巴彦淖尔市数学中考二模试卷
巴彦淖尔市九年级数学中考二模试卷

巴彦淖尔市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2019·石景山模拟) 如图是某几何体的三视图,那么该几何体是()A . 球B . 正方体C . 圆锥D . 圆柱2. (2分) (2017八下·怀柔期末) 关于x的一元二次方程有两个实数根,则m的取值范围是()A . m≤1B . m<1C . m<1且m≠0D . m≤1且m≠03. (2分)已知点M(m﹣1, 2m﹣1)关于y轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .4. (2分)证:S=++...,则S所在的范围为()A . 0<S<1B . 1<S<2C . 2<S<3D . 3<S<45. (2分)广州市运动员在最近八届亚运会上获得金牌的运动项目种类及金牌数量如下表所示:田径羽毛球篮球水球网球台球足球体操游泳举重射击击剑拳击赛艇跳水7824211324412151给出下列说法:①广州市运动员在最近八届亚运会上获得金牌的运动项目共有15个;②广州市运动员在最近八届亚运会上获得金牌的总数是57;③上表中,击剑类的频率约为0.211.其中正确的有()A . 3个B . 2个C . 1个D . 0个6. (2分)以不在同一直线上的三个点为顶点作平行四边形,最多能作()A . 4个B . 3个C . 2个D . 1个7. (2分) (2020九下·开鲁月考) 穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A .B .C .D .8. (2分) (2019七下·长宁期末) 下列所叙述的图形中,全等的两个三角形是()A . 含角的两个直角三角形B . 腰对应相等的两个等腰三角形C . 边长均为5厘米的两个等边三角形D . 一个钝角对应相等的两个等腰三角形二、填空题 (共6题;共6分)9. (1分)(2020·长沙模拟) 如果ab=﹣1,则称a、b互为“负倒数”.那么﹣2的“负倒数”等于________.10. (1分) (2017七下·金山期中) ﹣0.000000259用科学记数法表示为________.11. (1分) (2017九下·东台开学考) 函数y= 的自变量x取值范围是________.12. (1分) (2016八上·江山期末) 如图,在△ABC中,∠C=45°,∠BAC=90°,点A为(,0)、点B 为(0,1),坐标系内有一动点P,使得以P、A、C为顶点的三角形和△ABC全等,则P点坐标为________.13. (1分) (2017八下·滦县期末) 若一个正多边形的一个外角等于18°,则这个正多边形的边数是________.14. (1分) (2019七下·闵行开学考) 如图,将直径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B、C的对应点分别为点D、E且点D刚好在上,则阴影部分的面积为________.三、解答题 (共9题;共71分)15. (5分) (2016九下·黑龙江开学考) 先化简,再求代数式÷(x﹣)的值,其中x=2sin60°+tan45°.16. (2分) (2017九上·萝北期中) 四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF.(2)填空:△ABF可以由△ADE绕旋转中心________点,按顺时针方向旋转________度得到.17. (12分)(2020·房山模拟) GDP是指一个国家(或地区)在一定时期内生产活动的最终成果,常被公认为是衡量经济状况的最佳指标.截止2020年4月27日,对除西藏外的30个省区市第一季度有关的数据进行收集、整理、描述和分析.下面给出了部分信息:a.各省区市数据的频数分布直方图,如图1(数据分成6组,各组是,,,,,):b.2020年第一季度数据在这一组的是:4.6 4.9 5.0 5.1 5.3 5.4 6.3 7.4 7.5 7.8 7.8c.30个省区市2020年第一季度及2019年增速排名统计图,如图2:d.北京2020年第一季度数据约为7.5千亿,增速排名为第22.根据以上信息,回答下列问题:(1)在30个省区市中,北京2020年第一季度的数据排名第________.(2)在30个省区市2020年第一季度及2019年增速排名统计图中,请在图中用“○”圈出代表北京的点.(3) 2020年第一季度增速排名位于北京之后的几个省份中,2019年增速排名的最好成绩是第________.(4)下列推断合理的是________.①与2019年增速排名相比,在疫情冲击下,2020年全国第一季度增速排名,部分省市有较大下滑,如D代表的湖北排名下滑最多.②A、B、C分别代表的新疆、广西、青海位于西部地区,多为人口净流出或少量净流入,经济发展主要依靠本地劳动力供给,疫后复工复产效率相对较高,相对于2019年增速排名位置靠前.18. (5分) (2016九上·苍南期末) 如图,在一次数学课外实践活动,小文在点C处测得树的顶端A的仰角为37°,BC=10米,求树的高度AB.(参考数据:sin37°≈0.60,cos37°≈0.80.tan37°≈0.75)19. (10分)(2016·眉山) 九年级三班学生苏琪为帮助同桌万宇巩固“平面直角坐标系四个象限内及坐标轴上的点的坐标特点”这一基础知识,在三张完全相同且不透明的卡片正面分别写上了﹣3,0,2三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a,再从剩下的两张中随机取出一张,将卡片上的数字记为b,然后叫万宇在平面直角坐标系中找出点M(a,b)的位置.(1)请你用树状图帮万宇同学进行分析,并写出点M所有可能的坐标;(2)求点M在第二象限的概率;(3)张老师在万宇同学所画的平面直角坐标系中,画了一个半径为3的⊙O,过点M能作多少条⊙O的切线?请直接写出答案.20. (10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=- x2+bx+c表示,且抛物线上的点C到墙面OB的水平距离为3 m,到地面0A的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m,那么两排灯的水平距离最小是多少米?21. (10分) (2015八上·谯城期末) 一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1 , y2与x的函数关系图象如图(1)所示,S与x的函数关系图象如图(2)所示:(1)图中的a=________,b=________.