Lingo软件在求解数学优化问题的使用技巧
实验利用Lingo求解整数规划和非线性规划问题

三、Lingo 循环编程举例
例5 用Lingo循环编程语句求解线性规划模型
max z 72x1 64x2
x1 x2 50, 132xx1 1180x0,2 480, x1 0, x2 0.
三、划 模型
max z 72x1 64x2
MODEL: SETS: person/A,B,C,D/; task/1..4/; assign(person,task):a,x; ENDSETS DATA: a=1100,800,1000,700,
600,500,300,800, 400,800,1000,900, 1100,1000,500,700; ENDDATA min=@sum(assign:a*x); @for(person(i):@sum(task(j):x(i,j))=1); @for(task(j):@sum(person(i):x(i,j))=1); @for(assign(i,j):@bin(x(i,j))); END
12,8 3,0; enddata
!数据赋值;
max=@sum(bliang(i):a(i)*x(i)); !目的函数;
@for(yshu(j):@sum(bliang(i):x(i)*c(j,i))<=b(j));
!约束条件;
例6、指派问题
企业在各地有4项业务,选定了4位业务员去处理。因为 业务能力、经验和其他情况不同,4业务员去处理4项业 务旳费用(单位:元)各不相同,见下表:
(3) 集合旳循环函数 集合旳循环函数能够使全部旳元素反复完毕某些操作.
函数
函数功能
• 形成集合全部元素需满足旳约
@for
束条件
• 计算集合中元素所在体现式旳
@sum
LINGO应用教程

第十章 LINGOLingo 软件是求解线性规划、非线性规划的数学软件,也可用于一些线性和非线性方程组的求解等。
Lingo 实际上也是最优化问题的一种建模语言,包括许多常用的数学函数供使用者建立优化模型时调用,并可以接受与其他数据文件交换数据。
第一节 LINGO 软件的基本使用方法1.1 LINGO 使用入门在windows 操作系统下启动LINGO 后,将进入LINGO 集成环境,包括主框架窗口和模型窗口两部分。
主框架窗口集成了菜单和命令按钮,模型窗口用于输入模型。
例1 求解数学模型12121212max 23..4310351200x x s t x x x x x x ++≤+≤≥≥解:在模型窗口输入LINGO 求解模型如下:输入模型后选择菜单LINGO|Solve 或者按工具栏的,LINGO开始编译模型,如有语法错误将返回一个错误的消息并指明错误出现的位置;如果通过编译,LINGO将激活Solver运算器寻求模型的最优解,首先出现Solver Status状态窗口显示模型求解的运算状态信息:状态窗口显示的信息含义如下:“Global optimal solution found”表示得到全局最优解。
“Objective value: 7.454545”表示最优目标值为7.454545。
“Total solver iterations:2” 表示迭代2次得到结果。
“V alue”给出最优解中各变量的值:x1=1.272727,x2=1.636364。
Reduced Cost 值列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时,目标函数的变化率。
其中基变量的reduced cost值应为0,对于非基变量xj,相应的reduced cost值表示当某个变量xj 增加一个单位时目标函数减少的量( max型问题)。
本例中此值均为0。
SLACK OR SURPLUS值给出约束条件的松驰变量或剩余变量的值。
Lingo的基本使用方法

1 2 3 4
输入窗口如下:
程序语句输入的备注:
LINGO总是根据“MAX=”或“MIN=”寻找目标函数,而除注 释语句和TITLE语句外的其他语句都是约束条件,因此语句的 顺序并不重要 。 限定变量取整数值的语句为“@GIN(X1)”和“@GIN(X2)”,不 可以写成“@GIN(2)”,否则LINGO将把这个模型看成没有整 数变量。 LINGO中函数一律需要以“@”开头,其中整型变量函数( @BIN、@GIN)和上下界限定函数(@FREE、@SUB、 @SLB)与LINDO中的命令类似。而且0/1变量函数是@BIN函 数。
运行状态窗口
Variables(变量数量): 变量总数(Total)、 非线性变量数(Nonlinear)、 整数变量数(Integer)。 Constraints(约束数量): 约束总数(Total)、 非线性约束个数(Nonlinear)。 Nonzeros(非零系数数量): 总数(Total)、 非线性项系数个数(Nonlinear)。 Generator Memory Used (K) (内存使用 量) Elapsed Runtime (hh:mm:ss)(求 解花费的时间)
