引物设计原则及酶切位点选择和设计

合集下载

引物设计原则及酶切位点选择和设计

引物设计原则及酶切位点选择和设计

引物设计原则及酶切位点选择和设计1.引物长度:引物长度通常在15-30个碱基对之间,过短的引物可能无法在目标DNA上特异性结合,而过长的引物则会增加非特异性杂交的风险。

2.引物GC含量:引物应具有适度的GC含量,一般在40-60%之间,以确保引物的稳定性和特异性结合能力。

3.引物互补性:引物对的互补性应满足一定的要求,即引物内部无内部连续互补序列,以免引物产生二次结构或引发非特异性杂交。

4.引物末端设计:引物设计时应考虑5'端和3'端的碱基配对,确保引物在目标序列上合理附着并提高扩增效率。

5.引物目标区域选择:引物的目标区域应在目标序列上具有充分的特异性,尽量避免引物与非目标序列相互作用。

酶切位点选择和设计:1. 利用enzyme切割DNA是一种常见的分子生物学技术,合理选择和设计酶切位点十分重要。

酶切位点应在目标序列中具有充分的特异性,尽量避免位点在非目标序列中出现,以避免非特异性切割。

2.酶切位点的选择应考虑应用的需求,例如PCR扩增、限制性酶切鉴定等。

对于PCR扩增,可根据目标序列设计引物,保证引物包含酶切位点,同时也满足引物设计的原则;对于限制性酶切鉴定,应选择与限制性酶切位点有相关性的序列。

3.酶切位点的设计还应注意酶切位点周围的序列,避免引物或其他片段在PCR扩增过程中产生不必要的相互作用。

4.酶切位点的设计还需注意所选择的酶切酶的酶切活性,以确保酶能够切割目标序列,并尽量减少切割非目标序列的风险。

5.在实验设计中,还需考虑酶切位点的数量以及其相对位置,尽量避免多个位点靠得太近或相互重叠,以减少酶切产生的DNA片段数目和长度。

同时还需注意位点之间的横向特异性,以避免相同或相似的位点出现在非目标序列中。

总之,引物设计和酶切位点选择是分子生物学实验中关键的环节,合理的设计和选择能够提高实验的特异性和效率,有助于更好地进行目标序列扩增和酶切等操作。

引物设计原则

引物设计原则

引物设计原则
1.合适的引物长度:引物长度通常在18-30个碱基对之间,过长或过
短的引物都不利于PCR扩增的稳定性。

2.适当的引物GC含量:引物的GC含量应在40%-60%之间,过高或过
低的GC含量都会影响引物和模板DNA的特异性结合。

3.引物特异性:引物应具有高度特异性,可以通过引物序列在数据库
中进行BLAST分析来评估引物的特异性。

4.避免引物自身的二聚体和结构性:引物序列中要避免出现自身二聚
体和结构性,这会干扰PCR扩增的效果。

5.选择高峰结构引物:在引物设计时,优先选择会形成高峰结构的引物,这有助于提高扩增效率。

6.引物末端碱基的特异性:在引物末端碱基选择时,尽量使用能够增
强特异性和避免非特异性扩增的碱基。

7.引物的熔解温度(Tm):引物的熔解温度直接影响PCR扩增反应的
特异性和效率,应根据目标DNA的长度和序列来确定引物的Tm。

8.避免引物之间的交叉杂交:在多引物PCR反应中,引物之间的交叉
杂交会干扰扩增效果,可以通过软件模拟或实验确认引物之间没有相互杂交。

9.引物序列中避免多个重复碱基:引物序列中的多个重复碱基可能导
致非特异性扩增,应避免在引物序列中出现连续的多个重复碱基。

10.引物设计的可操作性和经济性:引物设计时,要考虑到引物合成
的成本和操作的方便性,选择价格适中的合成方法,并确保引物容易操作。

以上是引物设计的原则和考虑因素,通过合理设计和优化引物序列,可以提高PCR扩增实验的特异性、敏感性和效率,从而获得准确和稳定的实验结果。

引物设计的原则

引物设计的原则

引物设计的原则①总原则:引物序列应具有高度的特异性,与非扩增区的同源性越低越好。

②引物的长度:引物中与模板互补的序列应该为15~25个核苷酸长度,上下游引物长度的差别不宜大于3bp。

③引物中四种碱基含量及分布:引物中G+C含量最好在40% ~ 60 %/40% ~ 75%之间,四种碱基应尽可能随机分布,避免出现多聚嘌呤、多聚嘧啶和二核苷酸重复序列。

