江西省中考数学复习题 (53)

合集下载

2021年江西省中考数学真题 解析版

2021年江西省中考数学真题  解析版

2021年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣2的相反数是()A.2B.﹣2C.D.﹣2.如图,几何体的主视图是()A.B.C.D.3.计算的结果为()A.1B.﹣1C.D.4.如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是()A.一线城市购买新能源汽车的用户最多B.二线城市购买新能源汽车用户达37%C.三四线城市购买新能源汽车用户达到11万D.四线城市以下购买新能源汽车用户最少5.在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.6.如图是用七巧板拼接成的一个轴对称图形(忽略拼接线)小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为()A.2B.3C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)7.国务院第七次全国人口普查领导小组办公室5月11日发布,江西人口数约为45100000人,将45100000用科学记数法表示为.8.因式分解:x2﹣4y2=.9.已知x1,x2是一元二次方程x2﹣4x+3=0的两根,则x1+x1﹣x1x2=.10.如表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是.11.如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为.12.如图,在边长为6的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE 和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(﹣1)2﹣(π﹣2021)0+|﹣|;(2)如图,在△ABC中,∠A=40°,∠ABC=80°,BE平分∠ABC交AC于点E,ED ⊥AB于点D,求证:AD=BD.14.(6分)解不等式组:并将解集在数轴上表示出来.15.(6分)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A志愿者被选中”是事件(填“随机”或“不可能”或“必然”);(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A,B两名志愿者被选中的概率.16.(6分)已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.17.(6分)如图,正比例函数y=x的图象与反比例函数y=(x>0)的图象交于点A(1,a)在△ABC中,∠ACB=90°,CA=CB,点C坐标为(﹣2,0).(1)求k的值;(2)求AB所在直线的解析式.四、(本大题共3小题,每小题8分,共24分)18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.(1)求这种商品的单价;(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是元/件,乙两次购买这种商品的平均单价是元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同加油更合算(填“金额”或“油量”).19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77.甲厂鸡腿质量频数统计表质量x(g)频数频率268≤x<71371≤x<7474≤x<10a77577≤x<80合计201分析上述数据,得到下表:统计量平均数中位数众数方差厂家甲厂7576b乙厂757577请你根据图表中的信息完成下列问题:(1)a=,b=;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点Acm(即MP的长度),枪身BAcm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)°≈°≈°≈≈五、(本大题共2小题,每小题9分,共18分)21.(9分)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC 与围成阴影部分的面积.22.(9分)二次函数y=x2﹣2mx的图象交x轴于原点O及点A.感知特例(1)当m=1时,如图1,抛物线L:y=x2﹣2x上的点B,O,C,A,D分别关于点A 中心对称的点为B′,O′,C′,A′,D′,如表:…B(﹣1,3)O(0,0)C(1,﹣1)A(,)D(3,3)………B'(5,﹣3)O′(4,0)C'(3,1)A′(2,0)D'(1,﹣3)①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L'.形成概念我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L 的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.探究问题(2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为;②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是(填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m的值.六、(本大题共12分)23.(12分)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与∠A相等的角是;类比迁移(2)如图2,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可类比(1)中思路进行拼合:先作∠CDF=∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量关系是;方法运用(3)如图3,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平分线的交点,连接OA,∠OAC=∠ABC.①求证:∠ABC+∠ADC=90°;②连接BD,如图4,已知AD=m,DC=n,=2,求BD的长(用含m,n的式子表示).2021年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】根据相反数的意义,只有符号不同的两个数互为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.如图,几何体的主视图是()A.B.C.D.【分析】根据简单组合体的三视图的画法得出该组合体的主视图即可.【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形,因此选项C中的图形符合题意,故选:C.3.计算的结果为()A.1B.﹣1C.D.【分析】根据分式的加减运算法则即可求出答案.【解答】解:原式===1,故选:A.4.如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是()A.一线城市购买新能源汽车的用户最多B.二线城市购买新能源汽车用户达37%C.三四线城市购买新能源汽车用户达到11万D.四线城市以下购买新能源汽车用户最少【分析】根据扇形统计图中的数据一一分析即可判断.【解答】解:A、一线城市购买新能源汽车的用户最多,故本选项正确,不符合题意;B、二线城市购买新能源汽车用户达37%,故本选项正确,不符合题意;C、由扇形统计图中的数据不能得出三四线城市购买新能源汽车用户达到11万,故本选项错误,符合题意;D、四线城市以下购买新能源汽车用户最少,故本选项正确,不符合题意;故选:C.5.在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.【分析】根据二次函数y=ax2与一次函数y=bx+c的图象,即可得出a>0、b>0、c<0,由此即可得出:二次函数y=ax2﹣bx+c的图象开口向上,对称轴x=﹣<0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:a>0,b>0,c<0,∴二次函数y=ax2﹣bx+c的图象开口向上,对称轴x=﹣<0,与y轴的交点在y轴负半轴.故选:D.6.如图是用七巧板拼接成的一个轴对称图形(忽略拼接线)小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为()A.2B.3C.4D.5【分析】能拼剪为等腰梯形,等腰直角三角形,矩形,由此即可判断.【解答】解:观察图象可知,能拼接成不同轴对称图形的个数为3个.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)7.国务院第七次全国人口普查领导小组办公室5月11日发布,江西人口数约为45100000人,将45100000用科学记数法表示为×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×107,×107.8.因式分解:x2﹣4y2=(x+2y)(x﹣2y).【分析】直接运用平方差公式进行因式分解.【解答】解:x2﹣4y2=(x+2y)(x﹣2y).9.已知x1,x2是一元二次方程x2﹣4x+3=0的两根,则x1+x1﹣x1x2=1.【分析】直接根据根与系数的关系得出x1+x2、x1x2的值,再代入计算即可.【解答】解:∵x1,x2是一元二次方程x2﹣4x+3=0的两根,∴x1+x2=4,x1x2=3.则x1+x2﹣x1x2=4﹣3=1.故答案是:1.10.如表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是3.【分析】根据表中的数据和数据的变化特点,可以发现:每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,然后即可写出第四行空缺的数字.【解答】解:由表可知,每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,故第四行空缺的数字是1+2=3,故答案为:3.11.如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为4a+2b.【分析】由∠B=80°,四边形ABCD为平行四边形,折叠的性质可证明△AFC为等腰三角形.所以AF=FC=a.设∠ECD=x,则∠ACE=2x,在△ADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得x=20°,由外角定理可证明△DFC为等腰三角形.所以DC=FC=a.故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=2=4a+2b.【解答】解:∵∠B=80°,四边形ABCD为平行四边形.∴∠D=80°.由折叠可知∠ACB=∠ACE,又AD∥BC,∴∠DAC=∠ACB,∴∠ACE=∠DAC,∴△AFC为等腰三角形.∴AF=FC=a.设∠ECD=x,则∠ACE=2x,∴∠DAC=2x,在△ADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得:x=20°.∴由三角形外角定理可得∠DFC=4x=80°,故△DFC为等腰三角形.∴DC=FC=a.∴AD=AF+FD=a+b,故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=2=4a+2b.故答案为:4a+2b.12.如图,在边长为6的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE 和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为9或10或18.【分析】连接DF,DB,BF.则△DBF是等边三角形.解直角三角形求出DF,可得结论.当点N在OC上,点M在OE上时,求出等边三角形的边长的最大值,最小值,可得结论.【解答】解:连接DF,DB,BF.则△DBF是等边三角形.设BE交DF于J.∵六边形ABCDEF是正六边形,∴由对称性可知,DF⊥BE,∠JEF=60°,EF=ED=6,∴FJ=DJ=EF•sin60°=6×=9,∴DF=18,∴当点M与B重合,点N与F重合时,满足条件,∴△DMN的边长为18,如图,当点N在OC上,点M在OE上时,等边△DMN的边长的最大值为6≈∴△DMN的边长为整数时,边长为10或9,综上所述,等边△DMN的边长为9或10或18.故答案为:9或10或18.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(﹣1)2﹣(π﹣2021)0+|﹣|;(2)如图,在△ABC中,∠A=40°,∠ABC=80°,BE平分∠ABC交AC于点E,ED ⊥AB于点D,求证:AD=BD.【分析】(1)根据乘方的意义、零指数幂和绝对值的意义计算;(2)先证明∠A=∠ABE得到△ABE为等腰三角形,然后根据等腰三角形的性质得到结论.【解答】(1)解:原式=1﹣1+=;(2)证明:∵BE平分∠ABC交AC于点E,∴∠ABE=∠ABC=×80°=40°,∵∠A=40°,∴∠A=∠ABE,∴△ABE为等腰三角形,∵ED⊥AB,∴AD=BD.14.(6分)解不等式组:并将解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x﹣3≤1,得:x≤2,解不等式>﹣1,得:x>﹣4,则不等式组的解集为﹣4<x≤2,将不等式组的解集表示在数轴上如下:15.