LINGO软件的主要特色
两种命令模式 Windows模式: 通过下拉式菜单命令驱动LINGO运行(多数
菜单命令有快捷键,常用的菜单命令有快捷按钮),图形界
面,使用方便;
(这里主要介绍这种模式)
命令行 模式:仅在命令窗口(Command Window)下操作,通
过输入行命令驱动LINGO运行 。
LINGO 11.0功能增强,性能稳定,解答结果可靠。LINGO 软
INV (0) 10
加上变量的非负约束
注:LINGO中没有数组,只能对每个季度分别定义变量,如正常 产量就要有RP1,RP2,RP3,RP4 4个变量等。写起来就比较麻 烦,尤其是更多(如1000个季度)的时候。 记四个季度组成的集合QUARTERS={1,2,3,4},它们就是上 面数组的下标集合,而数组DEM,RP,OP, INV对集合QUARTERS中 的每个元素1,2,3,4分别对应于一个值。LINGO正是充分利用 了这种数组及其下标的关系,引入了“集合”及其“属性”的概 念,把QUARTERS={1,2,3,4}称为集合,把DEM,RP,OP, INV 称为该集合的属性(即定义在该集合上的属性)。
Lingo软件在求解数学优化问题的使用技巧

l 2 + z 3 ≤3 2 5 1 l 1 ̄ <4 0 0 2 + y 2 + z 2≤ 6 0 0
3 3 ̄ <3 0 0
3 1 + 2 y 1 + z l ≤6 0 0
3 2 + 2 y 2 坛 2≤ 8 0o
3 + 2 y 3 3 ≤3 7 5
科技・ 探索・ 争I 毫
S c 科 i e n c e & 技 T e c h 视 n o l o g y 界 V i s i o n
L i n g o 软件在求解数学优化问题的使用技巧
惠高峰 ( 西 安铁路 职 业技术 学 院 , 陕西 西 安 7 1 0 0 1 6 )
【 摘 要】 本文通过求解优化 问题的过程 , 讲述 了L i n g o 软件 的编程 方法和求解过程 中的使 用技 巧 , 用来解决数 学优化 问题 中的计算 f * - I 题,
提 高编程 求解的能 力。
【 关键词 】 L i n g o 软件 ; 线性模 型; 数 学优化 问题
数学优化 问题在管理数学 当中是一个并不 复杂 的问题 . 但是他往 往存在着 大量数学计算 . 学生们遇 到这 样的 问题就会 产生迷 惑 . 这类 问题 的解决实质上现在 已经不在使用人工进行计算 了 . 如何快速的掌 握计算机软件计算 的方法成为一个突 出的问题 . 下 边我们通过例子来 讲述 软件计算 的技 巧 某地 区有三个农场共用一条灌渠 . 每个农场 的可灌溉地及分配到 的最大用水量如下表
农场
1
e = 4 0 0 , 3 0 0 , 1 0 0 ; ENDDAT A
ma x = @s u m( k i n d ( j ) : e ( j ) @s u m ( p l a c e ( i ) : x ( i ) ) ) ; @f o r ( k i n d ( j ) : @s u m( p l a c e ( i ) : x ( i , j ) ) < = c ( j ) ) ; @ f o r ( p l a c e ( i ) : @s u m( k i n d ( j ) : x ( i , j ) ) < = a ( i ) ) ; @f o r ( r , l a c e ( i ) : @s u m( k i n d ( j ) : d ( j ) x ( i J ) ) < = b ( i ) ) ;
Lingo的基本用法

例2:基金的优化使用(2001年建模竞赛C题)
假设某校基金会得到了一笔数额为M万元的基金, 打算将其存入银行,校基金会计划在n年用部分本 息奖励优秀师生,要求每年的奖金额相同,且在n 年仍保留原基金数额.银行存款税后年利率表如下:
银行存款税后利率表 存期 税后年利率% 1年 1.8 2年 2.16 3年 2.592 5年 2.88
解:设两种产品的生产量分别为 x1 和 x2 , 则该问题的数学模型为: 目标函数:max z = 200 x1 + 300 x2
x1 ≤ 100 x ≤ 120 2 约束条件: x1 + 2 x2 ≤ 160 xi ≥ 0, i = 1, 2
在Model窗口内输入如下模型: max=200*x1+300*x2; x1<=100; x2<=120; x1+2*x2<=160; 注:Lingo默认所有的决策变量都非负,因 而变量非负条件可以不必输入.