(2)求S关于x的函数关系式.(3)甲、乙两地间依次有E、F两个加油站,相距200km,若慢车进入E站加油时,快车恰好进入F站加油.求E加油站到甲地的距离.22. (2分)(2020·绍兴模拟) 如图,Rt△ABC中,∠C=90°,E是AB边上一点,D是AC边上一点,且点D 不与A、C重合,ED⊥AC.(1)当sinB=时,①求证:BE=2CD;②当△ADE绕点A旋转到如图2的位置时(45°<∠CAD<90°).BE=2CD是否成立?若成立,请给出证明;若不成立.请说明理由.(2)当sinB=时,将△ADE绕点A旋转到∠DEB=90°,若AC=10,AD=2 ,求线段CD的长.23. (15分)在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共71分)15-1、16-1、16-2、17-1、17-2、17-3、17-4、18-1、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、21-3、22-1、23-1、23-2、23-3、。
巴彦淖尔市中考数学二模考试试卷

巴彦淖尔市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共40分)1. (3分) (2020七下·宝安期中) 某学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度1020304050607080小车下滑的时间 4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50下列说法错误的是()A . 当h=60cm时,t=1.71sB . 随着h逐渐升高,t逐渐变小C . h每增加10cm,t减小1.23sD . 随着h逐渐升高,小车下滑的平均速度逐渐加快2. (3分)(2016·呼和浩特) 某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A . (a﹣10%)(a+15%)万元B . a(1﹣90%)(1+85%)万元C . a(1﹣10%)(1+15%)万元D . a(1﹣10%+15%)万元3. (3分) (2016八上·孝义期末) 若点A(3,2)和点B(a,b)关于x轴对称,则ab的值为()A . 9B .C . 8D .4. (3分)(2020·济南模拟) 下列计算结果正确的是()A .B .C .D .5. (3分)下列说法正确的是A . 相等的圆心角所对的弧相等B . 无限小数是无理数C . 阴天会下雨是必然事件D . 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k6. (3分)(2019·保定模拟) 若不等式组无解,则k的取值范圈为()A . k≥1B . k≤1C . k<1D . k>17. (2分)(2018·南湖模拟) 如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为()A . 2B . 3C . 4D . 58. (3分)(2019·保定模拟) 关于x的一元二次方程 kx2+2x﹣1=0有两个不相等实数根,则k 的取值范围是()A . k>﹣1B . k≥﹣1C . k≠0D . k>﹣1且k≠09. (3分)(2019·保定模拟) 某市公园的东、南、西、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A .B .C .D .10. (2分)矩形的边长是,一条对角线的长是,则矩形的面积是()A .B .C . .D .11. (2分)(2019·保定模拟) 计算的结果是()A . 1B .C .D .12. (2分)(2019·保定模拟) 如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于 BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D ,连接CD ,则下列结论正确是()A . CD+DB=ABB . CD+AD=ABC . CD+AC=ABD . AD+AC=AB13. (2分)(2019·保定模拟) 对于一次函数y=﹣x+4,下列结论不正确是()A . 函数值随自变量的增大而减小B . 点(4﹣a , a)在该函数的图象上C . 函数的图象与直线y=﹣x﹣2平行D . 函数图象与坐标轴围成三角形的周长4+414. (2分)(2019·保定模拟) 如图,AB是半圆O的直径,点C在半圆O上,且∠BAC=60°,若AB=12,则图中阴影部分图形的面积为()A . 12πB . 3 +12πC . 9 +12πD . 9 +6π15. (2分)(2019·保定模拟) 对于反比例函数y=,下列说法正确是()A . 图象经过点(2,﹣1)B . 图象位于第二、四象限C . 图象是中心对称图形D . 当x<0时,y随x的增大而增大16. (2分)(2019·保定模拟) 如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A ,与BC交于点F ,则△AOF的面积等于()A . 30B . 40C . 60D . 80二、填空题 (共3题;共10分)17. (3分)(-3)-________=1 ;________-7=-2 ;-5-________=018. (3分)(2019·保定模拟) 一个正多边形每一个外角为36°,则这个多边形的内角和为________.19. (4分)(2019·保定模拟) 如图,在平面直角坐标系中,△P1OA1 ,△P2A1A2 ,△P3A2A3 ,…都是等腰直角三角形,其直角顶点P1(3,3),P2 , P3 ,…均在直线y=﹣ x+4上.设△P1OA1 ,△P2A1A2 ,△P3A2A3 ,…的面积分别为S1 , S2 , S3 ,…,依据图形所反映的规律,S2018=________.三、解答题(共7小题,满分68分) (共7题;共60分)20. (8.0分)请你结合生活实际,设计具体情境,解释下列代数式的意义:(1);(2)(1+20%)x .21. (9.0分)(2019·保定模拟) 已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F ,连接EC、AF .