平方差公式优质课教学设计完美版
2023最新-《平方差公式》教学设计优秀10篇

《平方差公式》教学设计优秀10篇《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。
以下是人见人爱的小编分享的10篇《平方差公式》教学设计,在大家参考的同时,也可以分享一下牛牛范文给您的好友哦。
初中数学平方差公式教案篇一一、学习目标:1、使学生了解运用公式法分解因式的意义;2、使学生掌握用平方差公式分解因式二、重点难点重点:掌握运用平方差公式分解因式。
难点:将单项式化为平方形式,再用平方差公式分解因式;学习方法:归纳、概括、总结三、合作学习创设问题情境,引入新课在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。
1、请看乘法公式(a+b)(a-b)=a2-b2 (1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是a2-b2=(a+b)(a-b) (2)左边是一个多项式,右边是整式的乘积。
大家判断一下,第二个式子从左边到右边是否是因式分解?利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2-b2=(a+b)(a-b)2、公式讲解如x2-16=(x)2-42=(x+4)(x-4)。
9 m 2-4n2=(3 m )2-(2n)2=(3 m +2n)(3 m -2n)四、精讲精练例1、把下列各式分解因式:(1)25-16x2; (2)9a2- b2.例2、把下列各式分解因式:(1)9(m+n)2-(m-n)2; (2)2x3-8x.补充例题:判断下列分解因式是否正确。
平方差公式-优秀教案

平方差公式-优秀教案【教学目标】1. 理解平方差公式的含义和应用2. 学会运用平方差公式化简一元二次方程3. 培养学生运用公式解决实际问题的能力【教学重点】理解平方差公式的含义和应用,学会运用公式化简一元二次方程【教学难点】运用平方差公式化简一元二次方程【教学内容】1. 平方差公式的含义和应用2. 运用平方差公式化简一元二次方程3. 实际问题解析【教学过程】一、引入1. 教师通过提示,让学生回忆二次方程的解法以及解法的局限性,引出平方差公式。
2. 展示平方差公式的公式表达式,让学生观察该公式的形式和含义。
3. 将一个简单的二次方程转化为标准形式,使用平方差公式求解,让学生理解和掌握该公式的具体应用。
二、知识讲解1. 平方差公式的含义和应用(1)平方差公式的定义:在代数学中,平方差公式用于将二次多项式写成一个平方项和一个差项的和的形式。
(2)平方差公式的公式表达式:(a+b)² = a²+2ab+b²和(a-b)² = a²-2ab+b²。
(3)平方差公式的应用:主要用于化简一元二次方程和求解两个数的平方之差等问题。
2. 运用平方差公式化简一元二次方程(1)将一元二次方程转化为标准形式:ax²+bx+c=0;(2)将公式中的a、b、c代入平方差公式;(3)化简得二次方程的解。
(4)特别地,当二次方程中有平方项且系数a=1时,可以直接使用平方差公式。
三、练习与实际问题解析1. 练习题:练习一元二次方程的化简和求解2. 实际问题解析:通过实际问题的分析与计算,激发学生的兴趣,帮助学生理解和掌握平方差公式的应用。
【教学总结】通过本节课的学习,学生可以理解平方差公式的含义和应用,掌握平方差公式化简一元二次方程的方法,并能够通过实际问题的解析,运用所学知识解决实际问题。
同时,本节课旨在培养学生的问题解决能力,提高学生的数学素养与实际应用能力。
平方差公式教案