引物内部特别是引物末端不能有大于3bp的反向重复序列或自身互补序列,以避免形成发夹结构。

④上下游引物之间的互补性:上下游引物之间特别是3´应避免出现互补序列。

作为一条经验性的规律,一条引物上不应该含有3个连续的与另一条引物互补的核苷酸。

⑤解链温度(Tm):计算出来的两个引物的Tm值相差不能大于5℃。

扩增产物的Tm值与引物的Tm值相差不能大于10℃,以保证扩增产物在每个PCR循环可以有效的变性。

⑥引物3´末端的碱基:如果可能的话,每个引物的3´末端碱基应为G或C,然而并不推荐使用3´端有……NNCG或NNGC序列的引物/一般PCR反应中,引物3´端的碱基最好不选A。

引物3´端应为保守氨基酸序列,即采用简并密码少的氨基酸如Met、Trp,且要避免三联体密码第3个碱基的摆动位置位于引物的3´端。

⑦向引物的5´端添加限制性酶切位点、启动子或GC夹子等序列:如果要向引物的5´端添加限制性酶切位点,引物应当超出限制性内切酶识别位点至少3个碱基。

另5´端应再加2~4个无关碱基(保护碱基),以确保产物的酶切效果。

/5´端最多可加10个碱基而对PCR反应无影响。

⑧当针对CDNA模板设计引物时,上游和下游引物最好结合到不同外显子的区域,这样很容易把来源于CDNA的的扩增产物和来源于污染的基因组DNA的扩增产物区分开。

酶切位点的选择:应选择载体上有而目标基因内无的酶切位点,两酶切位点在载体上的距离最好大于6bp。

引物设计原则及酶切位点选择和设计

引物设计原则及酶切位点选择和设计

引物设计原则及酶切位点选择和设计[整理]:最初的时候,由于害怕设计酶切位点最后且不开,所以经常采用最通用的方法,用T载体克隆解决问题,但后来发现她也有问题,就是浓度提不上去,你需要体大量的载体来酶切,所以感到还是直接扩增好一点。

但这就需要你仔细设计引物。

连入质粒中的重要目的就是进行酶切和连接,当然首先就是在想要合成或者是进行PCR扩增出靶基因的时候在核酸的两端接入酶切位点,酶切位点是与你的质粒的特点相关的,可以在质粒的图谱说明书上找取相应的位点,进行设计。

(一)设计引物前应做的准备工作:准备载体图谱,大致准备把片断插在那个部分对片断进行酶切分析,确定一下那些酶切位点不能用准备一本所买公司的酶的商品目录,便于查酶的各种数据及两种酶是否可以配用(二)设计引物所要考虑的问题两个位点应是载体上的,,所连接片断上没有这两个位点,且距离不能太近,往往导致两个酶都切不好。