(1)求证:DF=EB;(2) AF与图中哪条线段平行?请指出,并说明理由.22. (8分)(2019·保定模拟) 解方程(1) 2x﹣9=7x+6(2)=1﹣23. (9.0分)(2019·保定模拟) 某校为了解本校初三毕业生数学学业水平,随机抽取了若干名初三学生的数学测试成绩,按A、B、C、D四个等级进行统计分析,并绘制了如下尚不完整的统计图:某校初三毕业生数学学业水平人数条形统计图某校初三毕业生数学学业水平人数分布扇形统计图人数请根据以上统计图提供的信息,解答下列问题:(1)本次抽取的学生有________名;(2)补全条形统计图1;(3)在抽取的学生中C级人数所占的百分比是________;(4)根据抽样调查结果,请你估计该校720名初中毕业生数学质量检测成绩为A级的人数.24. (2分)(2019·吉林模拟) 一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为________km/h,快车的速度为________km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.25. (12分)(2019·保定模拟) 如图,AB是⊙O的直径,弦BC=OB ,点D是上一动点,点E是CD 中点,连接BD分别交OC , OE于点F , G .(1)求∠DGE的度数;(2)若=,求的值;(3)记△CFB ,△DGO的面积分别为S1 , S2 ,若=k ,求的值.(用含k的式子表示)26. (12分)(2019·保定模拟) 如图,抛物线y=ax2+bx﹣2a与x轴交于点A和点B(1,0),与y轴将于点C(0,﹣).(1)求抛物线的解析式;(2)若点D(2,n)是抛物线上的一点,在y轴左侧的抛物线上存在点T ,使△TAD的面积等于△TBD的面积,求出所有满足条件的点T的坐标;(3)直线y=kx﹣k+2,与抛物线交于两点P、Q ,其中在点P在第一象限,点Q在第二象限,PA交y轴于点M , QA交y轴于点N ,连接BM、BN ,试判断△BMN的形状并证明你的结论.参考答案一、选择题 (共16题;共40分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共10分)17-1、18-1、19-1、三、解答题(共7小题,满分68分) (共7题;共60分)20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、23-4、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-3、。
内蒙古巴彦淖尔市2019-2020学年中考数学第二次调研试卷含解析

内蒙古巴彦淖尔市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,某小区计划在一块长为31m ,宽为10m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 1.若设道路的宽为xm ,则下面所列方程正确的是( )A .(31﹣1x )(10﹣x )=570B .31x+1×10x=31×10﹣570C .(31﹣x )(10﹣x )=31×10﹣570D .31x+1×10x ﹣1x 1=5702.已知关于x 的方程2222x x a xx x x x+-+=--恰有一个实根,则满足条件的实数a 的值的个数为( ) A .1B .2C .3D .43.二次函数y=ax2+bx+c (a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c >3b;③8a+7b+2c >0;④当x >-1时,y 的值随x 值的增大而增大.其中正确的结论有( )A .1个B .2个C .3个D .4个4.若分式12x -有意义...,则x 的取值范围是( ) A .2x =;B .2x ≠;C .2x >;D .2x <.5.下列运算结果正确的是( ) A .a 3+a 4=a 7B .a 4÷a 3=aC .a 3•a 2=2a 3D .(a 3)3=a 66.下列实数中是无理数的是( ) A .227B .2﹣2C .5.15&&D .sin45°7.在数轴上到原点距离等于3的数是( ) A .3B .﹣3C .3或﹣3D .不知道8.某种圆形合金板材的成本y (元)与它的面积(cm 2)成正比,设半径为xcm ,当x =3时,y =18,那么当半径为6cm 时,成本为( )A.18元B.36元C.54元D.72元9.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.13B.14C.15D.1610.若点M(﹣3,y1),N(﹣4,y2)都在正比例函数y=﹣k2x(k≠0)的图象上,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定11.估计40的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间12.下列图形中,阴影部分面积最大的是A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知:正方形ABCD.求作:正方形ABCD 的外接圆.作法:如图,(1)分别连接AC,BD,交于点O;(2)以点O 为圆心,OA 长为半径作⊙O,⊙O 即为所求作的圆.请回答:该作图的依据是__________________________________.14.若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)________ 0,(填“>”、“<”或“=”)15.计算:()()5353+-=_________ .16.当关于x 的一元二次方程ax 2+bx+c =0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”.如果关于x 的一元二次方程x 2+(m ﹣2)x ﹣2m =0是“倍根方程”,那么m 的值为_____. 17.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.18.