平方差公式导学案一、学习目标1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.3.在探索平方差公式的过程中,培养符号感和推理能力.4.培养学生观察、归纳、概括的能力.二、学习重点:平方差公式的推导和应用.学习难点:理解平方差公式的结构特征,灵活应用平方差公式.三、学法指导(一)探究平方差公式自主探究:计算下列多项式的积.(1)(x+1)(x-1)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=(4)(x+5y)(x-5y)=观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?同学们分别用文字语言和符号语言叙述这个公式.用字母表示:平方差公式是多项式乘法运算中一个重要的公式,用它直接运算会很简便,但必须注意符合公式的结构特征才能应用.在应用中体会公式特征,感受平方差公式给运算带来的方便,从而灵活运用平方差公式进行计算(二)平方差公式的应用例1:运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)在例1的(1)中可以把3x看作a,2看作b.即:(3x+2)(3x-2)=(3x)2-22(a+b)(a-b)=a2-b2同样的方法可以完成(2)、(3).如果形式上不符合公式特征,可以做一些简单的转化工作,使它符合平方差公式的特征.比如(2)应先作如下转化:(b+2a)(2a-b)=(2a+b)(2a-b).如果转化后还不能符合公式特征,则应考虑多项式的乘法法则.解:(1)(3x+2)(3x-2)=(2)(b+2a)(2a-b)=(3)(-x+2y)(-x-2y)=例2:计算:(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)解:(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)应注意以下几点:(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式.(2)要符合公式的结构特征才能运用平方差公式.(3)有些多项式与多项式的乘法表面上不能应用公式,•但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.(4)运算的最后结果应该是最简巩固练习1、下列计算对不对?如不对,应当怎样改正(1)(x+2)(x-2)= x2 - 2(2) (-3a-2)(3a-2)= 9a2 -41、计算:(1) (a+3b)(a-3b)=(2) (3+2a)(-3+2a)=(3)(-a-b)(a-b)=(4)(a5-b2)(a5+b2)=(5)(a-b)(a+b)(a2+b2)=(6) 51 49 =四、学习反思五、课堂检测:计算:(1)(xy+1)(xy-1)=(2) (2a-3b)(3b+2a)=(3) (-2b-5)(2b-5) =(4) ( x-y)( x+y)=(5) (3x+4)(3x-4)-(2x+3)(2x-2)(6) 998 1002 =(7) 2001 1999 =。
平方差公式(教学设计).doc

14.2乘法公式14.2.1平方差公式(教学设计)学习目标:1.理解平方差公式,并能灵活运用公式进行计算.2.通过了解平方差公式的几何背景,体会数形结合的思想方法.学习重点:理解平方差公式,并会运用公式进行简单的计算.学习难点:从广泛意义上理解公式中的字母含义,具体问题要具体分析,会运用公式进行计算.旧知回顾:1.你能说一说多项式与多项式相乘的运算法则吗?2.计算:(x+1)(x+3)=探究一:计算下列多项式的积.(1)(x+1)(x-1)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=问题:(1)式子的左边具有什么共同特征?(2)式子的右边有什么特征?(3)你能将发现的规律用式子a b表示出来吗?(4)你能对发现的规律进行推导吗?(5)你能用文字语言表述平方差公式吗?探究二:理解平方差公式的几何意义在边长为a的正方形中剪去一个边长为b的小正方形,然后把剩余的两个长方形拼成一个长方形,你能用这两个图形的面积说明平方差公式吗?(提示:1、计算剪去后剩余部分的面积;2、计算拼成后的长方形面积。
)•H例1运用平方差公式计算:(1)(3x+2)(3x-2)(2)(-x+2y)(-x-2y)1.判断下列式子是否可用平方差公式(1)(-a+b)(a+b)(2) (-2a+b)(-2a-b)(3) (-a+b)(a-b)(4) (a+b)(a-c)例2计算:(1)(-y+2)(- y -2)- (y-1)(y +5);(2)102×98.练习运用平方差公式计算:(1)(a+3b)(a-3b)(2)(b+2a)(2a-b)(3)51×49;(4)(3+2a)(-3+2a)课堂小结.平方差公式:(a+b)(_a-b)= a2-b2布置作业选做题:1.计算:2009×2007-200822.化简:(x-y)(x+y)(x2+y2)(x4 +y4)。
平方差公式教案(共5篇)