(6分)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A志愿者被选中”是随机事件(填“随机”或“不可能”或“必然”);(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A,B两名志愿者被选中的概率.【分析】(1)根据随机事件、不可能事件及必然事件的概念求解即可;(2)列表得出所有等可能结果数,再从中找到符合条件的结果数,继而利用概率公式求解即可.【解答】解:(1)“A志愿者被选中”是随机事件,故答案为:随机;(2)列表如下:A B C DA﹣﹣﹣(B,A)(C,A)(D,A)B(A,B)﹣﹣﹣(C,B)(D,B)C(A,C)(B,C)﹣﹣﹣(D,C)D(A,D)(B,D)(C,D)﹣﹣﹣由表可知,共有12种等可能结果,其中A,B两名志愿者被选中的有2种结果,所以A,B两名志愿者被选中的概率为=.16.(6分)已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.【分析】(1)根据正方形的性质和旋转的性质即可作出图形;(2)根据平移的性质即可作出图形.【解答】解:(1)如图1,直线l即为所求;(2)如图2中,直线a即为所求.17.(6分)如图,正比例函数y=x的图象与反比例函数y=(x>0)的图象交于点A(1,a)在△ABC中,∠ACB=90°,CA=CB,点C坐标为(﹣2,0).(1)求k的值;(2)求AB所在直线的解析式.【分析】(1)先求得A的坐标,然后根据待定系数法即可求得k的值;(2)作AD⊥x轴于D,BE⊥x轴于E,通过证得△BCE≌△CAD,求得B(﹣3,3),然后根据待定系数法即可求得直线AB的解析式.【解答】解:(1)∵正比例函数y=x的图象经过点A(1,a),∴a=1,∴A(1,1),∵点A在反比例函数y=(x>0)的图象上,∴k=1×1=1;(2)作AD⊥x轴于D,BE⊥x轴于E,∵A(1,1),C(﹣2,0),∴AD=1,CD=3,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠ACD+∠CAD=90°,∴∠BCE=∠CAD,在△BCE和△CAD中,,∴△BCE≌△CAD(AAS),∴CE=AD=1,BE=CD=3,∴B(﹣3,3),设直线AB的解析式为y=mx+n,∴,解得,∴直线AB的解析式为y=﹣+.四、(本大题共3小题,每小题8分,共24分)18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.(1)求这种商品的单价;(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是48元/件,乙两次购买这种商品的平均单价是50元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同金额加油更合算(填“金额”或“油量”).【分析】(1)设这种商品的单价为x元/件.根据“甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件”找到相等关系,列出方程,解出方程即可得出答案;(2)先计算出第二次购买该商品时甲购买的数量和乙购买的总价,再用两次总价和除以两次的数量和即可得出两次的平均单价;(3)通过比较(2)的计算结果即可得出答案.【解答】(1)解:设这种商品的单价为x元/件.由题意得:,解得:x=60,经检验:x=60是原方程的根.答:这种商品的单价为60元/件.(2)解:第二次购买该商品时的单价为:60﹣20=40(元/件),第二次购买该商品时甲购买的件数为:2400÷40=60(件),第二次购买该商品时乙购买的总价为:(3000÷60)×40=2000(元),∴甲两次购买这种商品的平均单价是:2400×2÷()=48(元/件),乙两次购买这种商品的平均单价是:(3000+2000)÷(×2)=50(元/件).故答案为:48;50.(3)解:∵48<50,∴按相同金额加油更合算.故答案为:金额.19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77.甲厂鸡腿质量频数统计表质量x(g)频数频率68≤x<271371≤x<7474≤x<10a7777≤x<580合计201分析上述数据,得到下表:平均数中位数众数方差统计量厂家甲厂7576b乙厂757577请你根据图表中的信息完成下列问题:(1)a=,b=76;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?【分析】(1)根据频数、频率、总数之间的关系可求出a的值,根据众数的意义可求出b 的值;(2)求出乙厂鸡腿质量在74≤x<77的频数,即可补全频数分布直方图;(3)根据中位数、众数、平均数综合进行判断即可;(4)求出甲厂鸡腿质量在71≤x<77的鸡腿数量所占的百分比即可.【解答】解:(1)2÷a=10÷甲厂鸡腿质量出现次数最多的是76g,因此众数是76,即b=76,(2)20﹣1﹣4﹣7=8(个),补全频数分布直方图如下:(3)两个厂的平均数相同,都是75g,而甲厂的中位数、众数都是76g,接近平均数且方差较小,数据的比较稳定,因此选择甲厂;(4)20000×答:从甲厂采购了20000只鸡腿中,可以加工成优等品的大约有3000只.20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点Acm(即MP的长度),枪身BAcm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)°≈°≈°≈≈【分析】(1)过点B作BH⊥MP,垂足为H,根据解直角三角形cos∠BMH==∠BMH的度数,再根据平行线的性质即可算出∠ABC的度数;(2)根据(1)中的结论和已知条件可计算出∠NMI的度数,根据三角函数即可算出MI 的长度,再根据已知条件即可算出PK的长度,即可得出答案.【解答】解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK⊥DE,垂足为K,∵MPcm,BA=HPcm,∴MH=MP﹣HP﹣cm),在Rt△BMH中,cos∠BMH==∴∠BMH°,∵AB∥MP,∴∠BMH+∠ABC=180°,∴∠ABC=180°﹣°°;(2)∴∠ABC=180°﹣∠BMH=180°﹣°°.∵∠BMN°,∠BMH°,∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣°﹣°=45°,∵MN=28cm,∴cos45°==,∴MI≈cm,∵KI=50cm,∴PK=KI﹣MI﹣MP=50﹣﹣≈cm),∴此时枪身端点A与小红额头的距离是在规定范围内.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.【分析】(1)先判断出∠CBE=∠D,再用等角的余角相等,即可得出结论;(2)①先判断出OC∥AB,再判断出BC∥OA,进而得出四边形ABCO是平行四边形,即可得出结论;②先求出AC,BC,再用面积的和,即可得出结论.【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∠D=90°﹣∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∴CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD,AC 与围成阴影部分的面积为S△AOC+S扇形COD=S△ACD+S扇形COD=××2×2+=+π.22.(9分)二次函数y=x2﹣2mx的图象交x轴于原点O及点A.感知特例(1)当m=1时,如图1,抛物线L:y=x2﹣2x上的点B,O,C,A,D分别关于点A 中心对称的点为B′,O′,C′,A′,D′,如表:…B(﹣1,3)O(0,0)C(1,﹣1)A(2,0)D(3,3)………B'(5,﹣3)O′(4,0)C'(3,1)A′(2,0)D'(1,﹣3)①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L'.形成概念我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L 的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.探究问题(2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为﹣3≤x≤﹣1;②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是y =x2(填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m的值.【分析】(1)①根据中点公式即可求得答案;②根据题意先描点,再用平滑的曲线从左到右依次连接即可;(2)①当m=﹣1时,抛物线L:y=x2+2x=(x+1)2﹣1,当x≤﹣1时,L的函数值随着x的增大而减小,抛物线L′:y=﹣x2﹣6x﹣8=﹣(x+3)2+1,当x≥﹣3时,L′的函数值随着x的增大而减小,找出公共部分即可;②先观察图1和图2,可以看出随着m的变化,二次函数y=x2﹣2mx的所有“孔像抛物线”L'对称性分布在y轴两侧,设这条抛物线解析式为y=ax2,根据这条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,可知关于x的一元二次方程ax2=﹣(x﹣3m)2+m2,有两个相等的实数根,求解即可;③观察图1和图2,可知直线y=m与抛物线y=x2﹣2mx及“孔像抛物线”L'有且只有三个交点,即直线y=m经过抛物线L的顶点或经过抛物线L′的顶点或经过公共点A,分别建立方程求解即可.【解答】解:(1)①∵B(﹣1,3)、B'(5,﹣3)关于点A中心对称,∴点A为BB′的中点,设点A(m,n),∴m==2,n==0,故答案为:(2,0);②所画图象如图1所示,(2)①当m=﹣1时,抛物线L:y=x2+2x=(x+1)2﹣1,对称轴为直线x=﹣1,开口向上,当x≤﹣1时,L的函数值随着x的增大而减小,抛物线L′:y=﹣x2﹣6x﹣8=﹣(x+3)2+1,对称轴为直线x=﹣3,开口向下,当x≥﹣3时,L′的函数值随着x的增大而减小,∴当﹣3≤x≤﹣1时,抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,故答案为:﹣3≤x≤﹣1;②设这条抛物线解析式为y=ax2,∵二次函数y=x2﹣2mx的“孔像抛物线”L'为:y=﹣(x﹣3m)2+m2,∴关于x的一元二次方程ax2=﹣(x﹣3m)2+m2,有两个相等的实数根,整理得:(a+1)x2﹣6mx+8m2=0,∴△=(﹣6m)2﹣4•(a+1)•8m2=0,∴(4﹣32a)m2=0,∵m≠0,∴4﹣32a=0,∴a=,∴这条抛物线的解析式为y=x2,故答案为:y=x2;③抛物线L:y=x2﹣2mx=(x﹣m)2﹣m2,顶点坐标为M(m,﹣m2),其“孔像抛物线”L'为:y=﹣(x﹣3m)2+m2,顶点坐标为N(3m,m2),抛物线L与其“孔像抛物线”L'有一个公共点A(2m,0),∴二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点时,有三种情况:①直线y=m经过M(m,﹣m2),∴m=﹣m2,解得:m=﹣1或m=0(舍去),②直线y=m经过N(3m,m2),∴m=m2,解得:m=1或m=0(舍去),③直线y=m经过A(2m,0),∴m=0,综上所述,m=±1或0.六、(本大题共12分)23.(12分)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与∠A相等的角是∠DCA′;类比迁移(2)如图2,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可类比(1)中思路进行拼合:先作∠CDF=∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量关系是AD2+DE2=AE2;方法运用(3)如图3,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平分线的交点,连接OA,∠OAC=∠ABC.①求证:∠ABC+∠ADC=90°;②连接BD,如图4,已知AD=m,DC=n,=2,求BD的长(用含m,n的式子表示).【分析】(1)根据图形的拼剪可得结论.(2)利用勾股定理解决问题即可.(3)①如图3中,连接OC,作△ADC的外接圆⊙O.利用圆周角定理以及三角形内角和定理,即可解决问题.②如图4中,在射线DC的下方作∠CDT=∠ABC,过点C作CT⊥DT于T.利用相似三角形的性质证明BD=AT,求出AT,可得结论.【解答】(1)解:如图1中,由图形的拼剪可知,∠A=∠DCA′,故答案为:∠DCA′.(2)解:如图2中,∵∠ADC+∠ABC=90°,∠CDE=∠ABC,∴∠ADE=∠ADC+∠CDE=90°,∴AD2+DE2=AE2.故答案为:AD2+DE2=AE2.(3)①证明:如图3中,连接OC,作△ADC的外接圆⊙O.∵点O是△ACD两边垂直平分线的交点∴点O是△ADC的外心,∴∠AOC=2∠ADC,∵OA=OC,∴∠OAC=∠OCA,∵∠AOC+∠OAC+∠OCA=180°,∠OAC=∠ABC,∴2∠ADC+2∠ABC=180°,∴∠ADC+∠ABC=90°.②解:如图4中,在射线DC的下方作∠CDT=∠ABC,过点C作CT⊥DT于T.∵∠CTD=∠CAB=90°,∠CDT=∠ABC,∴△CTD∽△CAB,∴∠DCT=∠ACB,=,。