王英同学从A 地沿北偏西60°方向走100米到B 地,再从B 地向正南方向走200米到C 地,此时王英同学离A 地的距离是_____米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知,数轴上三个点A 、O 、P ,点O 是原点,固定不动,点A 和B 可以移动,点A 表示的数为a ,点B 表示的数为b .(1)若A 、B 移动到如图所示位置,计算+a b 的值.(2)在(1)的情况下,B 点不动,点A 向左移动3个单位长,写出A 点对应的数a ,并计算b a -. (3)在(1)的情况下,点A 不动,点B 向右移动15.3个单位长,此时b 比a 大多少?请列式计算.20.(6分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)21.(6分)如图,直线l 是线段MN 的垂直平分线,交线段MN 于点O ,在MN 下方的直线l 上取一点P ,连接PN ,以线段PN 为边,在PN 上方作正方形NPAB ,射线MA 交直线l 于点C ,连接BC . (1)设∠ONP =α,求∠AMN 的度数;(2)写出线段AM 、BC 之间的等量关系,并证明.22.(8分)如图,在平面直角坐标系xOy 中,直线()30y kx k =+≠与x 轴交于点A ,与双曲线()0my m x=≠的一个交点为B (-1,4).求直线与双曲线的表达式;过点B 作BC ⊥x 轴于点C ,若点P 在双曲线my x =上,且△PAC 的面积为4,求点P 的坐标.23.(8分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。
内蒙古巴彦淖尔市中考二模数学考试试卷

内蒙古巴彦淖尔市中考二模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在,﹣2,π,这四个数中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)下列运算正确的是()A .B .C .D .3. (2分)已知地球上海洋面积约为316 000 000km2 , 316 000 000这个数用科学记数法可表示为()A . 3.61×106B . 3.61×107C . 3.61×108D . 3.61×1094. (2分)(2020·云南模拟) 为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为()A . 25.5厘米,26厘米B . 26厘米,25.5厘米C . 25.5厘米,25.5厘米D . 26厘米,26厘米5. (2分)一个几何体如图,画它的俯视图时长、宽各是()A . 3cm, 0.7cmB . 3cm, 1.4cmC . 1.4cm ,0.7cmD . 1.5cm, 0.7cm6. (2分)满足不等式2x<﹣1最大整数解的x值是()A . -2B . -1C . 0D . 17. (2分) (2017八上·义乌期中) 用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A . 有一个内角大于60°B . 有一个内角小于60°C . 每一个内角都大于60°D . 每一个内角都小于60°8. (2分) (2017九下·泉港期中) 某工厂现在平均每天比原计算多生产30台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同,设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A . =B . =C . =D . =9. (2分)(2012·北海) 如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为()A . 10πB .C . πD . π10. (2分)将矩形纸片ABCD对折, 使点B与点D重合,折痕为EF,连结BE,则与线段BE相等的线段条数(不包括BE,不添加辅助线)有()A . 1B . 2C . 3D . 4二、填空题 (共6题;共7分)11. (1分)(2017·黄石模拟) 分解因式:mx2﹣2mx+m=________.12. (1分)(2017·黄冈模拟) 从﹣3,﹣2,﹣1,0,1,3,4这七个数中随机抽取一个数记为a,a的值既是不等式组的解,又在函数y= 的自变量取值范围内的概率是________.13. (1分)已知x+y=5,xy=2,则 + =________.14. (1分)如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC=________度.15. (2分) (2019九上·义乌月考) 在平面直角坐标系中,将函数的图象绕坐标原点O顺时针旋转45°后,得到新曲线l.(1)如图①,已知点A(-1,a),B(b,10)在函数的图象上,若 A', B'是A,B旋转后的对应点,连结OA', OB',则S△OA'B '=________;(2)如图②,曲线l与直线相交于点M、N,则S△OMN为________.16. (1分)如图,已知点、在双曲线上,轴于点,轴于点,与交于点,是的中点,若的面积为,则的值等于________.三、解答题 (共8题;共88分)17. (10分)(2016·扬州) 计算:(1)(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.18. (15分)(2019·青海模拟) 小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在△ABC中,AD是BC边上的中线,若AD=BD=CD,求证:∠BAC=90°.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD,如果在矩形外存在一点E,使得AE⊥CE,求证:BE⊥DE,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果△AED恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB与BC 的数量关系.19. (6分) (2017九上·高台期末) 一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是________;(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)20. (10分)在海洋上有一近似于四边形的岛屿,其平面如图甲,小明据此构造处该岛的一个数学模型(如图乙四边形ABCD),AC是四边形岛屿上的一条小溪流,其中∠B=90°,AB=BC=15千米,CD=3 千米,AD=12 千米.