因此,紧挨在一起,只能切一个,除非恰好是与上面两个酶在一起的酶切位点。

我看promega的说明书上说,最好隔四个。

还有一种情况是:不能有碱基的交叉,比如AGATCTTAAG,这样的位点比较难切。

两个酶切点最好不要是同尾酶(切下来的残基不要互补),否则效果相当于单酶切。

最好使用酶切效率高的。

最好使用双酶切有共同buffer的酶。

最好使用较常用的酶(如hind3,bamh1,ecor1等),最好使用自己实验室有的酶,这样可以省钱。

Tm的计算,关于Tm的问题,很多的战友都有疑惑。

其实园子里有很多的解释了。

Tm叫溶解温度(melting temperature, Tm),即是DNA双链溶解所需的温度。

大家可以理解,这个温度是由互补的DNA区域决定的,而不互补的区域对DNA的溶解是没有作用的。

因此,对于引物的Tm,只有和模板互补的区域对Tm才有贡献。

计算Tm时,只计算互补的区域(除非你的酶切位点也与模板互补)。

不少战友设计的引物都Tm过低,是因为他们误把保护碱基和酶切位点都计算到Tm里了,最后的结果是导致了PCR反应的诸多困难。

引物设计原及酶切位点选择和设计

引物设计原及酶切位点选择和设计

引物设计原则及酶切位点选择和设计[整理]:最初的时候,由于害怕设计酶切位点最后且不开,所以经常采用最通用的方法,用T载体克隆解决问题,但后来发现她也有问题,就是浓度提不上去,你需要体大量的载体来酶切,所以感到还是直接扩增好一点。

但这就需要你仔细设计引物。

连入质粒中的重要目的就是进行酶切和连接,当然首先就是在想要合成或者是进行PCR扩增出靶基因的时候在核酸的两端接入酶切位点,酶切位点是与你的质粒的特点相关的,可以在质粒的图谱说明书上找取相应的位点,进行设计。

(一)设计引物前应做的准备工作:准备载体图谱,大致准备把片断插在那个部分对片断进行酶切分析,确定一下那些酶切位点不能用准备一本所买公司的酶的商品目录,便于查酶的各种数据及两种酶是否可以配用(二)设计引物所要考虑的问题两个位点应是载体上的,,所连接片断上没有这两个位点,且距离不能太近,往往导致两个酶都切不好。

因此,紧挨在一起,只能切一个,除非恰好是与上面两个酶在一起的酶切位点。

我看promega的说明书上说,最好隔四个。

还有一种情况是:不能有碱基的交叉,比如AGATCTTAAG,这样的位点比较难切。

两个酶切点最好不要是同尾酶(切下来的残基不要互补),否则效果相当于单酶切。

最好使用酶切效率高的。

最好使用双酶切有共同buffer的酶。

最好使用较常用的酶(如hind3,bamh1,ecor1等),最好使用自己实验室有的酶,这样可以省钱。

Tm的计算,关于Tm的问题,很多的战友都有疑惑。

其实园子里有很多的解释了。

Tm叫溶解温度(melting temperature, Tm),即是DNA双链溶解所需的温度。

大家可以理解,这个温度是由互补的DNA区域决定的,而不互补的区域对DNA的溶解是没有作用的。

因此,对于引物的Tm,只有和模板互补的区域对Tm才有贡献。

计算Tm时,只计算互补的区域(除非你的酶切位点也与模板互补)。

不少战友设计的引物都Tm过低,是因为他们误把保护碱基和酶切位点都计算到Tm里了,最后的结果是导致了PCR反应的诸多困难。

引物设计原则

引物设计原则

1.引物最好在模板cDNA的保守区内设计。

DNA序列的保守区是通过物种间相似序列的比较确定的。

在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。

2.引物长度一般在15~30碱基之间。

引物长度(primer length)常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA 聚合酶进行反应。

3.引物GC含量在40%~60%之间,Tm值最好接近72℃。

GC含量(composition)过高或过低都不利于引发反应。

上下游引物的GC含量不能相差太大。

另外,上下游引物的Tm值(melting temperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。

有效启动温度,一般高于Tm值5~10℃。

若按公式Tm= 4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm 值最好接近72℃以使复性条件最佳。

4.引物3′端要避开密码子的第3位。

如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。

5.引物3′端不能选择A,最好选择T。

引物3′端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T时,错配的引发效率大大降低,G、C 错配的引发效率介于A、T之间,所以3′端最好选择T。