Lingo的主要功能特色:
既能求解线性规划问题,也有较强的求解非线性规 划问题的能力; 输入模型简练直观; 运行速度快,计算能力强; 内置建模语言,提供几十个内部函数,从而能以较 少语句,较直观的方式描述较大的优化模型; 将集合的概念引入编程语言,很容易将实际问题转 化为lingo模型; 能方便的与Excel,数据库等其他软件交换数据.
Lingo的语法规定:
求目标函数的最大值或最小值分别用"max="或"min= "来 表示; 每个语句必须以分号";"结束,每行可以有多个语句,语 句可以跨行; 每个语句必须以字母开头,由字母,数字和下划线所组成, 长度不超过32个字符,不区分大小写; 可以给语句加上标号,例如[OBJ] max=200*x1+300*x2; 以!开头,以;结束的语句是注释语句; 如果对变量的取值范围没有作特殊说明,则默认所有决策变 量都非负; Lingo模型以语句"Model:"开头,以"End"结束,对于 比较简单的模型,这两个语句可以省略.
数学软件应用之lingo

注:LINGO不询问对灵敏度进行分析,灵敏度分析需要 通过修改系统选项启动灵敏度分析后,再调用 “REPORT|RANGE”菜单命令来实现。我们可以把模 型和结果报告保存在文件中。
•运行状态窗口
Variables(变量数量) 变量总数(Total): 非线性变量数(Nonlinear): 整数变量数(Integer): Conatraints(约束数量) 约束总数(Total): 非线性约束个数( Nonlinear ):
返回本节
集循环函数
集循环函数遍历整个集进行操作。其语法为 @function(setname[(set_index_list)[|conditional_qualifier ]]:expression_list); @function相应于下面罗列的四个集循环函数之一;setname是要 遍历的集;set_ index_list是集索引列表; conditional_qualifier是用来限制集循环函数的范围,当集循环 函数遍历集的每个成员时,LINGO都要对conditional_qualifier 进行评价,若结果为真,则对该成员执行@function操作,否则跳 过,继续执行下一次循环。expression_list是被应用到每个集成 员的表达式列表,当用的是@for函数时,expression_list可以包 含多个表达式,其间用逗号隔开。这些表达式将被作为约束加到 模型中。当使用其余的三个集循环函数时,expression_list只能 有一个表达式。如果省略set_index_list,那么在 expression_list中引用的所有属性的类型都是setname集。
在LINGO中使用LINGO模型 1、在 LINGO中可以直接使用LINGO语法编写的优化 模型(优化程序)。举一个简单例题:在名为 LINGO1.lg4的模型文件中保存了一个LINGO模型, 我们现在看看如何打开它 (1)选择菜单命令“File|open(F3)”可以看到“打开文件” 对话框。 (2)打开“LINGO1.lg4”文件。 (3)选择“LINGO|Solve(Ctrl+S)”来运行这个程序。 (运行状态窗口如下图)
培训教案——LINGO(一)

培训教案——LINGO(一)LINGO是一款常用的线性规划软件,它能够方便地解决复杂问题。
培训LINGO,需要深入了解软件的使用方法和解决实际问题的能力。
下面就LINGO培训的内容进行分点介绍。
一、LINGO的基础知识LINGO的基础知识包括软件的基本功能和操作。
需要讲解LINGO的界面、工具栏、菜单栏等。
初次接触LINGO的学员需要掌握LINGO的一些基本用法,比如如何输入数据、如何设定优化目标,如何设置约束等,这些都是LINGO的基本操作。
二、LINGO求解模型了解LINGO的基本操作之后,需要讲解LINGO的求解模型。
LINGO的数学模型是LINGO软件解决问题必需的部分。
对于LINGO求解模型的学习,需要学员掌握数学模型的建立方法和标准的数学模型。
培训学员掌握LINGO的求解模型知识是LINGO培训的核心。
三、LINGO的高级应用LINGO的高级应用需要讲授如何利用LINGO解决实际问题,需要讲解如何构建多约束模型来描述现实中的问题,如何设置变量、常数和目标函数等。
高级应用的讲授需要结合实例,让学员深入了解LINGO的实际应用场景,提高解决实际问题的能力。
四、LINGO的调试LINGO的调试是LINGO培训的重要组成部分。
在LINGO求解过程中,有时会出现错误,导致模型不能正常求解。