(1)求小溪流AC的长.(2)求四边形ABCD的面积.(结果保留根号)21. (10分) (2016九上·姜堰期末) 如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果保留根号)22. (12分)(2016·景德镇模拟) 定义{a,b,c}为函数y=ax2+bx+c的“特征数”.(1)“特征数”为{﹣1,2,3}的函数解析式为________,将“特征数”为{0,1,1}的函数向下平移两个单位以后得到的函数解析式为________;(2)我们把横、纵坐标均为整数的点称为“整点”,试问:在上述两空填写的函数图象围成的封闭图形(包含边界)内共有多少个整点?请给出详细的运算过程;(3)定义“特征数”的运算:①{a1,b1,c1}+{a2,b2,c2}={a1+a2,b1+b2,c1+c2};②λ•{a1,b1,c1}={λa1,λb1,λc1}(其中λ为任意常数).试问:“特征数”为{﹣1,2,3}+λ•{0,1,﹣1}的函数是否过定点?如果过定点,请计算出该定点坐标;如果不存在,请说明你的理由.23. (15分) (2017八上·济南期末) 一次函数y=﹣ x+1的图象与x轴、y轴分别交于点A、B,以AB 为边在第一象限内做等边△ABC(1)求△ABC的面积和点C的坐标;(2)如果在第二象限内有一点P(a,),试用含a的代数式表示四边形ABPO的面积.(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.24. (10分)小亮在广场上乘凉,如图所示的线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请在图中画出小亮在照明灯P照射下的影子;(2)如果灯杆长PO=12 m,小亮身高AB=1.6 m,小亮与灯杆的距离BO=13 m,请求出小亮影子的长度.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、15-2、16-1、三、解答题 (共8题;共88分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、。
巴彦淖尔市中考数学二模试卷

巴彦淖尔市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)-2013的倒数是A . -2013B . 2013C . -D .2. (2分)(2017·阳谷模拟) 下列各运算中,计算正确的是()A . (﹣3ab2)2=9a2b4B . 2a+3b=5abC . =±3D . (a﹣b)2=a2﹣b23. (2分)(2017·诸城模拟) 如图是五个相同的正方体组成的一个几何体,它的左视图是()A .B .C .D .4. (2分) (2015八上·惠州期末) 在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2020八下·邯郸月考) 对于函数y=-x+3,下列结论正确的是()A . 当x>4时,y<0B . 它的图象经过第一、二、三象限C . 它的图象必经过点(-1,3)D . y 的值随x值的增大而增大6. (2分)(2011·百色) 不等式组的解集在数轴上表示正确的是()A .B .C .D .7. (2分)数据10,10,x,8的众数与平均数相同,那么这组数的中位数是()A . 10B . 8C . 12D . 48. (2分) (2019七下·苏州期末) 若一个多边形的内角和等于外角和的2倍,则这个多边形的边数为A . 8B . 6C . 5D . 49. (2分)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b 的图象有公共点,则实数b的取值范围是()A . b>8B . b>﹣8C . b≥8D . b≥﹣810. (2分) (2016九上·通州期末) 如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为()A . O→B→A→OB . O→A→C→OC . O→C→D→OD . O→B→D→O二、填空题 (共10题;共10分)11. (1分) (2017七上·黔东南期末) 近年来黔东南州大力发展旅游业,据统计今年上半年全州旅游总收入约29500000000元,将数据29500000000科学记数法表示为________.12. (1分) (2019七下·寿县期末) 分解因式m4(x-y)+81(y-x)=________.13. (1分)已知函数y= ,则自变量x的取值范围是________ .14. (1分) (2017八上·高州月考) 对于任意不相等的两个数a,b,定义一种运算※如下:a※b= ,如3※2= .那么12※4=________.15. (1分)若关于x的一元二次方程mx2﹣3x+1=0有实数根,则m的取值范围是________ .16. (1分) (2019九上·上海月考) 已知:如图所示,,AC、DF相交于点O , OA:OB:BC=4:8:3,若DF=45,则OF的长为________.17. (1分)已知圆O的半径为5,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为________.18. (1分)有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是________19. (1分)(2016·广东) 如图,矩形ABCD中,对角线AC=2 ,E为BC边上一点,BC=3BE,将矩形ABCD 沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB=________ .20. (1分) (2017八下·吉安期末) 如图,平行四边形ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为a,那么平行四边形ABCD的周长是________三、解答题 (共7题;共60分)21. (5分) (2018九下·扬州模拟) 先化简,再求值:,其中.22. (10分)(2019·平谷模拟) 如图1所示,AB=AC,线段AB绕点A逆时针旋转90°,得到线段AD,连接CD,过点A作AE⊥BC,交BC于点E,交CD于点F.