6. 碱基要随机分布。

引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(False priming)。

降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。

尤其3′端不应超过3个连续的G或C,因这样会使引物在GC富集序列区错误引发。

7. 引物自身及引物之间不应存在互补序列。

引物设计原则最全汇总

引物设计原则最全汇总

引物设计原则最全汇总1.特异性:引物应与所需扩增的目标序列特异性结合,避免与非目标序列发生非特异性结合,以确保产生准确结果。

2.高GC含量:引物的GC含量应高于50%,以增加引物与目标序列的稳定性和特异性。

3.避免酶切位点:在引物设计过程中,应避免引物与目标序列中的酶切位点重叠,以防止扩增产物的酶切降解。

4.引物长度:引物的长度通常在18至30个核苷酸之间,过长的引物会降低特异性,而过短的引物则可能导致非特异性扩增。

5.引物的Tm值匹配:引物的熔解温度(Tm)应在同一PCR反应中保持一致,以确保引物能同时结合于目标序列并发挥作用。

6.避免互补性:在引物设计过程中,应避免引物之间存在互相互补的情况,以防止互补引物之间的杂交,从而导致错误的扩增结果。

7.引物末端修饰:常用的引物末端修饰包括磷酸化、末端标记和引物的截断,通过这些修饰可以提高引物的选择性和特异性。

8.引物的GC平衡:引物的GC含量应在一定范围内均衡,以避免在PCR反应中产生二聚体或无效的扩增。

9.引物序列的重复性:引物设计中应避免引物序列的重复性,以防止引物产生二聚体或与非目标序列互补结合。

10.引物的独特性:在引物设计中,应确保引物序列在目标基因组中的唯一性,避免与非目标序列存在相似区域。

11.引物的结合位点:引物的结合位点应尽可能位于目标序列的保守区域,以增加引物与目标序列的稳定性和特异性。

12.引物的交叉反应:在引物设计中,应避免引物之间存在交叉反应,即两个不同引物同时与同一目标序列结合。

13.引物与模板序列的一致性:在引物设计过程中,应将引物与目标序列进行比对,确保引物与目标序列的一致性,避免在扩增过程中形成不可扩增的结构。

14.避免自相互补性:在引物设计过程中,应避免引物序列存在自相互补性,防止引物自结合或形成不稳定的结构。

15.引物的GC间隔:在引物设计中,应使引物中的GC核苷酸尽可能均匀分布,以避免形成不稳定的结构。

16.引物的无副产物性:在引物设计过程中,应避免引物产生具有毒性或干扰扩增的副产物。

引物设计原则

引物设计原则

引物设计原则
引物在分子生物学和遗传学领域中扮演着至关重要的角色。

引物是一种短小的DNA或RNA序列,用于识别和扩增目标DNA的特定区域。

在进行PCR、测序、杂交等实验中,引物的设计至关重要。

下面将介绍引物设计的基本原则。

引物设计的基本原则
1.引物长度
引物的长度通常在18-25个碱基对之间。

较长的引物可以提高特异性,但也增加了非特异性杂交的风险。

2.GC含量
引物的GC含量应在40-60%之间,过高或过低的GC含量都会降低引物的稳定性。

在引物设计时需要注意平衡GC含量,以确保引物的性能。

3.互补性
引物应该是互补的,即引物与靶标DNA的序列互补匹配。

在引物设计时,需要确保引物序列与靶标序列的互补性,以确保引物能够特异性地结合目标DNA。

4.避免重复序列和剪切位点
引物设计时需要避免引入重复序列和酶切位点,以防止引物在非特定区域结合或被酶降解。

5.避免自身和互相形成二聚体
引物设计时需要避免引物自身或与其他引物形成二聚体,以免影响引物扩增效率。

6.核苷酸组成
引物中尽量避免包含多个连续的相同核苷酸,例如连续的A或T会导致引物的非特异性结合。

7.无结构埃许曼结构
引物设计时需要避免引入结构埃许曼结构,以确保引物的特异性和扩增效率。

引物的设计是实验成功的关键因素之一,合理的引物设计可以提高实验结果的准确性和可靠性。

在进行引物设计时,需要根据目标序列的特点结合以上原则进行设计,从而确保引物的性能和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引物设计原则及酶切位点选择和设计:最初的时候,由于害怕设计酶切位点最后且不开,所以经常采用最通用的方法,用[整理]载体克隆解决问题,但后来发现她也有问题,就是浓度提不上去,你需要体大量的载体来T连入质粒中的重要目的酶切,所以感到还是直接扩增好一点。