2023年江西省中考数学真题

2023年江西省中考数学真题

江西省2023年初中学业水平考试数学试题卷说明:1.本试题卷满分120分,考试时间为120分钟。

2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效。

一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置。

错选、多选或未选均不得分。

1.下列各数中,正整数是()A.3B.2.1C.0D.-22.下列图形中,是中心对称图形的是()有意义,则a 的值可以是()A.-1 B.0 C.2D.64.计算()322m的结果为()A.68m B.66m C.62m D.52m5.如图,平面镜MN 放置在水平地面CD 上,墙面PD⊥CD 于点D,一束光线AO 照射到镜面MN 上,反射光线为OB,点B 在PD 上,若∠AOC=35°,则∠OBD 的度数为()A.35°B.45°C.55°D.65°(第5题)(第6题)6.如图,点A,B,C,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为()A.3个B.4个C.5个D.6个二、填空题(本大题共6小题,每小题3分,共18分)7.单项式5ab -的系数为.8.我国海洋经济复苏态势强劲,在建和新开工海上风电项目建设总规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为.9.化简:()221a a +-=.10.将含30°角的直角三角板和直尺按如图所示的方式放置,已知∠α=60°,点B,C 表示的刻度分别为1cm,3cm,则线段AB 的长为cm.(第10题)(第11题)(第12题)11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高PQ=m.12.如图,在□ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为.三、解答题(本大题共5小题,每小题6分,共30分)453tan︒-;(2)如图,AB=AD,AC平分∠BAD.求证:△ABC≌△ADC.14.如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图①中作锐角△ABC,使点C在格点上;(2)在图②中的线段AB上作点Q,使PQ最短.15.化简2111x x xx x x-⎛⎫+⋅⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是,乙同学解法的依据是;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程。

精品解析:2022年江西省中考数学真题(解析版)

精品解析:2022年江西省中考数学真题(解析版)
故选:A.
【点睛】本题考查了实数,掌握在正数前面添加“-”得到负数是解题的关键.
2.实数a,b在数轴上的对应点的位置如图所示,则下列结论中,正确的是()
A. B. C. D.
【答案】C
【解析】
【分析】根据数轴上点的特点,进行判断即可.
【详解】ABC.根据数轴上点a、b的位置可知, , ,
∴ ,故AB错误,C正确;
12.已知点A在反比例函数 的图象上,点B在x轴正半轴上,若 为等腰三角形,且腰长为5,则 的长为__________.
【答案】5或 或
【解析】
【分析】因为等腰三角形的腰不确定,所以分三种情况分别计算即可.
【详解】解:①当AO=AB时,AB=5;
②当AB=BO时,AB=5;
③当OA=OB时,则OB=5,B(5,0),
B、 ,故此选项符合题意;
C、 ,故此选项不符合题意;
D、 ,故此选项不符合题意.
故选:B.
【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和 的应用是解题的关键.
4.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是( )
根据数轴上点a、b的位置可知, ,故D错误.
故选:C.
【点睛】本题主要考查了数轴上点的特点,熟练掌握数轴上点表示的数,越向右越大,是解题的关键.
3.下列计算正确的是()
A. B.
C. D.
【答案】B
【解析】
【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.
【详解】解:A、 ,故此选项不符合题意;

实数的有关概念与计算(53题)2023年中考数学真题分项汇编(全国通用)(解析版)

实数的有关概念与计算(53题)2023年中考数学真题分项汇编(全国通用)(解析版)