(1)求∠AFD的度数.(2)如图2,线段EF=3,取CD的中点M,连接BM,当BM⊥BC时,求线段AF的长.23. (11分)(2020·乾县模拟) 为了增强学生的安全意识,某校组织了次“安全如识”测试,阅卷后,校团委随机抽取了部分学生的考卷进行了分析统计,发现测试成绩(分)的最低分为60分.最高分为满分100分.并绘制了如下不完整的统计图表:根据以上信息,解答下列问题:(1)补全上面的统计图表;(2)所抽取学生的测试成绩的中位数落在________分数段内;(3)已知该校共有2000名学生参加本次“安全知识”测试,请估计该校有多少名学生的测试成绩不低于80分.24. (5分)在△ABC中,∠ACB=90°,AC=BC=4,M为AB的中点.D是射线BC上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN.(1)如图1,当BD=2时,AN等于多少?,NM与AB的位置关系是?(2)当4<BD<8时,①依题意补全图2;②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.25. (10分)重庆外国语学校为解决“停车难”问题,决定对车库进行扩建,扩建工程原计划由A施工队独立完成,8周后为了缩短工期,学校计划从第九周起增派B施工队与A施工队共同施工,预计共同施工4周后工程即可完工,已知B施工队单独完成整个工程的工期为20周.(1)增派B施工队后,整个工程的工期比原计划缩短了几周?(2)增派B施工队后,学校需要重新与A施工队商定从第九周起的工程费支付问题,已知学校在工程开始前已支付给A工程队设计费、勘测费共计200万元,工程开始后前八周的工程费已按每周40万元进行支付,从第九周开始,学校需要支付给A施工队的每周工程费在原来40万元的基础上增加20%.支付给B施工队的每周工程费为a万元,在整个工程结束后再一次性支付给A、B两个施工队148万元,要求给两个施工队的总费用不超过1000万元,则每周支付给B施工队的施工费最多为多少万元?26. (10分) (2018九上·杭州期中) 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q 在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.27. (9分) (2018八上·许昌期末) 背景知识:如图(2),在Rt△ABC中,∠ACB=90°,,则: .(1)解决问题:如图(2),∠ACD = 90°,AC = DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB,试探究线段BA、BC、BD之间的数量关系.不妨过点C作CE⊥CB,与MN交于点E,易发现图中出现了一对全等三角形,即________≌________,由此可得线段BA、BC、BD之间的数量关系是:________.(2)类比探究:将图(2)中的MN绕点A旋转到图(3)的位置,其它条件不变,试探究线段BA、BC、BD之间的数量关系,并证明.(3)拓展应用:将图(2)中的MN绕点A旋转到图(4)的位置,其它条件不变,若BD=2,BC= ,则AB的长为________.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共60分)21-1、22-1、22-2、23-1、23-2、23-3、25-1、25-2、26-1、26-2、27-1、27-2、27-3、。
内蒙古巴彦淖尔市2019-2020学年中考第二次模拟数学试题含解析

内蒙古巴彦淖尔市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.“a是实数,20a≥”这一事件是()A.不可能事件B.不确定事件C.随机事件D.必然事件2.方程=的解为( )A.x=3 B.x=4 C.x=5 D.x=﹣53.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A.22B.2C.3D.24.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为()A.8064 B.8067 C.8068 D.80725.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在距家12 km处追上小亮D.9:30妈妈追上小亮6.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.304015x x=-B.304015x x=-C.304015x x=+D.304015x x=+7.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )A.1:3 B.1:4 C.1:5 D.1:68.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+59.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°10.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)11.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是()A.B.C.D.12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是()A.①②④B.①③C.①②③D.①③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.14.“五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x 人,为求x,可列方程_____.15.如图,反比例函数3yx=(x>0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为.16.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。
