、计算:-21 +65-127+209-3011+4213-5615+7217能力培训题>知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓展训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )A .1B .2C .3D .42、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数综合复习(习题)
➢ 例题示范 例:[]311(3)(2)3(4)7⎛⎫--⨯----⨯- ⎪⎝⎭① ② ③
思路分析
观察结构,划为①,②,③三个部分,对每一部分按照对应的运算顺序及法则求解.
过程书写
11(3)(8)(34)7112477124(1)
1(24)1
22
⎛⎫=--⨯--+⨯- ⎪⎝⎭
⎛⎫=--⨯- ⎪⎝⎭
=---=+-+=-原式
➢ 巩固练习
1. 下列各式成立的是( )
A .0.90.7->-
B .1022⎛⎫<+- ⎪⎝⎭
C .( 3.5)( 3.5)-+>--
D .7172-<- 2. 下列说法正确的是( )
A .任何有理数的绝对值都是正数
B .两个有理数,绝对值大的反而小
C .一个数的相反数一定是负数
D .在数轴上,离原点越近的点,表示的数的绝对值越小
3. 下列判断正确的是( )
A .-a 一定小于0
B .
C .若0a b +=,则a b =
D b =
4. 下列说法正确的有( )
①0乘任何数都得0;
②一个数同1相乘,仍得原数;
③-1乘任何有理数都等于这个数的相反数;
④互为相反数的两个数相乘,积是1;
⑤互为相反数的两个数的绝对值相等.
A .2个
B .3个
C .4个
D .5个 5. 下列各式一定成立的是( ) A .22()a a =-
B .33()a a =-
C .22a a -=-
D .33a a = 6. 若0a b +>,0ab <,a b <,则( )
A .0a >,0b <
B .0a >,0b >
C .0a <,0b >
D .0a <,0b < 7. 若2x =,3y =,则x y +的值为( ) A .5 B .1 C .5或1
D .以上都不对 8. 若22(3)0a b ++-=,则b a =_______.
9. 若30m n n -++=,则mn =_______.
10. 若0a >,0b <,a b <,则a ,b ,-a ,-b 这4个数从小到大的顺序是______________________.
11. 计算:
(1)2
3352(5)16(2)450.6258⎛⎫-⨯-+÷---⨯+- ⎪⎝⎭;
(2)22221211( 1.5)3232
⎛⎫⎛⎫⎛⎫⨯----÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;
(3)
221922.510.245⎡⎤⎛⎫÷--+⨯- ⎪⎢⎥⎝
⎭⎣⎦;
(4)3211(3)28540.125⎛⎫⎛⎫-÷-÷---÷ ⎪ ⎪⎝⎭⎝⎭.
12. 下表为某个雨季水库管理员记录的水库一周内的水位变化情况,警戒水位为
100 m (上周末的水位达到警戒水位).

1)完成下面的本周水位记录表:
(3)以警戒水位为0点,用折线统计图表示本周内该水库的 水位情况.
➢思考小结
1.请回顾数轴、相反数、绝对值的概念,并填空:
(1)–a表示的是___________________;
–(–a)表示的是_________________;
已知a,b均为有理数,则1
-+的相反数是________.
a b
(2)若x x
-=,则x的取值范围是____________;
-=-,则a的取值范围是___________.
若a a
2.下列说法:
①一个数不是正数就是负数;
②一个有理数不是整数就是分数;
③一个整数不是正整数就是负整数;
④一个分数不是正分数就是负分数;
⑤正有理数、负有理数统称为有理数.
其中正确的有_____________(填序号).
3.下列说法中正确的有_________________(填序号).
①一个数的绝对值一定是正数;
②只有负数的绝对值是它本身;
③两个数比较大小,绝对值大的反而小;
④若|x|=|y|,则x=-y;
⑤若x=-y,则|x|=|y|;
⑥若a b
<.
<,则a b
【参考答案】
➢ 巩固练习
1. D
2. D
3. C
4. C
5. A
6. C
7. C
8. -8
9. 9
10. b a a b <-<<-
11. (1)18;(2)89-;(3)252
;(4)-39. 12. (1)101.35,101.00,101.05,101.30,100.95,100.80;
(2)周二的水位最高,为101.35米;
(3)略.
➢ 思考小结
1. (1)a 的相反数;-a 的相反数;1a b -+-
(2)0x ≥;0a ≤
2. ②④
3. ⑤。

相关文档
最新文档