实数的有关概念与计算(53题)一、单选题【答案】C【分析】根据相乘等于1的两个数互为倒数,即可求解.【详解】解:2023−的倒数是12023−, 故选:C .【点睛】本题考查了倒数,掌握倒数的定义是解题的关键.【答案】A【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8−,故选:A .【答案】C【分析】首先化简绝对值,然后把选项中的4个数按从小到大排列,即可得出最大的数.【详解】∵11−=, ∴3012−<<−<,∴最大的数是2.故选:C .【点睛】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.4.(2023·四川南充·统考中考真题)如果向东走10m 记作10m +,那么向西走8m 记作( )A .10m −B .10m +C .8m −D .8m + 【答案】C【分析】根据具有相反意义的量即可得.【详解】解:因为向东与向西是一对具有相反意义的量,所以如果向东走10m 记作10m +,那么向西走8m 记作8m −,故选:C .【点睛】本题考查了具有相反意义的量,熟练掌握具有相反意义的量是解题关键.【答案】B【详解】2的相反数是-2.故选:B.【答案】D 【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3,故选:D .【点睛】本题考查相反数,题目简单,熟记定义是关键.【答案】A【分析】根据相反数的定义即可求解.【详解】解:5−的相反数是5,故选:A .【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.8.(2023·浙江嘉兴·统考中考真题)﹣8的立方根是( )A .±2B .2C .﹣2D .不存在 【答案】C【分析】根据立方根的定义进行解答.【详解】∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2,故选:C .【点睛】本题主要考查了立方根,解决本题的关键是数积立方根的定义. 9.(2023·浙江金华·统考中考真题)某一天,哈尔滨、北京、杭州、金华四个城市的最低气温分别是20−℃,10−℃,0℃,2℃,其中最低气温是( )A .20−℃B .10−℃C .0℃D .2℃ 【答案】A【分析】根据有理数的大小比较,即可作出判断.【详解】解:201002−<−<<, 故温度最低的城市是哈尔滨,故选:A .【点睛】本题考查了有理数的大小比较的知识,解答本题的关键是掌握有理数的大小比较法则.【答案】A【分析】根据相反数相加为0判断即可.【详解】解:∵5(5)0+−=,∴“□”内应填入的运算符号为+, 故选:A .【点睛】题目主要考查有理数的加法运算,熟练掌握运算法则是解题关键.【答案】D【分析】根据相反数的意义,相反数是只有符号不同的两个数,改变6−前面的符号,即可得6−的相反数.【详解】解:6−的相反数是6.故选:D.【点睛】本题考查了相反数.解题的关键是掌握相反数的意义,一个数的相反数就是在这个数前面添上“−”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.【答案】B【分析】根据倒数的概念,乘积为1的两个数互为倒数,由此即可求解.【详解】解:12−的倒数是2−,故选:B.【点睛】本题主要考查求一个数的倒数,掌握倒数的概念是解题的关键.13.(2023·浙江宁波·统考中考真题)在2,1,0,π−−这四个数中,最小的数是() A.2−B.1−C.0D.π【答案】A【分析】根据负数小于0小于正数,负数的绝对值大的反而小,进行判断即可.【详解】解:∵21−>−,∴210π−<−<<,∴最小的数是2−;故选:A.【点睛】本题考查比较实数的大小.熟练掌握负数小于0小于正数,负数的绝对值大的反而小,是解题的关键.14.(2023·江西·统考中考真题)下列各数中,正整数是()A.3B.2.1C.0D.2−【答案】A【分析】根据有理数的分类即可求解.【详解】解:3是正整数,2.1是小数,不是整数,0不是正数,2−不是正数,故选:A.【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选:A.16.(2023·甘肃武威·统考中考真题)9的算术平方根是()A.3±B.9±C.3D.3−【答案】C=,可得9的算术平方根.【分析】由239【详解】解:9的算术平方根是3,故选:C.【点睛】本题考查的是算术平方根的含义,熟练的求解一个数的算术平方根是解本题的关键.【答案】D【分析】根据数轴及有理数的加法可进行求解.−+=;【详解】解:由数轴可知点A表示的数是1−,所以比1−大3的数是132故选:D.【点睛】本题主要考查数轴及有理数的加法,熟练掌握数轴上有理数的表示及有理数的加法是解题的关键.−A.2023B.2023【答案】B【分析】根据数轴的定义求解即可.=,【详解】解;∵数轴上点A表示的数是2023,OA OBOB,∴=2023−,∴点B表示的数是2023故选:B.【点睛】本题考查数轴上点表示有理数,熟练掌握数轴上点的特征是解题的关键.−的结果是()19.(2023·浙江绍兴·统考中考真题)计算23A.1−B.3−C.1D.3【答案】A【分析】根据有理数的减法法则进行计算即可.−=−,【详解】解:231故选:A.【点睛】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.【答案】C【分析】由2=【详解】解:∵2>>,∴a b c故选:C.【点睛】本题考查了实数的大小比较,算术平方根.解题的关键在于对知识的熟练掌握.【答案】A【分析】根据绝对值的概念,可得3−的绝对值就是数轴上表示3−的点与原点的距离.进而得到答案.【详解】解:3−的绝对值是3,故选:A.【点睛】本题考查绝对值的定义,正确理解绝对值的定义是解题的关键.22.(2023·重庆·统考中考真题)4的相反数是()A.14B.14−C.4D.4−【答案】D【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【详解】解:4的相反数是4−,故选:D.【点睛】本题考查相反数的概念,关键是掌握相反数的定义.【答案】A【分析】根据立方根、无理数与有理数的概念即可得.【详解】解:A2=,是有理数,则此项符合题意;B、3.232232223⋅⋅⋅是无限不循环小数,是无理数,则此项不符合题意;C、π3是无理数,则此项不符合题意;D是无理数,则此项不符合题意;故选:A.【点睛】本题考查了立方根、无理数与有理数,熟记无理数与有理数的概念是解题关键.【答案】A【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得17039−<<<,∴最大的数是:3;故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【答案】A【分析】根据正数0>>负数,即可进行解答.【详解】解:∵469<<∴23<<∴1133π<<∴比1小的正无理数是.故选:A .【点睛】本题主要考查了比较实数是大小,无理数的估算,解题的关键是掌握正数0>>负数.【答案】B【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6.故选:B .【答案】A【分析】先根据实数的大小比较法则比较数的大小,再求出最小的数即可.【详解】1502−<<<∴最小的数是:5−故选:A .【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则是解此题的关键.【答案】C【分析】根据无理数的估算可得答案.【详解】解:∵3=4==91316<<,∴大小在3与4故选:C.【点睛】本题考查了无理数的估算,熟练掌握基础知识是解题的关键.29.(2023·浙江台州·统考中考真题)下列各数中,最小的是().A.2B.1C.1−D.2−【答案】D【分析】根据正数大于零,零大于负数,两个负数,绝对值大的反而小判断即可.【详解】解:∵2,1是正数,1−,2−是负数,∴最小数的是在1−,2−里,又11−=,22−=,且12<,∴21−<−,∴最小数的是2−.故选:D.【点睛】本题主要考查了有理数大小比较,解答此题的关键是掌握有理数大小比较法则.二、填空题【答案】4(答案不唯一)【分析】根据算术平方根的意义求解.【详解】解:∴由1623<即4<故答案为:4(答案不唯一).【点睛】本题考查算术平方根和无理数的估算,熟练掌握基本知识是解题关键.31.(2023·四川泸州·统考中考真题)8的立方根为______.【答案】2【分析】根据立方根的意义即可完成.【详解】∵328=∴8的立方根为2故答案为:2.【点睛】本题考查了立方根的意义,掌握立方根的意义是关键.【答案】2023 【分析】负数的绝对值是它的相反数,由此可解.【详解】解:2023−的相反数是2023,故20232023−=,故答案为:2023.【点睛】本题考查求一个数的绝对值,解题的关键是掌握负数的绝对值是它的相反数.【答案】±2【详解】解:±2.故答案为:±2.34.(2023·重庆·统考中考真题)计算1023−+=_____.【答案】1.5 【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】1023−+=11=1.52+. 故答案为:1.5.【点睛】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.【答案】6【分析】根据绝对值、零指数幂法则计算即可.【详解】解:05(2516−+=+=.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.【分析】根据零指数幂、二次根式的性质进行计算即可.【详解】()3.14π−11=【点睛】本题考查了实数的混合运算,二次根式的性质等知识,掌握任何一个不为零的数的零次幂都是1是解题的关键.【答案】31=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.38.(2023·江苏连云港·统考中考真题)如图,数轴上的点A B 、分别对应实数a b 、,则a b +__________0.(用“>”“<”或“=”填空)【答案】<【分析】根据数轴可得0,a b a b<<>,进而即可求解. 【详解】解:由数轴可得0,a b a b<<>∴a b +0<故答案为:<.【点睛】本题考查了实数与数轴,有理数加法的运算法则,数形结合是解题的关键.【答案】5【分析】根据二次根式的性质即可求解.【详解】解:2=5故答案为:5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.三、解答题【答案】7【分析】根据零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义,计算即可.【详解】解:原式112252=+−⨯+1215=+−+7=.【点睛】本题考查了零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义.本题的关键是【答案】2−【分析】先化简绝对值,零指数幂,有理数的乘方,再进行计算即可求解.【详解】解:02|3|1)2−−−314=−−2=−.【点睛】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂,有理数的乘方是解题的关键.【答案】3【分析】根据负整数指数幂和零指数幂运算法则,特殊角的三角函数值,进行计算即可.【详解】解:)012312sin303−⎛⎫++︒−− ⎪⎝⎭11212323=++⨯+121133=+++3=.【点睛】本题主要考查了实数混合运算,解题的关键是熟练掌握负整数指数幂和零指数幂运算法则,特殊角的三角函数值,准确计算.【答案】2【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的意义分别化简,再利用有理数的加减运算法则计算得出答案. 【详解】原式111222=++=.【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,绝对值的意义,掌握这些知识并正确计算是解题关键.【答案】2【分析】先计算有理数的乘方、零指数幂、特殊角的余弦值、化简绝对值,再计算乘法与加减法即可得.【详解】解:原式111232−+−⨯+=13=−+2= 【点睛】本题考查了零指数幂、特殊角的余弦值、实数的混合运算,熟练掌握各运算法则是解题关键.【答案】3【分析】根据化简绝对值,零指数幂以及负整数指数幂进行计算即可求解. 【详解】解:原式4123=+−=.【点睛】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂以及负整数指数幂是解题的关键.【答案】6【分析】先计算零指数幂,负整数指数幂和特殊角三角函数值,再根据实数的混合计算法则求解即可.【详解】解:原式)1134=−++114=6=. 【点睛】本题主要考查了实数的混合计算,特殊角三角函数值,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键.【答案】6【分析】根据绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值分别化简计算即可得出答案.【详解】解:121|1|(2)(1)tan 453π−⎛⎫−+−−−+− ⎪⎝⎭︒14131=+−+−6=. 【点睛】本题考查了实数的运算,熟练掌握绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值是解题的关键.【答案】18−【分析】先计算负整数指数幂、算术平方根、零指数幂、减法运算,再进行加减混合运算即可.【详解】解:()101121sin 451(1)3−⎛⎫−+︒−−− ⎪⎝⎭1213311=−+−++18=− 【点睛】此题考查了实数混合运算,熟练掌握相关运算法则是解题的关键.【答案】【分析】利用二次根式的混合运算法则计算即可.===【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则是解答本题的关键.【答案】2【分析】根据绝对值的性质和算术平方根分别进行化简,再按照有理数加减混合运算即可求出答案.【详解】解: 223+−435=+−2=.【点睛】本题考查了实数的运算,解题的关键在于熟练掌握绝对值的性质、算术平方根,乘方的相关运算.【答案】1【分析】先化简绝对值及算术平方根,计算零次幂的运算,然后进行加减法即可.【详解】解:|2|2023−+212=+− =1. 【点睛】题目注意考查实数的混合运算,熟练掌握运算法则是解题关键.【答案】6−【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=−+6=−.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.【答案】1−【分析】根据特殊角的三角函数值,零指数幂,幂的运算法则计算即可.【详解】()()20232sin 3021π︒−+−()122112=⨯−++−12=−1=−.是解题的关键.。

江西省中考数学复习题及答案 (33)

江西省中考数学复习题及答案 (33)

2020年江西省中考数学复习题
1.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是AB=AD或AC⊥BD等.
【分析】由已知可得四边形ABCD是矩形,则可根据有一组邻边相等或对角线互相垂直的矩形是正方形添加条件.
【解答】解:由∠A=∠B=∠C=90°可知四边形ABCD是矩形,根据根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB=AD或AC⊥BD 等.
故答案为:AB=AD或AC⊥BD等.
【点评】本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:
①先说明它是矩形,再说明有一组邻边相等;
②先说明它是菱形,再说明它有一个角为直角.
第1 页共1 页。