但这就需要你仔细设计引物。

扩增出靶基因的时候在核就是进行酶切和连接,当然首先就是在想要合成或者是进行PCR可以在质粒的图谱说明书上酸的两端接入酶切位点,酶切位点是与你的质粒的特点相关的,找取相应的位点,进行设计。

(一)设计引物前应做的准备工作:准备载体图谱,大致准备把片断插在那个部分对片断进行酶切分析,确定一下那些酶切位点不能用准备一本所买公司的酶的商品目录,便于查酶的各种数据及两种酶是否可以配用(二)设计引物所要考虑的问题往往导致两个,所连接片断上没有这两个位点,且距离不能太近,两个位点应是载体上的,除非恰好是与上面两个酶在一起的酶切位点。

只能切一个,酶都切不好。

因此,紧挨在一起,还有一种情况是:不能有碱基的交叉,比如promega的说明书上说,最好隔四个。

我看AGATCTTAAG,这样的位点比较难切。

两个酶切点最好不要是同尾酶(切下来的残基不要互补),否则效果相当于单酶切。

最好使用酶切效率高的。

的酶。

最好使用双酶切有共同buffer最好使用自己实验室有的酶,这样可,ecor1等),最好使用较常用的酶(如hind3,bamh1以省钱。

的问题,很多的战友都有疑惑。

其实园子里有很多的解释了。

的计算,关于TmTm大家可以理解,双链溶解所需的温度。

即是DNA叫溶解温度(melting temperature, Tm),Tm因此,的溶解是没有作用的。

而不互补的区域对DNA 这个温度是由互补的DNA区域决定的,(除时,只计算互补的区域Tm才有贡献。

计算Tm只有和模板互补的区域对对于引物的Tm,过低,是因为他们误把保护碱。

不少战友设计的引物都Tm 非你的酶切位点也与模板互补)反应的诸多困难。

所以,设计引里了,最后的结果是导致了PCR 基和酶切位点都计算到Tm以度以上(我喜欢控制在58Tm控制在55物的时候,先不管5'端的修饰序列,把互补区的,再加上酶切位点和保Tm)的具体情况,对于困难的PCR,需要适当提高上,具体根据PCR温度高的引物就Tm护碱基,这样的引物通常都是可用的,即使有小的问题,也可以挽回。

的公式。

2+43'非特异结合等问题。

简单的计算公式可以用比较容易克服3‘发卡、二聚体及,不包括酶切位点。

引物公司给你发的单子是包括酶切位点90 若你计算的Tm值达到了快个碱基,去3329、的。

自己可以再估计一下。

如你设计了带酶切位点的引物,总长分别为多度,实际用的只7021个碱基。

引物公司给的单子是掉酶切位点和保护碱基,分别为17、55度扩的结果也差不多。

有50度,用其它关于Tm值的计算,有用PP5.0进行评价的,需要考虑的参数包括:base number、GC%、Tm、hairpin、dimer、false priming、cross dimer。

退一般退火温度为Tm-5度,退火温度的计算可以不把加入的酶切位点及保护碱基考虑进去,如上所言,PCR 几个循环后,引物外侧的序列已经参入了扩增片断中,所以你可以在预变性后多加几步,温度比你Tm值低些(这样可能会增加非特异性),Tm值是你包括酶切位点及保护碱基的Primer计算出来的。

1.一般在5'端加保护碱基,如果你扩增后把目的条带做胶回收转入T-VECTOR或者其它的载体的话,酶切时可以不需加保护碱基2.有人的经验加入酶切位点的引物可以和未加入时使用相同的退火结果也还是令人满意。

,温度.
或是其他设计引物的软件进行计算一下,看看引物之间的关于引物二聚体,最好用primer时可以提高一下退△G(自由能)的绝对值,如果小于10,一般是问题的。