内蒙古巴彦淖尔市中考数学模拟试卷(二)
内蒙古巴彦淖尔市中考数学模拟试卷(二)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·柯桥月考) 下列各个运算中,结果为负数的是()A .B .C .D .2. (2分)下列几何体的主视图、俯视图和左视图都是长方形的是()A .B .C .D .3. (2分) (2019七下·马山月考) 若a,b满足,则等于(),A . 4B . -4C . 2D .4. (2分) (2017七下·濮阳期中) 如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为()A . 2个B . 3个C . 4个D . 5个5. (2分) (2018九上·渝中期末) 在函数 y=中,自变量x的取值范围是()A . x>2B . x≤2且x≠0C . x<2D . x>2且x≠06. (2分) (2017八下·越秀期末) 在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A . 方差B . 平均数C . 中位数D . 众数7. (2分)已知关于x的方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,那么m的值为()A . 2B . -2C . ±2D . ±8. (2分)(2019·道外模拟) 如图,,,、分别交于点、,则下列结论错误的是()A .B .C .D .9. (2分)某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.。
图描述了他上学的情景,下列说法中错误的是()A . 修车时间为15分钟B . 学校离家的距离为2000米C . 到达学校时共用时间20分钟D . 自行车发生故障时离家距离为1000米10. (2分)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD 的周长为3r,连接OA,OP,则的值是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)(2017·市中区模拟) 计算﹣(﹣1)2=________.12. (1分)(2020·南通模拟) 抛物线y=2(x﹣3)2+5的顶点坐标为________.13. (1分)(2016·江汉模拟) 有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为________.14. (1分)(2018·滨湖模拟) 若圆锥底面圆的直径和母线长均为4cm,则它的侧面展开图的面积等于________ cm2 .15. (1分) (2018九上·江干期末) 如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠,使AB落在AD 边上,折痕为AE,再将△AEB以BE为折痕向右折叠,AE与DC交于点F,则的值是________.三、解答题 (共8题;共75分)16. (5分)(2018·河南模拟) 先化简(﹣x)÷(1+x﹣),再选一个你喜欢的整数值,代入求值.17. (11分)(2017·磴口模拟) 某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A,B,C,D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了________名学生,扇形统计图中m=________.(2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?18. (6分)如图,在⊙O中,D、E分别是半径OA、OB的中点,C是⊙O上一点,CD=CE.(1)求证:(2)若∠AOB=120°,CD=2,求半径OA的长.19. (6分)观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图),则sinB=, sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即=.同理有:=,=,所以==即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC中,∠B=450 ,∠C=750 , BC=60,则∠A=;AC= ;(2)如图,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A的距离AB.20. (15分)若方程组的解中,x是正数,y是非正数.(1)求k的正整数解;(2)在(1)的条件下求一次函数y= 与坐标轴围成的面积.21. (6分)(2018·沧州模拟) “创卫工作人人参与,环境卫生人人受益”,我区创卫工作已进入攻坚阶段.某校拟整修学校食堂,现需购买A、B两种型号的防滑地砖共60块,已知A型号地砖每块40元,B型号地砖每块20元.(1)若采购地砖的费用不超过1600元,那么,最多能购买A型号地砖多少块?(2)某地砖供应商为了支持创卫工作,现将A、B两种型号的地砖单价都降低a%,这样,该校花费了1280元就购得所需地砖,其中A型号地砖a块,求a的值.22. (11分) (2020七上·苍南期末) 点O在直线PQ上,过点O作射线OC,使∠POC=130°,将一直角三角板的直角顶点放在点O处。
内蒙古巴彦淖尔市中考数学二模考试试卷