江西省中考数学复习题及答案 (61)

江西省中考数学复习题及答案 (61)

2020年江西省中考数学复习题
1.如图为六个大小完全相同的矩形方块组合而成的图形,请仅用无刻度的直尺分别在下列方框内完成作图:
(1)在图(1)中,作与MN平行的直线AB;
(2)在图(2)中,作与MN垂直的直线CD.
【分析】(1)利用平行四边形的判定和性质即可解决问题(AM∥BN,AM=BN);
(2)利用△CMD≌△HMN,可以推出CD⊥MN;
【解答】解:(1)在图(1)中,直线AB如图所示;
(2)在图(2)中,直线CD如图所示;
【点评】本题考查复杂作图、平行线的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
第1 页共1 页。

2020中考数学试题含答案 (53)

2020中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项1.(3.00分)计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.52.(3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.(3.00分)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>14.(3.00分)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形5.(3.00分)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.36.(3.00分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1 D.5,27.(3.00分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB 长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.2﹣B.2﹣C.4﹣D.4﹣8.(3.00分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°9.(3.00分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.310.(3.00分)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个 B.3个 C.2个 D.1个11.(3.00分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.212.(3.00分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E 为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A.B.C.D.二、填空题:本大题共有8小题,每小题3分,共24分.13.(3.00分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为.14.(3.00分)不等式组的非负整数解有个.15.(3.00分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.16.(3.00分)化简;÷(﹣1)=.17.(3.00分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC=度.18.(3.00分)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF =1,则S△ADF的值为.19.(3.00分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为.20.(3.00分)如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF=.其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程21.(8.00分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:修造人笔试成绩/分面试成绩/分甲9088乙8492丙x90丁8886(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.22.(8.00分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的面积.(注意:本题中的计算过程和结果均保留根号)23.(10.00分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?24.(10.00分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.25.(12.00分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE 的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.26.(12.00分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.中考数学试卷参考答案与试题解析一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项1.(3.00分)计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.5【分析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣2﹣3=﹣5,故选:B.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3.00分)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>1【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x﹣1≠0,解得x>1.故选:D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3.00分)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故选:C.【点评】此题主要考查了随机事件以及确定事件,正确把握相关定义是解题关键.5.(3.00分)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.3【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a、b的值,然后代入求值.【解答】解:∵2x a+1y与x2y b﹣1是同类项,∴a+1=2,b﹣1=1,解得a=1,b=2.∴=.故选:A.【点评】此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键.6.(3.00分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1 D.5,2【分析】根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.【解答】解:数据1,3,4,4,4,5,5,6的众数是4,,则=2,故选:B.【点评】本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.7.(3.00分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB 长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.2﹣B.2﹣C.4﹣D.4﹣【分析】过A作AE⊥BC于E,依据AB=2,∠ABC=30°,即可得出AE=AB=1,再根据公式即可得到,阴影部分的面积是×4×1﹣=2﹣.【解答】解:如图,过A作AE⊥BC于E,∵AB=2,∠ABC=30°,∴AE=AB=1,又∵BC=4,∴阴影部分的面积是×4×1﹣=2﹣,故选:A.【点评】本题主要考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积,常用的方法:①直接用公式法;②和差法;③割补法.8.(3.00分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°【分析】由AB=AC知∠B=∠C,据此得2∠C+∠BAC=180°,结合∠C+∠BAC=145°可知∠C=35°,根据∠DAE=90°、AD=AE知∠AED=45°,利用∠EDC=∠AED﹣∠C 可得答案.【解答】解:∵AB=AC,∴∠B=∠C,∴∠B+∠C+∠BAC=2∠C+∠BAC=180°,又∵∠C+∠BAC=145°,∴∠C=35°,∵∠DAE=90°,AD=AE,∴∠AED=45°,∴∠EDC=∠AED﹣∠C=10°,故选:D.【点评】本题主要考查等腰直角三角形,解题的关键是掌握等腰直角三角形和等腰三角形的性质及三角形的内角和定理、外角的性质.9.(3.00分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.3【分析】根据方程的系数结合根的判别式△≥0,即可得出m≤3,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论.【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.故选:B.【点评】本题考查了根的判别式以及一元二次方程的整数解,牢记“当△≥0时,方程有实数根”是解题的关键.10.(3.00分)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个 B.3个 C.2个 D.1个【分析】依据a,b的符号以及绝对值,即可得到a2>b2不一定成立;依据二次函数y=x2﹣2x﹣1图象的顶点坐标以及对称轴的位置,即可得y1>y2>﹣2;依据a∥b,b⊥c,即可得到a∥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.【解答】解:①若a3>b3,则a2>b2不一定成立,故错误;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2,故正确;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故错误;④周长相等的所有等腰直角三角形全等,故正确.故选:C.【点评】本题主要考查了命题与定理,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.(3.00分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.2【分析】利用直线l1:y=﹣x+1,即可得到A(2,0)B(0,1),AB==3,过C作CD⊥OA于D,依据CD∥BO,可得OD=AO=,CD=BO=,进而得到C(,),代入直线l2:y=kx,可得k=.【解答】解:直线l1:y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,即A(2,0)B(0,1),∴Rt△AOB中,AB==3,如图,过C作CD⊥OA于D,∵∠BOC=∠BCO,∴CB=BO=1,AC=2,∵CD∥BO,∴OD=AO=,CD=BO=,即C(,),把C(,)代入直线l2:y=kx,可得=k,即k=,故选:B.【点评】本题主要考查了两直线相交或平行问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.12.(3.00分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E 为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A.B.C.D.【分析】先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.【解答】解:如图,在Rt△BDC中,BC=4,∠DBC=30°,∴BD=2,连接DE,∵∠BDC=90°,点D是BC中点,∴DE=BE=CE BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=3,∴,∴,∴DF=BD=×2=,故选:D.【点评】此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE∥是解本题的关键.二、填空题:本大题共有8小题,每小题3分,共24分.13.(3.00分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为﹣2.【分析】将两方程相加可得4a﹣4b=8,再两边都除以2得出a﹣b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知,①+②,得:4a﹣4b=8,则a﹣b=2,∴b﹣a=﹣2,故答案为:﹣2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.14.(3.00分)不等式组的非负整数解有4个.【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【解答】解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3.00分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.【解答】解:列表如下:﹣2﹣112﹣22﹣2﹣4﹣12﹣1﹣21﹣2﹣122﹣4﹣22由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.16.(3.00分)化简;÷(﹣1)=﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣,故答案为:﹣.