平方差公式教案(共5篇)第一篇:平方差公式教案学习周报专业辅导学生学习第七节平方差公式(一)学习目的:1、通过经历探索平方差公式的过程,进一步发展符号感和推理能力。
2、会推导平方差公式、理解平方差公式的特点,并能运用公式进行简单的计算。
3、通过对平方差公式结构的认识,体会数学中的结构美、简约美。
学习重点:理解平方差公式的特点,会运用平方差公式计算学习难点:会推导平方差公式,并能灵活运用公式进行计算学习过程:一、复习探究1、请写出多项式与多项式相乘的法则:2、计算下列各题(1)(x+2)(x-2);(2)(1+3a)(1-3a)(3)(x+5y)(x-5y);(4)(y+3z)(y-3z)解:3、通过以上计算,你发现了什么规律?能不能猜想出一个一般性的结论?规律:结论:二、学习新课1、推导公式:现在要对大家提出的猜想进行证明,请试着写出证明过程:证明:我们经历了由发现——猜测——证明的过程,最后得出一个公式性的结论,根据它的特点,我们给它取个容易记的名字,就叫做平方差公式学习周报专业辅导学生学习即:(a+b)(a-b)=a-b两个数的和与这两个数的差相乘,它们的积就等于这两个数的平方差.你知道公式中的a、b表示什么?请同学们分析公式的结构并记忆。
2、应用公式例1、用平方差公式计算:(1)(5+6x)(5-6x);(2)(x-2y)(x+2y)分析:要利用平方差公式解题,必须找到相同的项和互为相反数的项,结果为相同项的平方减互为相反数的项的平方.解:(1)(5+6x)(5-6x)=5-(6x)=25-36x(2)(x-2y)(x+2y)=x-(2y)=x-4y 例2、利用平方差公式计算(1)(-m+n)(-m-n);(2)(-2x-5y)(5y-2x);222222222(3)(ab+8)(-ab+8)分析:注意找准相同项与互为相反数的项.解:(1)(-m+n)(-m-n)=(-m)-n=m-n(2)(-2x-5y)(5y-2x)=(-2x)2-(5y)2=4x2-25y2(3)(ab+8)(-ab+8)=82-(ab)2=64-a2b2 现在让我们来试试吧!练习1:下列各题能否用平方差公式来进行计算?若能,请写出结果。
初中数学《平方差公式》教案

初中数学《平方差公式》教案
一、教学目标
1.掌握平方差公式。
2.掌握常见的平方差的应用。
二、教学重点
掌握平方差的定义和公式,并熟悉它的常见应用。
三、教学难点
理解平方差的计算方法,应用正确的公式在给定的数据上求平方差。
四、教学准备
教学用书、白板、粉笔等。
五、教学过程
(一)热身环节
1.播放歌曲,介绍今天要学习的内容。
2.提问学生,让他们交流自己对平方差的理解。
(二)复习环节
1.复习统计中的分散程度的概念。
2.介绍统计中的几个概念,如:均值、样本方差、样本标准差等。
(三)新课内容环节
1.告诉学生,平方差是一种衡量样本的分散程度的一种数学量,用来衡量一组数据的分布趋势。
2.介绍平方差的定义,用公式来表示,以及其一般的计算方法,并演示计算过程。
3.平方差与样本方差的区别。
4.平方差的重要性,以及它的应用。
(四)操作环节
1.让学生利用上课所学的知识,计算给定的一组数据的平方差。
2.引导学生分析给定的一组数据的分布趋势,根据平方差的大小,做出判断。
(五)归纳环节
1.总结本节课所学的内容,归纳、整理课堂知识。
2.用小结的形式,总结平方差的定义、计算方法以及常见的应用。
六、教学反思。
平方差公式教学设计(优秀10篇)

平方差公式教学设计(优秀10篇)平方差公式说课课件篇一平方差公式教学反思本节课采用情景—探究的方式,以猜想、实验、论证为主要探究方式,得出平方差公式,应用逆向思维的方向,演绎出平方差公式,对公式的应用首先提醒学生要注意其特征,其次要做好式子的变形,把问题转化成能够应用公式的方面上来,应用公式法因式分解的过程,实际上就是转化和化归的过程。
在解决认识平方差公式的`结构时候,重点突出学生自我思想的形成,能够充分地不公式用自己的语言来叙述,在整个教学设计中,教师只作为了一个点拨者和引路人。
然后应用有梯度的典型例题加以巩固,在学生头脑中形成一个清晰完整的数学模型,使学生在今后的练习中游刃有余。
不足之处:教学中时间把握还是不足,在设计的题目中不怎么合理,应按题目的难度从易到难。
有些题目的归纳可放手给学生讨论后由学生说出,而不是教师代替。
小组评价做的不够,没有足够的小组的活动,没有小组的竞赛。
教学语言还太随意,数学的语言应该严谨。
在语调上应该有所变化。
平方差公式篇二2.运用公式要注意什么?(1)要符合公式特征才能运用平方差公式;(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.四、作业1.运用平方差公式计算:(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);(5)(2x3+壹五)(2x3-壹五);(6)(0.3x-0.l)(0.3x+l);2.计算:(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).热门文章青少年思想道德建设当前我国作文教学改革的新趋势古诗三首(墨梅竹石石灰吟)一场雪Unit2Look at me第五课时植物妈妈有办法威尼斯的小艇等比数列的前n项和相关文章・多项式的乘法・单项式与多项式相乘・单项式的乘法・幂的乘方与积的乘方(二)・幂的乘方与积的乘方・同底数幂的乘法(二)・同底数幂的乘法・一元一次不等式组和它的解法平方差公式教学课件篇三平方差公式教学课件教学目的:1、使学生会推导平方差公式,并掌握公式特征。
平方差公式教学设计(精选10篇)