因此,需要讲解LINGO调试的方法和技巧,使得学员具备调试LINGO模型的能力。
五、LINGO应用举例为了让学员进一步巩固LINGO的知识,需要讲解一些LINGO的应用举例。
举例的内容包括:产品组合问题、生产调度问题、财务规划问题、运输规划问题等。
通过这些示例,让学员对LINGO的应用有更加深刻的理解。
六、LINGO的作业练习培训LINGO需要进行实际操作,软件操作的熟练程度可以通过作业考核来体现。
作业练习的难度需要逐渐增加,从简单到复杂地设置模型,巩固培训成果。
LINGO培训需要根据学员的水平进行分类管理,加强培训的个性化和针对性。
lingo软件使用教程

lingo软件使用教程一般来说,一个优化模型将由以下三部分组成:1. 目标函数(Objective Function):要达到的目标。
2. 决策变量(Decision variables):每组决策变量的值代表一种方案。
在优化模型中需要确定决策变量的最优值,优化的目标就是找到决策变量的最优值使得目标函数取得最优。
3. 约束条件(Constraints):对于决策变量的一些约束,它限定决策变量可以取的值。
在写数学模型时,一般第一行是目标函数,接下来是约束条件,再接着是一些非负限制等。
在模型窗口输入如下代码:Max = 2*x1+3*x2;X1+2*x2<=8;4*x1<16;4*x2<12;注意:1.每一个lingo表达式最后要跟一个分号;2.多数电脑中没有符号,lingo中<=代替;为了方便可以用<代替小于等于,用>代替大于等于。
3.我们可以添加一些注释,增加程序的可读性。
注释以一个!(叹号必须在英文状态下输入,它会自动变为绿色)开始,以;(分号)结束。
4.Lingo中不区分变量名的大小写。
变量名必须以字母(A-Z)开头,后面的字符可以是字母、数字、下划线。
变量名不能超过32个字符。
Lingo程序的一些规则:1. 在Lingo中最开始都是“MAX=”或者“MIN=”开始表示求目标函数的最大或者最小值。
2. 变量和它前面的系数之间要用“*”连接,中间可以有空格。
3. 变量名不区分大小写,但必须以字母开始,不超过32个字符。
4. 数学表达式结束时要用分号“;”表示结束。
表达式可以写在多行上,但是表达式中间不能用分号。
5. 在电脑系统中一般没有“小于等于”符号,在Lingo采用“<=”来表示“小于等于”,用“>=”表示“大于等于”。
小于等于也可以用更简单的“<”表示,大于等于用“>”表示。
集合段:在我们已经得到的程序里有一些量没有定义,如WAREHOUSES( I),DEMAND( J), LINKS( I, J)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lingo软件在求解数学优化问题的使用技巧LINGO是一种专门用于求解数学规划问题的软件包。
由于LINGO执行速度快,易于方便地输入、求解和分析数学规划问题,因此在教学、科研和工业界得到广泛应用。
LINGO 主要用于求解线性规划、非线性规划、二次规划和整数规划等问题,也可以用于求解一些线性和非线性方程组及代数方程求根等。
LINGO的最新版本为LINGO7.0,但解密版通常为4.0和5.0版本,本书就以LINGO5.0为参照而编写。
1.LINGO编写格式LINGO模型以MODEL开始,以END结束。
中间为语句,分为四大部分(SECTION):(1)集合部分(SETS):这部分以“SETS:”开始,以“ENDSETS”结束。
这部分的作用在于定义必要的变量,便于后面进行编程进行大规模计算,就象C语言在在程序的第一部分定义变量和数组一样。
在LINGO中称为集合(SET)及其元素(MEMBER或ELEMENT,类似于数组的下标)和属性(A TTRIBUTE,类似于数组)。
LINGO中的集合有两类:一类是原始集合(PRIMITIVE SETS),其定义的格式为:SETNAME/member list(or 1..n)/:attribute,attribute,etc。
另一类是是导出集合(DERIVED SETS),即引用其它集合定义的集合,其定义的格式为:SETNAME(set1,set2,etc。
):attribute,attribute,etc。
如果要在程序中使用数组,就必须在该部分进行定义,否则可不需要该部分。
(2)目标与约束:这部分定义了目标函数、约束条件等。
一般要用到LINGO的内部函数,可在后面的具体应用中体会其功能与用法。
求解优化问题时,该部分是必须的。