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.17.(3.00分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC=115度.【分析】连接OC,根据切线的性质求出∠DCO,求出∠COB,即可求出答案.【解答】解:连接OC,∵DC切⊙O于C,∴∠DCO=90°,∵∠D=40°,∴∠COB=∠D+∠DCO=130°,∴的度数是130°,∴的度数是360°﹣130°=230°,∴∠BEC==115°,故答案为:115.【点评】本题考查了圆周角定理和切线的性质,能根据切线的性质求出∠DCO的度数是解此题的关键.18.(3.00分)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF =1,则S△ADF的值为.【分析】由3AE=2EB可设AE=2a、BE=3a,根据EF∥BC得=()2=,结合S△AEF =1知S△ADC=S△ABC=,再由==知=,继而根据S△ADF=S△ADC可得答案.【解答】解:∵3AE=2EB,∴可设AE=2a、BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵S△AEF=1,∴S△ABC=,∵四边形ABCD是平行四边形,∴S△ADC =S△ABC=,∵EF∥BC,∴===,∴==,∴S△ADF =S△ADC=×=,故答案为:.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定及性质、平行线分线段成比例定理及平行四边形的性质.19.(3.00分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为3.【分析】由双曲线y=(x >0)经过点D 知S △ODF =k=,由矩形性质知S △AOB =2S △ODF =,据此可得OA•BE=3,根据OA=OB 可得答案.【解答】解:如图,∵双曲线y=(x >0)经过点D ,∴S △ODF =k=,则S △AOB =2S △ODF =,即OA•BE=,∴OA•BE=3,∵四边形ABCD 是矩形,∴OA=OB ,∴OB•BE=3,故答案为:3.【点评】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k 的几何意义及矩形的性质.20.(3.00分)如图,在Rt △ACB 中,∠ACB=90°,AC=BC ,D 是AB 上的一个动点(不与点A ,B 重合),连接CD ,将CD 绕点C 顺时针旋转90°得到CE ,连接DE ,DE 与AC 相交于点F ,连接AE .下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF=.其中正确的结论是①②③.(填写所有正确结论的序号)【分析】先判断出∠BCD=∠ACE,即可判断出①正确;先求出∠BDC=110°,进而得出∠AEC=110°,即可判断出②正确;先判断出∠CAE=∠CEF,进而得出△CEF∽△CAE,即可得出CE2=CF•AC,最后用勾股定理即可得出③正确;先求出BC=AC=3,再求出BD=,进而求出CE=CD=,求出CF=,即可判断出④错误.【解答】解:∵∠ACB=90°,由旋转知,CD=CE,∠DCE=90°=∠ACB,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE,故①正确;∵∠ACB=90°,BC=AC,∴∠B=45°∵∠BCD=25°,∴∠BDC=180°﹣45°﹣25°=110°,∵△BCD≌△ACE,∴∠AEC=∠BDC=110°,∵∠DCE=90°,CD=CE,∴∠CED=45°,则∠AED=∠AEC﹣∠CED=65°,故②正确;∵△BCD≌△ACE,∴∠CAE=∠CBD=45°=∠CEF,∵∠ECF=∠ACE,∴△CEF∽△CAE,∴,∴CE2=CF•AC,在等腰直角三角形CDE中,DE2=2CE2=2CF•AC,故③正确;如图,过点D作DG⊥BC于G,∵AB=3,∴AC=BC=3,∵AD=2BD,∴BD=AB=,∴DG=BG=1,∴CG=BC﹣BG=3﹣1=2,在Rt△CDG中,根据勾股定理得,CD==,∵△BCD≌△ACE,∴CE=,∵CE2=CF•AC,∴CF==,∴AF=AC﹣CF=3﹣=,故④错误,故答案为:①②③.【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△BCD ≌△ACE是解本题的关键.三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程21.(8.00分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:修造人笔试成绩/分面试成绩/分甲9088乙8492丙x90丁8886(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.【分析】(1)根据中位数的概念计算;(2)根据题意列出方程,解方程即可;(3)根据加权平均数的计算公式分别求出余三名候选人的综合成绩,比较即可.【解答】解:(1)这四名候选人面试成绩的中位数为:=89(分);(2)由题意得,x×60%+90×40%=87.6解得,x=86,答:表中x的值为86;(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),乙候选人的综合成绩为:84×60%+92×40%=87.2(分),丁候选人的综合成绩为:88×60%+86×40%=87.2(分),∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.【点评】本题考查的是中位线、加权平均数,掌握中位数的概念、加权平均数的计算公式是解题的关键.22.(8.00分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的面积.(注意:本题中的计算过程和结果均保留根号)【分析】(1)解直角三角形求出AD、AE即可解决问题;(2)作DF⊥BC于F.则四边形ABFD是矩形,解直角三角形求出CF,即可解决问题;【解答】解:(1)在四边形ABCD中,∵AD∥BC,∠ABC=90°,∴∠BAD=90°,∵AB=AD,∴∠ABD=∠ADB=45°,∵∠BDE=15°,∴∠ADE=30°,在Rt△ADE中,AE=DE×sin30=2,AD=DE•cos30°=6,∴AB=AD=6,∴BE=6﹣2.(2)作DF⊥BC于F.则四边形ABFD是矩形,∴BF=AD=6,DF=AB=6,在Rt△DFC中,FC==4,∴BC=6+4,∴S四边形DEBC =S△DEB+S△BCD=×(6﹣2)×6+(6+4)×6=36+6.【点评】本题考查矩形的性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(10.00分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据题意得:=﹣30,解得:x=40,经检验,x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元,根据题意得:(40﹣a)×=900,解得:a=25,∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.(10.00分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.【分析】(1)先利用等角的余角相等即可得出结论;(2)先判断出△BDC∽△BCE得出比例式求出BE=4,DE=3,利用勾股定理求出CD,CE,再判断出△AFM∽△BAC,进而判断出四边形FNCA是矩形,求出FN,NC,即:BN,再用勾股定理求出BF,即可得出结论.【解答】解:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵DE是⊙A的直径,∴∠DCE=90°,∴∠BEC+∠CDE=90°,∵AD=AC,∴∠CDE=∠ACD,∴∠BCD=∠BEC,(2)∵∠BCD=∠BEC,∠EBC=∠EBC,∴△BDC∽△BCE,∴,∵BC=2,BD=1,∴BE=4,EC=2CD,∴DE=BE﹣BD=3,在Rt△DCE中,DE2=CD2+CE2=9,∴CD=,CE=,过点F作FM⊥AB于M,∵∠FAB=∠ABC,∠FMA=∠ACB=90°,∴△AFM∽△BAC,∴,∵DE=3,∴AD=AF=AC=,AB=,∴FM=,过点F作FN⊥BC于N,∴∠FNC=90°,∵∠FAB=∠ABC,∴FA∥BC,∴∠FAC=∠ACB=90°,∴四边形FNCA是矩形,∴FN=AC=,NC=AF=,∴BN=,在Rt△FBN中,BF=,在Rt△FBM中,sin∠ABF=.【点评】此题主要考查了圆的有关性质,等角的余角相等,相似三角形的判定和性质,勾股定理,锐角三角函数,正确作出辅助线是解本题的关键.25.(12.00分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE 的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.【分析】(1)先求出BD,进而求出OD=OB=OA,再判断出△ODE∽△ADO,即可得出结论;(2)先判断出△AEF≌△DCE,进而求出BF=1,再判断出△CHG∽△CBF,进而求出BK=GK=,最后用勾股定理即可得出结论;(3)①先求出EC=5,再求出D'C=1,根据勾股定理求出DH=,CH=,再判断出△EMN∽△EHD,的粗,△ED'M∽△ECH,得出,进而得出,即可得出结论;②先判断出∠MD'H=∠NED',进而判断出∠MD'H=∠ECB,即可得出,即可.【解答】解:(1)如图1,连接OA,在矩形ABCD中,CD=AB=3,AD=BC=5,∠BAD=90°在Rt△ABD中,根据勾股定理得,BD=,∵O是BD中点,∴OD=OB=OA=,∴∠OAD=∠ODA,∵OE=DE,∴∠EOD=∠ODE,∴∠EOD=∠ODE=∠OAD,∴△ODE∽△ADO,∴,∴DO2=DE•DA,∴设AE=x,∴DE=5﹣x,∴()2=5(5﹣x),∴x=,即:AE=;(2)如图2,在矩形ABCD中,∵BE平分∠ABC,∴∠ABE=∠EBC=45°,∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=3,∴AE=CD=3,∵EF⊥EC,∴∠FEC=90°,∴∠AEF+∠CED=90°,∵∠A=90°,∴∠AEF+∠AFE=90°,∴∠CED=∠AFE,∵∠D=∠A=90°,∴△AEF≌△DCE,∴AF=DE=2,∴BF=AB﹣AF=1,过点G作GK⊥BC于K,∴∠EBC=∠BGK=45°,∴BK=GK,∠ABC=∠GKC=90°,∵∠KCG=∠BCF,∴△CHG∽△CBF,∴,设BK=GK=y,∴CK=5﹣y,∴y=,∴BK=GK=,在Rt△GKB中,BG=;(3)①在矩形ABCD中,∠D=90°,∵AE=1,AD=5,∴DE=4,∵DC=3,∴EC=5,由折叠知,ED'=ED=4,D'H=DH,∠ED'H=∠D=90°,∴D'C=1,设D'H=DH=z,∴HC=3﹣z,根据勾股定理得,(3﹣z)2=1+z2,∴z=,∴DH=,CH=,∵D'N⊥AD,∴∠AND'=∠D=90°,∴D'N∥DC,∴△EMN∽△EHD,∴,∵D'N∥DC,∴∠ED'M=∠ECH,∵∠MED'=∠HEC,∴△ED'M∽△ECH,∴,∴,∴,∴;②相似,理由:由折叠知,∠EHD'=∠EHD,∠ED'H=∠D=90°,∴∠MD'H+∠ED'N=90°,∵∠END'=90°,∴∠ED'N+∠NED'=90°,∴∠MD'H=∠NED',∵D'N∥DC,∴∠EHD=∠D'MH,∴∠EHD'=∠D'MH,∴D'M=D'H,∵AD∥BC,∴∠NED'=∠ECB,∴∠MD'H=∠ECB,∵CE=CB=5,∴,∴△D'MH∽△CBE.【点评】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,勾股定理,角平分线的定义,熟练掌握判定两三角形相似的方法是解本题的关键.26.(12.00分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=∠OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.【解答】解:(1)∵抛物线y=x2+x﹣2,∴当y=0时,得x1=1,x2=﹣4,当x=0时,y=﹣2,∵抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(﹣4,0),点B(1,0),点C(0,﹣2),∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,,得,即直线l的函数解析式为y=;(2)直线ED与x轴交于点F,如右图1所示,由(1)可得,AO=4,OC=2,∠AOC=90°,∴AC=2,∴OD=,∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,∴△AOD∽△ACO,∴,即,得AD=,∵EF⊥x轴,∠ADC=90°,∴EF∥OC,∴△ADF∽△ACO,∴,解得,AF=,DF=,∴OF=4﹣=,∴m=﹣,当m=﹣时,y=×()2+×(﹣)﹣2=﹣,∴EF=,∴DE=EF﹣FD=;(3)存在点P,使∠BAP=∠BCO﹣∠BAG,理由:作GM⊥AC于点M,作PN⊥x轴于点N,如右图2所示,∵点A(﹣4,0),点B(1,0),点C(0,﹣2),∴OA=4,OB=1,OC=2,∴tan∠OAC=,tan∠OCB=,AC=2,∴∠OAC=∠OCB,∵∠BAP=∠BCO﹣∠BAG,∠GAM=∠OAC﹣∠BAG,∴∠BAP=∠GAM,∵点G(0,﹣1),AC=2,OA=4,∴OG=1,GC=1,∴AG=,,即,解得,GM=,∴AM===,∴tan∠GAM==,∴tan∠PAN=,设点P的坐标为(n,n2+n﹣2),∴AN=4+n,PN=n2+n﹣2,∴,解得,n1=,n2=﹣4(舍去),当n=时,n2+n﹣2=,∴点P的坐标为(,),即存在点P(,),使∠BAP=∠BCO﹣∠BAG.【点评】本题是一道二次函数综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用三角形相似、锐角三角函数和二次函数的性质解答.。