平方差公式教学设计平方差公式教学设计(精选10篇)作为一名辛苦耕耘的教育工作者,往往需要进行教学设计编写工作,借助教学设计可使学生在单位时间内能够学到更多的知识。
写教学设计需要注意哪些格式呢?以下是小编收集整理的平方差公式教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
平方差公式教学设计篇1一、教材分析本节课选自人教版八年级上册第14章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。
对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式提供了方法。
因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位,同时也是最基本、用途最广泛的公式之一。
二、学情分析1.学生的知识技能基础:学生在前面的学习中,已经学习了整式的有关内容,并经历了用字母表示数量关系的过程,有了一定的符号感。
经过一个学期的培养,学生已经具备了小组合作、交流的能力。
学生刚学过多项式的乘法,已具备学习并运用平方差公式的知识结构,通过创造问题情境,让学生承担任务,在探究相应问题中,建立并运用公式,从而使拓展学生知识技能结构成为可能。
通过实际问题的探究,学生已感受到多项式乘法运算的重要性,同时,具备了对式的运算基础“快”“准”的积极心理,学生已具备学习公式的知识与技能结构,通过新课程教学的实施,培养学生具有独立探索、合作交流的习惯。
2.学生活动经验基础:学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性。
三、教学目标1.知识目标:经历平方差公式的探索及推导过程,掌握平方差公式的结构特征并能熟练应用。
2.能力目标:运用公式进行简单的运算,获得一些数学活动的经验,进一步增强学生的符号感、推理和归纳能力及解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程设计
教学程序及教学内容
师生行为 设计意图 注意:
左边 右
边
结构特征 (a+b )(a-b ) = a 2 - b 2
相同项 相反项 相同项2
- 相反项2
[a 与a] [b 与-b] = a 2 - b 2
5.运用上面的规律直接写出下列乘法的运算结果:
⑴()()=-+b a b a ;
②()()=-+b a b a 3232___________.
6.平方差公式:()()22b a b a b a -=-+
即:两个数的和与这两个数的差的积,等于这两个数的平方差. 注意:平方差公式中的a 和b 可以是数、字母,也可以是式;
只要是相同两个式的和乘以差,都等于平方差.
例1.运用平方差公式计算:
(1) ()()2323-+x x ; (2)()b a a b -+2)2( (2) ()224)2)(2(2)2(b a b a b a b a a b -=-+=-+ 【解析】⑴中,要把x 3和2分别看成公式中的a 和b , 即:
(2) ()224)2)(2(2)2(b a b a b a b a a b -=-+=-+ 第(2)题表面上看不符合公式特征,但实质上是符合公式特征的.
【点拨】在运用平方差公式时注意:⑴判断是否符合平方差
公式的结构特点,只有符公式结构的乘法才能运用公式简化运算,否则仍按多项式乘法法则进行.⑵能用公式的式子要先变形为()()b a b a -+的形式,再利用公式进行计算. 例2.下列多项式乘法中,能用平方差公式计算的是( ) (1)(x +1)(1+x );
(2)(21a +b )(b -21a ); (3)(-a +b )(a -b );
(4)(x 2-y )(x +y 2
);
完全相同,另一项又是互为相反的;
(3)结果是两项的
平方差,并且是完
全相同项的平方减
去互为相反项的平
方。
部分学生板书解题,完成后,师生纠错。
学生先自主辨析,
再交流互补,不断
完善。
在交流中让学生归
纳平方差公式的特征:
(1)左边为两个数的和与差的积;
(2)右边为两个数
的平方差.
学生回答,教师点
拨。
学生发现技巧,
灵活应用公式。
目间的共性发现规律,举三反一,猜想公式,让学生经历从一般到特殊,从具体到抽象的过程,体会归纳这一数学思想方法.
揭示公式的结构特征,是学生理解公式、进而灵活运用公式解决问题的前提条件.让学生自主辨析、合作交流、共同总结得以明晰,既体现了学生学习的主动性,又为学生学习公式进行了学法指导,可谓“一箭双雕”. 通过一则平方
差公式简单的例题分析及应用,巩固了公式结构特征,让学生进一步
板书设计
2。