(3)数据部分(DA TA):这部分以“DA TA:”开始,以“END DA TA”结束。
其作用在于对集合的属性(数组)输入必要的数值。
格式为:attribut=value_list。
该部分主要是方便数据的输入。
(4)初始化部分(INIT):这部分以“INIT:”开始,以“END INIT”结束。
作用在于对集合的属性(数组)定义初值。
格式为:attribute=value_list。
由于非线性规划求解时,通常得到的是局部最优解,而局部最优解受输入的初值影响。
通常可改变初值来得到不同的解,从而发现更好的解。
编写LINGO程序要注意的几点:1.所有的语句除SETS、ENDSETS、DA TA、ENDDA TA、INIT、ENDINIT和MODEL,END 之外必须以一个分号“;”结尾。
2.LINGO求解非线性规划时已约定各变量非负。
LINGO内部函数使用详解。
LINGO建立优化模型时可以引用大量的内部函数,这些函数以“@”符号打头。
(1)常用数学函数@ABS(X) 返回变量X的绝对数值。
@COS( X)返回X的余弦值,X的单位为弧度@EXP( X)返回x e 的值,其中e 为自然对数的底,即 71828.2@FLOOR( X)向0靠近返回X 的整数部分。
如@FLOOR(3.7),则返回3;@FLOOR(-3.7),则返回-3。
@LGM( X)返回Γ函数的自然对数值。
@LOG( X)返回变量X 的自然对数值。
@SIGN( X)返回变量X 的符号值,当X<0时为-1;当X>0时为1。
@SIN( X)返回X 的正弦值,X 的单位为弧度 @SMAX( X1, X2,..., XN)返回一列值X1, X2,..., XN 的最大值。
@SMIN( X1, X2,..., XN)返回一列值X1, X2,..., XN 的最小值。
@TAN( X)返回X 的正切值,X 的单位为弧度(2)集合函数集合函数的用法如下:set_operator (set_name|condition:expression) 其中set_oprator 部分是集合函数名(见下),set_name 是数据集合名,expression 部分是表达式,|condition 部分是条件,用逻辑表达式描述(无条件时可省略)。
逻辑表达式中可以三种逻辑算符(#AND#(与),#OR#(或),#NOT#(非))和六种关系酸符(#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于))。
常见的集合函数如下: @FOR (set_name :constraint_expressions)对集合(set_name)的每个元素独立地生成约束,约束由约束表达式(constraint_expressions )描述。
@MAX (set_name :expression )返回集合上的表达式(expression )的最大值。
@MIN (set_name :expression )返回集合上的表达式(expression )的最小值。
@SUM (set_name :expression )返回集合上的表达式(expression )的和。
@SIZE (set_name )返回数据集set_name 中包含元素的个数。
@IN (set_name ,set_element )如果数据集set_name 中包含元素set_element 则返回1,否则返回0。
(3)变量界定函数变量函数对变量的取值范围附加限制,共有四种。
@BND (L,X,U )限制U X L ≤≤ @BIN (X )限制X 为0或1。
@FREE (X )取消对X 的符号限制(即可取任意实数值)。
@GIN (X )限制X 为整数值。
(4)财务函数),(@N I FPA 返回如下情形下的净现值:单位时段利率为I ,连续N 个时段支付,每个时段支付费用,即:),(@N I FPA =I II NNn n/))11(1()1(11+-=+∑=),(@N I FPL 返回如下情形下的净现值:单位时段利率为I ,第N 个时段支付单位费用,即:),(@N I FPL =NI)11(+(5)概率函数@PSN(X)标准正态分布的分布函数。
@PSL(X)单位正态线性损失函数(即返回),0(X Z MAX -的期望值,其中Z 为标准正态随机变量)@PPS(A ,X)均值为A 的Possion 分布的分布函数(当X 不是整数时,采用线性插值进行计算)。
@PPL(X)Possion 分布的线性损失函数(即返回),0(X Z MAX -的期望值,其中Z 为Possion 分布随机变量)@PBN(P ,N ,X)二项分布的分布函数当N 或X 不是整数时,采用线性插值进行计算)。