江西初三数学试题及答案

江西初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = a(x - h)^2 + kC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c - d答案:A2. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -2答案:A3. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么第三边长可能是:A. 1B. 3C. 4D. 5答案:B4. 以下哪个选项是等腰三角形的性质?A. 两底角相等B. 两腰相等C. 三边相等D. 两腰和底边都相等答案:B5. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 15cmD. 20cm答案:A6. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A7. 以下哪个选项是勾股定理的表达式?A. a^2 + b^2 = c^2B. a^2 - b^2 = c^2C. a^2 + c^2 = b^2D. a^2 - c^2 = b^2答案:A8. 一个数的绝对值是4,那么这个数可能是:A. 4B. -4C. 4或-4D. 0答案:C9. 以下哪个选项是平行四边形的性质?A. 对角线相等B. 对边平行且相等C. 对角线互相垂直D. 对角线互相平分答案:B10. 一个数的立方根是3,那么这个数是:A. 27B. 9C. 3D. -27答案:A二、填空题(每题3分,共30分)1. 一个数的平方是36,那么这个数是________。

答案:±62. 一个数的立方是-8,那么这个数是________。

答案:-23. 如果一个角是30°,那么它的余角是________。

答案:60°4. 一个直角三角形的两个锐角分别是30°和60°,那么它的斜边是最短边的________倍。

2024年江西省中考数学试卷及答案

2024年江西省初中学业水平考试数学试题卷一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1.实数5-的相反数是()A.5B.5- C.15D.15-2.“长征是宣言书,长征是宣传队,长征是播种机”,二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹,将25000用科学记数法可表示为()A.60.2510⨯ B.52.510⨯ C.42.510⨯ D.32510⨯3.如图所示的几何体,其主视图为()A. B. C. D.4.将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数()y ℃与时间()min x 的关系用图象可近似表示为()A. B. C. D.5.如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是()A.五月份空气质量为优的天数是16天B.这组数据的众数是15天C.这组数据的中位数是15天D.这组数据的平均数是15天6.如图是43⨯的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有()A.1种B.2种C.3种D.4种二、填空题(本大题共6小题,每小题3分,共18分)7.计算:()21-=____.8.因式分解:22a a +=_________.9.在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为______.10.观察a,2a ,3a ,4a ,…,根据这些式子的变化规律,可得第100个式子为______.11.将图1所示的七巧板,拼成图2所示的四边形ABCD ,连接AC ,则tan CAB ∠=______.12.如图,AB 是O 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ⊥,将DBE沿DE 翻折交直线AB 于点F,当DE 的长为正整数时,线段FB 的长为______.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:0π5+-.(2)化简:888x x x ---.14.如图,AC 为菱形ABCD 的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹)(1)如图1,过点B 作AC 的垂线.(2)如图2,点E 为线段AB 的中点,过点B 作AC 的平行线.15.某校一年级开设人数相同的A,B,C 三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A 班”的概率是______.(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.16.如图,AOB 是等腰直角三角形,90∠=︒ABO ,双曲线()0,0ky k x x=>>经过点B,过点()4,0A 作x 轴的垂线交双曲线于点C,连接BC .(1)点B 的坐标为______.(2)求BC 所在直线的解析式.17.如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线.(2)当3BC =时,求 AC 的长.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本.(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?19.图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”,如图2,“大碗”的主视图由“大碗”主体ABCD 和矩形碗底BEFC 组成,已知AD EF ∥,AM ,DN 是太阳光线,AM MN ⊥,DN MN ⊥,点M,E,F,N在同一条直线上,经测量20.0m ME FN ==,40.0m EF =, 2.4m BE =,152ABE ∠=︒.(结果精确到0.1m )(1)求“大碗”的口径AD 的长.(2)求“大碗”的高度AM 的长.(参考数据:sin620.88︒≈,cos620.47︒≈,tan62 1.88︒≈)20.追本溯源:题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在ABC 中,BD 平分ABC ∠,交AC 于点D,过点D 作BC 的平行线,交AB 于点E,请判断BDE 的形状,并说明理由.方法应用:(2)如图2,在ABCD Y 中,BE 平分ABC ∠,交边AD 于点E,过点A 作AF BE ⊥交DC 的延长线于点F,交BC 于点G .①图中一定是等腰三角形的有()A .3个B .4个C .5个D .6个②已知3AB =,5BC =,求CF 的长.五、解答题(本大题共2小题,每小题9分,共18分)21.近年来,我国肥胖人群的规模快速增长,目前,国际上常用身体质量指数(Body Mass Index,缩写BMI )来衡量人体胖瘦程度,其计算公式是22)kg (()m BMI =体重单位:身高单位:.中国人的BMI 数值标准为:18.5BMI <为偏瘦.18.524BMI ≤<为正常.2428BMI ≤<为偏胖.28BMI ≥为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI 数值,再参照BMI 数值标准分成四组:A .1620BMI ≤<.B .2024BMI ≤<.C .2428BMI ≤<.D .2832BMI ≤<.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m )1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg )52.549.545.640.355.256.148.542.867.290.5BMI21.6s 16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m )1.46 1.62 1.55 1.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg )46.449.061.556.552.975.550.347.652.446.8BMI21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI 频数分布表组别BMI男生频数女生频数A 1620BMI ≤<32B 2024BMI ≤<46C 2428BMI ≤<t 2D2832BMI ≤<1应用数据(1)s =______,t =______α=______.(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数.②估计该校七年级学生24BMI ≥的人数(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22.如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x12m4567…y 07261528152n72…(1)①m =______,n =______.②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米.②求v 的值.六、解答题(本大题共12分)23.综合与实践如图,在Rt ABC △中,点D 是斜边AB 上的动点(点D 与点A 不重合),连接CD ,以CD 为直角边在CD 的右侧构造Rt CDE △,90DCE ∠=︒,连接BE ,CE CBm CD CA==.特例感知(1)如图1,当1m =时,BE 与AD 之间的位置关系是______,数量关系是______.类比迁移(2)如图2,当1m ≠时,猜想BE 与AD 之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F 与点C 关于DE 对称,连接DF ,EF ,BF ,如图3.已知6AC =,设AD x =,四边形CDFE 的面积为y .①求y 与x 的函数表达式,并求出y 的最小值.②当2BF =时,请直接写出AD 的长度.2024年江西省初中学业水平考试数学试题卷解析一、单项选择题.1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】D6.【答案】B【解析】如图所示:共有2种方法故选:B .二、填空题.7.【答案】18.【答案】(2)a a +9.()3,410.【答案】100a 11.【答案】12【解析】解:如图1,设等腰直角MNQ △的直角边为a ,则MQ =,小正方形的边长为a ∴2MP a=∴EM ==∴MT EM ==∴QT ==如图2,过点C 作CH AB ⊥的延长线于点H ,则CH BD =,BH CD =由图(1)可得,AB BD ==,CD ==∴CH =,BH =∴AH =+=∴1tan2CH CAB AH ∠==故答案为:12.12.【答案】2或2+或2【解析】解:AB 为直径,DE 为弦∴DE AB≤∴当DE 的长为正整数时,1DE =或2当2DE =时,即DE 为直径DE AB∵⊥∴将 DBE沿DE 翻折交直线AB 于点F,此时F 与点A 重合故2FB =.当1DE =时,且在点C 在线段OB 之间如图,连接OD 此时112OD AB ==DE AB∵⊥1122DC DE ∴==,2232OC OD DC ∴=-=232BC OB OC -∴=-=223BF BC ∴==-.当1DE =时,且点C 在线段OA 之间,连接OD同理可得22BC +=22BF BC ∴==综上,可得线段FB 的长为2或2或2故答案为:2或2+或2.三、解答题.13.【答案】(1)6.(2)114.【小问1详解】解:如图,BD 即为AC 所求.【小问2详解】解:如图,BM 即为所求.15.【答案】(1)13(2)甲、乙两位新生分到同一个班的概率为13.【小问1详解】解:有A,B,C 三个班级,“学生甲分到A 班”有一种情况则“学生甲分到A 班”的概率是13故答案为:13.【小问2详解】解:画树状图如图:共有9个等可能的结果,甲、乙两位新生分到同一个班的有3种情况∴甲、乙两位新生分到同一个班的概率为3193=.16.【答案】(1)()2,2(2)132y x =-+【小问1详解】解:过点B 作BD x ⊥轴于D,如图所示:∵AOB 是等腰直角三角形,90∠=︒ABO ,()4,0A ∴4OA =∴2BD OD AD ===∴()2,2B 故答案为:()2,2.【小问2详解】由(1)得()2,2B ,代入()0,0k y k x x=>>得4k =∴4y x=∵过点()4,0A 作x 轴的垂线交双曲线于点C ∴当4x =时,1y =∴()4,1C 设直线BC 的解析式为1y k x b =+,将点B,C 代入得:12214k b k b =+⎧⎨=+⎩,解得1123k b ⎧=-⎪⎨⎪=⎩∴直线BC 的解析式为132y x =-+.17.【答案】(1)见解析(2)2π【小问1详解】证明: AB 是半圆O 的直径90ACB ∴∠=︒60D ABC ∠=∠=︒9030CAB ABC ∴∠=︒-∠=︒18090ABD CAB D ∴∠=︒-∠-∠=︒BD ∴是半圆O 的切线.【小问2详解】解:如图,连接OC,60OC OB CBA =∠=︒OCB ∴∆为等边三角形60COB ∴∠=︒,3OC CB ==180120AOC COB ∴∠=︒-∠=︒ 120232360AC l ππ∴=⨯⨯=.四、解答题.18.【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【小问1详解】解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +-=解得:60x =9030x -=.∴书架上有数学书60本,语文书30本.【小问2详解】设数学书还可以摆m 本根据题意得:1.2100.884m ⨯+≤解得:90m ≤∴数学书最多还可以摆90本.19.【答案】(1)“大碗”的口径AD 的长为80.0m .(2)“大碗”的高度AM 的长为40.0m .【小问1详解】解:∵AD EF ∥,AM MN ⊥,DN MN ⊥∴四边形AMND 是矩形∴()20.040.020.080.0m AD ME EF FD =++=++=答:“大碗”的口径AD 的长为80.0m .【小问2详解】解:延长EB 交AD 于点H ,如图∵矩形碗底BEFC∴EH AD⊥∴四边形AMEH 是矩形∵152ABE ∠=︒∴18028ABH ABE ∠︒=︒-∠=,902862HAB ∠︒=︒-=∴8tan 6.218BH AH=≈︒∴()20.0 1.8837.6m BH =⨯≈∴()37.6 2.440.0m AM EH BH BE ==+=+=答:“大碗”的高度AM 的长为40.0m .20.【答案】(1)BDE 是等腰三角形.理由见解析.(2)①B.②2CF =.【解析】解:(1)BDE 是等腰三角形.理由如下:∵BD 平分ABC∠∴ABD CBD∠=∠∵DE BC∥∴BDE CBD∠=∠∴BDE ABD∠=∠∴EB ED=∴BDE 是等腰三角形.(2)①∵ABCD Y 中∴AE BC ∥,AB CD ∥同(1)ABE CBE AEB ∠=∠=∠∴AB AE=∵AF BE⊥∴BAF EAF∠=∠∵AE BC ∥,AB CD∥∴BGA EAF ∠=∠,BAF F∠=∠∵BGA CGF∠=∠∴BGA BAG ∠=∠,DAF F ∠=∠,CGF F ∠=∠∴AB AG =,DA DF =,CG CF =即ABE ,ABG ,ADF △,CGF △是等腰三角形.共有四个故选:B .②∵ABCD Y 中,3AB =,5BC =∴3AB CD ==,5BC AD ==由①得DA DF=∴532CF DF CD =-=-=.五、解答题.21.【答案】(1)22.2.72︒.(2)①52人.②126人(3)见解析【小问1详解】解:根据题意:249.5221.5s ==由统计表得:2428BMI ≤<内,2t =.∴223607220α+=︒⨯=︒故答案为:22.2.72︒.【小问2详解】①男生偏胖的人数为:22605210⨯=(人).②七年级学生24BMI ≥的人数为:2122602401261010+⨯+⨯=(人).对学校学生进行合理、健康的饮食习惯的培养,加强体育锻炼.22.【答案】(1)①3,6.②1515,28⎛⎫ ⎪⎝⎭.(2)①8,②v =【小问1详解】解:①根据小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律表可知:抛物线顶点坐标为()4,8∴24284b a b a⎧-=⎪⎪⎨-⎪=⎪⎩,解得:124a b ⎧=-⎪⎨⎪=⎩∴二次函数解析式为2142y x x =-+当152y =时,2115422x x -+=解得:3x =或5x =(舍去)∴3m =当6x =时,2164662n y ==-⨯+⨯=故答案为:3,6.②联立得:214214y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得:00x y =⎧⎨=⎩或152158x y ⎧=⎪⎪⎨⎪=⎪⎩∴点A 的坐标是1515,28⎛⎫ ⎪⎝⎭①由题干可知小球飞行最大高度为8米故答案为:8.②222551020v v y t vt t ⎛⎫=-+=--+ ⎪⎝⎭则2820v =解得v =.六、解答题.23.【答案】(1)AD BE ⊥,AD BE =(2)BE 与AD 之间的位置关系是AD BE ⊥,数量关系是BE m AD =.(3)①y 与x 的函数表达式((2180y x x =-+<≤,当x =时,y 的最小值为18.②当2BF =时,AD 为【解析】解:(1)∵90DCE ACB∠=︒=∠∴ACD BCE ∠=∠,90A ABC ∠+∠=︒∵1CE CB m CD CA===∴CD CE =,CB CA=∴≌ACD BCE V V .∴AD BE =,CAD CBE∠=∠∴90ABE ABC CBE ABC CAD ∠=∠+∠=∠+∠=︒∴AD BE⊥∴BE 与AD 之间的位置关系是AD BE ⊥,数量关系是AD BE =.(2)BE 与AD 之间的位置关系是AD BE ⊥,数量关系是BE m AD =.理由如下:∵90DCE ACB∠=︒=∠∴ACD BCE ∠=∠,90A ABC ∠+∠=︒∵CE CB m CD CA==∴ACD BCE ∽△△.∴BE BC m AD AC==,CAD CBE ∠=∠∴90ABE ABC CBE ABC CAD ∠=∠+∠=∠+∠=︒∴AD BE⊥∴BE 与AD 之间的位置关系是AD BE ⊥,数量关系是BE m AD =.(3)由(1)得:CD CE =,CB CA =,90DCE ACB ∠=︒=∠∴ABC ,CDE 都为等腰直角三角形.∵点F 与点C 关于DE 对称∴DFE △为等腰直角三角形.CE CD EF DF ===∴四边形CDFE 为正方形如图,过C 作CH AB ⊥于H∵6AC BC ==,90ACB ∠=︒,∴2262AB AC BC =+=32CH AH BH ===当032x <≤时∴32DH x =-∴()()()222232323218y CD x x ==+-=-+如图,当3262x <≤时此时32DH x =-同理可得:()223218y CD x ==-+∴y 与x 的函数表达式为()()23218062y x x =-+<≤当32x =时,y 的最小值为18.②如图,∵AD BE ⊥,正方形CDFE ,记正方形的中心为O ∴90DBE DFE DCF ∠=∠=∠=︒连接OC ,OB ,OF∴OC OD OF OE OB ====∴,,,,D C E B F 在O 上,且CF 为直径∴90CBF ∠=︒过O 作OK BC ⊥于K ,过O 作OG BF ⊥于G ∴132BK BC ==,112BG BF ==∴OB ==∴2DE OB ==∴正方形面积为(211402022⨯=⨯=∴(221820y CD x ==-+=解得:1x =2x =,经检验都符合题意如图综上:当2BF =时,AD 为。