如果稍大,PCR没火温度,一般是没有问题的。

如果3'端形成二聚体,并且自由能绝对值较大,如果PCR 有条带,建议重新设计引物。

此外,所加的三个核苷酸的保护序列经过尽心设计有时也可以降低二聚体的△G一个特异性引物一在设计酶切位点时,最好能尽可能多的利用引物本身的碱基。

这是因为,左右了。

而我们在般都是20bp左右,再加上酶切位点序列和保护性碱基,大致就是28bp如果我
们设计退火温度时,与引物的长度有关,比正常的引物(20bp) 的Tm肯定要高一些。

能利用引物自身的部分序列,就可以有效地减少引物的长度。

还有,有些酶是离不开末端序列的,因此,在设计一个酶位点时,最好把该酶的性质弄清楚‘端添加酶切位点,设计时限制性酶切位点是应该在5'端的顶端。

在设计引物时,常在5 以利于PCR 产物连接到载体。

'3。

先用软件设计出合适的引物,引物的设计引物时保证在最后5个核苷中含有3个A或T 端是引发延伸的起点,因此一定要与模板准确配对,G。

(容易错配)引物3'端最佳碱基的选择是应尽量避免在引物3'端的第一位碱基是A因为他们形成的碱基配对比较稳定。

目的序列上并不存在的附加序列,如限制位点和和C,值时并不包括这些序列,5'端而不影响特异性。

当计算引物Tm启动子序列,可以加入到引物但是应该对其进行互补性和内部二级结构的检测。

两个酶切点,酶切位点都需要保护碱基以利于内切酶的有效切割。

酶切位点前加保护碱基1在做载体构建的时候设计引物扩增片段进行定向连接,除了酶切位点,个碱基,至少隔上3产物很难被酶切,因此就会导致连接PCR还要在两端加一个三个核苷酸的保护序列,否则有的酶因为内切酶需要一定的辅助性碱基才能顺利切割,在没有辅助碱基的情况下,失败,,他们不需要辅助性碱基即可切割,但大部分酶是需要辅和SpeI是可以切割的,比如:SalI' +引物配对区—3助性碱基的。

所以引物顺序应是:5'—保护碱基+酶切位点下面是几个战友的讨论,请问:在引物的5‘端加限制酶切位点,只在酶切位点的5‘端加保护碱基可以吗?还是必须要在酶切位点的两侧加保护碱基?
是的,只要在5‘端加保护碱基可以了。

其实保护碱基就是要给限制性内切酶一个结合位点,3‘端还有更长的引物序列在,当然不需要再加保护碱基了,下面就来讨论一下这个问题:(下面引自NEB网站)
1、寡核苷酸近末端位点的酶切
为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。

(这里用的是寡核苷酸!!而不是末端带酶切位点的肽链!)实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。

然后NEB就提供了一个表,关于链长和切割效率的。

我觉得这只能说明酶在作用于识别位点时所需占据的链长,并不能说明在设计酶切位点时要加那么长的保护碱基,比如我用的NotI,要加10个碱基,切25个小时才95%的效率,这还是用了20倍的酶量!我师姐只加了4个碱基,也没见出现问题。

2、线性载体近末端位点的酶切
将线性载体与相应内切酶(10 units/μg)在适宜温度及缓冲液条件下反应60分钟,随后进行连接和转化。

切割效率=100%-(酶切产物转化子数/再连接产物转化子数)\近末端碱基对数指的是从识别位点到DNA末端的碱基对数,但并不包括最初切割位点处留下的单链突出碱基。

(解释一下:就像下面这个例子EcoRI酶切位点
NNNG AATTC
NNC TTAAG
它的近末端碱基对数就是3,而不是4)
还没有证据表明单链核苷酸能否提高切割效率,因此在设计PCR引物时应至少加上4个额外碱基。

Not I 7 100 (2) Bluescript SK- Spe I
4 100 (1) Bluescript SK-Ksp I
1 98 (2) Bluescript SK Xba I
NotI拿
酶切位点的设计与保护碱基的选择。

相关文档
最新文档