@PHG(POP ,G ,N ,X)超几何分布的分布函数(当POP ,G ,N 或X 不是整数时,采用线性插值进行计算)。
@PFD(N,D,X)自由度为N 和D 的F 分布的分布函数。
@PCX(N,X) 自由度为N 的2χ分布的分布函数。
@PTD(N,X) 自由度为N 的t 分布的分布函数。
@RAND(X)返回0与1之间的伪随机数(X 为种子数,典型用法为U(I)=@RAND(U(I+1)))。
1.某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下:设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员?从第一班开始排,试建立线性模型。
分析与求解:注意在每一时间段里上班的司机和乘务人员中,既包括在该时间段内开始时报到的人员,还包括在上一时间段工作的人员。
因为每一时间段只有四个小时,而每个司乘人员却要连续工作八个小时。
因此每班的人员应理解为该班次相应时间段开始时报到的人员。
设i x 为第i 班应报到的人员(6,,2,1 =i ),则应配备人员总数为:∑==61i ixZ按所需人数最少的要求,可得到线性模型如下:==61min i i x Z⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥≥≥+≥+≥+≥+≥+≥+0,,,60302050607060..6211655443322181x x x x x x x x x x x x x x x x t s LINGO 程序如下:MODEL:min=x1+x2+x3+x4+x5+x6; x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; x1>=60; END得到的解为:x1=60,x2=10,x3=50,x4=0,x5=30,x6=0;配备的司机和乘务人员最少为150人。
2 某地区有三个农场共用一条灌渠,每个农场的可灌溉地及分配到的最大用水量如下表:各农场均可种植甜菜、棉花和高粱三种作物,各种作物的用水量、净收益及国家规定的该地区各种作物种植总面积最高限额如下表:三个农场达成协议,他们的播种面积与其可灌溉面积相等,而各种农场种何种作物并无限制。
问如何制定各农场种植计划才能在上述限制条件下,使本地区的三个农场的总净收益最大。
分析与求解:设农场1种植的甜菜、棉花和高粱分别为131211,,x x x 亩,农场2种植的甜菜、棉花和高粱分别为232221,,x x x 亩,农场3种植的甜菜、棉花和高粱分别为333231,,x x x 亩。
设农场可耕地为300,600,400321===a a a ,最大用水量为,6001=b ,8002=b3753=b ,甜菜、棉花和高粱的种植限额为325,500,600321===c c c ,耗水量为31=d ,22=d ,13=d ,净收益为100,300,400321===e e e ,根据题目条件,可建立如下线性模型:∑∑===3131)(max j i ijjxe Z⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤=≤=≤∑∑∑===3131313,2,13,2,13,2,1..j i ij j j i ij i j ij i b x d i a x j c x t sLINGO 编程如下: MODEL: SETS:place/1..3/:a,b; kind/1..3/:c,d,e; plan(place,kind):x; ENDSETS DATA:a=400,600,300; b=600,800,375; c=600,500,325; d=3,2,1;e=400,300,100; ENDDATAmax=@sum(kind(j):e(j)*@sum(place(i):x(i,j))); @for(kind(j):@sum(place(i):x(i,j))<=c(j)); @for(place(i):@sum(kind(j):x(i,j))<=a(i)); @for(place(i):@sum(kind(j):d(j)*x(i,j))<=b(i)); END得到结果如下:X(1,1)=0,X(1,2)=300,X(1,3)=0 X(2,1)=258.3333,X(2,2)=12.5,X(2,3)=0 X(3,1)=0,X(3,2)=187.5,X(3,3)=0 最大总净收益为253333.3元。