江西省2023年中考数学试题(图片版)

江西省2023年中考数学试题(图片版)江西省2023年中考数学试题(图片版)数学要弄懂各种关系,学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。

下面是小编为大家整理的江西省2023年中考数学试题,希望对您有所帮助!江西省2023年中考数学试题中考数学解题技巧方法技巧一:“小题”巧做在数学考试中,相对解答题,选择题被称为“小题”。

建议考生做题时采取灵活方法,通过对选项的观察,利用特殊值代入法、特殊方程法、排除法等,排除不可能的选项,把选择题从4选1变成2选1,提高解题的速度。

技巧二:掌握概念、公式拿下基础分在解答题中,考生要注意概念型的内容。

比如,在考试中,一些考生常写错极坐标,考生平时若能牢记极坐标概念,就知道极坐标怎么写,掌握这个知识点,在极坐标和平面坐标的转换中,就能立刻拿分。

另外就是熟练掌握公式。

数学解答题里,如果第一道大题考三角函数的话,三角函数的正弦定理、余弦定理、辅助角公式、诱导公式等若能熟悉掌握,即便题不会做,把这些公式写上去,也能得公式分。

此外,在数列类考题中,掌握递推公式求通项公式、前n项和公式,代入公式简单化简变形就能得分。

在立体几何考题中,有的考生喜欢用向量法答题,必须掌握面面角公式、线面角公式;在考极坐标与参数方程,掌握极坐标与参数方程的转化公式就能得分,这些都属于公式分。

技巧三:分步骤答题“抢”计算分按目前的评分细则,数学考试按步骤给分:考生写对一步给一步的分。

比如,考线性回归方程,求回归系数b。

如果整体计算,算错一个地方,系数b的值算错,分数就没有了。

如果分步答题,先算x 与y的平均数,然后算分子,再算分母,分子分母都算好,再带到式子里计算,计算每步都有分,即便算错一个地方,之前的步骤也能得分。

技巧四:掌握常见“套路”拿分数比如解三角形时求取值范围,通常有两种策略:第一种将边换成角,再利用三角函数的有界性去得分;第二种把角换成边,用均值不等式或图形的几何性质去得分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档