内蒙古巴彦淖尔市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(满分16分,每小题2分) (共8题;共16分)1. (2分)(2017·碑林模拟) 下列几何体中,正视图是矩形的是()A .B .C .D .2. (2分)(2017·河西模拟) 第十三届全运会将于2017年8月在天津举行,其中足球项目承办场地为团泊足球场,该足球场占地163000平方米,将163000用科学记数法表示应为()A . 163×103B . 16.3×104C . 1.63×105D . 0.163×1063. (2分) (2019七上·惠城期末) 在﹣25,0,,2.5这四个数中,绝对值最大的数是()A . ﹣25B . 0C .D . 2.55. (2分)下列说法正确的是()A . 一组数据2,5,3,1,4,3的中位数是3B . 五边形的外角和是540度C . “菱形的对角线互相垂直”的逆命题是真命题D . 三角形的外心是这个三角形三条角平分线的交点6. (2分)已知,则的值为()A .B .C .D .7. (2分)为增强居民的节水意识,某市自2014年实施“阶梯水价”.按照“阶梯水价”的收费标准,居民家庭每年应缴水费y(元)与用水量x(立方米)的函数关系的图象如图所示.如果某个家庭2014年全年上缴水费1180元,那么该家庭2014年用水的总量是()A . 240立方米B . 236立方米C . 220立方米D . 200立方米8. (2分)(2018·郴州) 甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A . 甲超市的利润逐月减少B . 乙超市的利润在1月至4月间逐月增加C . 8月份两家超市利润相同D . 乙超市在9月份的利润必超过甲超市二、填空题(满分16分,每小题2分) (共8题;共16分)9. (2分)代数式有意义时,x应满足的条件为________ .10. (2分)(2019·渝中模拟) 有七张正面分别标有数字,,,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为,则使关于的一元二次方程有两个不相等的实数根,且以为自变量的二次函数的图象不经过点(1,0)的概率是________.11. (2分)命题“直角都相等”的逆命题是________它是________命题.(填“真”或“假”).12. (2分)(2018·驻马店模拟) 如图,在▱ABCD中,对角线AC,BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=________.13. (2分)(2019·东城模拟) 《九章算术》中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”其大意是:今有大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容积各是多少斛?设大容器的容积为x斛,小容器的容积为y斛,根据题意,可列方程组为________(斛:古量器名,容量单位).14. (2分)(2018·滨州) 如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE= ,∠EAF=45°,则AF的长为________.15. (2分)从2001年2月21日零时起,中国电信执行新的固定电话收费标准,其中本地网营业区内通话费是:前3分钟是0.2元(不足3分钟近3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟科计算),现有一个学生星期天打本地网营业区内电话t分钟(t>3)应交电话费________元.16. (2分) (2017·长清模拟) 如图,已知点A在反比例函数y= (x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=________.三、解答题 (共12题;共57分)17. (5.0分) (2019七下·交城期中) 根据语句画图,并回答问题,如图,∠AOB内有一点P.(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D.(2)写出图中与∠CPD互补的角________.(写两个即可)(3)写出图中∠O相等的角________.(写两个即可)18. (5分)(2016·临沂) 计算:|﹣3|+ tan30°﹣﹣(2016﹣π)0 .19. (2分)(2014·桂林) 解不等式:4x﹣3>x+6,并把解集在数轴上表示出来.20. (5.0分) (2017八下·射阳期末) 已知关于x的方程(1)若方程有实数根,求k的取值范围;(2)若方程有两个相等的实数根,求k的值,并求此时方程的根。
内蒙古巴彦淖尔市中考数学二模试卷
内蒙古巴彦淖尔市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)绝对值最小的有理数的倒数是()A . 1B . -1C . 0D . 不存在2. (2分)若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A .B .C .D .3. (2分)下列说法错误的是()A .B .C . 2的平方根是D .4. (2分) 2011年浙江省经济继续保持平稳较快的发展,GDP增长9%,总量历史性地突破3万亿元,达到3.2万亿元.3.2万亿用科学记数法可表示为()A . 3.2×108B . 3.2×1012C . 3.2×1013D . 3.2×10145. (2分)(2019·通辽) 现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直;其中真命题的个数有()A . 1个B . 2个C . 3个D . 4个6. (2分)点A(7,8)关于x轴对称的点B的坐标为()A . (6,4)B . (-3,5)C . (-3,-8)D . ( 7,-8)7. (2分)如图是某几何体得三视图,则这个几何体是()A . 球B . 圆锥C . 圆柱D . 三棱体8. (2分)某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A . 82B . 85C . 88D . 969. (2分)(2017·梁子湖模拟) 如图,正方形ABCD中,AB=4,点E是边BC的中点,点G,H分别是边CD,AB上的动点,连接GH交AE于F,且使GH⊥AE,连接AG,EH,则EH+AG的最小值是()A . 8B . 4C . 2D . 810. (2分)(2016·宜昌) 小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2 , a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A . 我爱美B . 宜昌游C . 爱我宜昌D . 美我宜昌11. (2分) (2019七下·长垣期末) 如图,在平面直角坐标系中,正方形的边长是2,点A的坐标是,动点P从点A出发,以每秒2个单位长度的速度沿 ......路线运动,当运动到2019秒时,点P的坐标为()A .B .C .D .12. (2分)如图,一船向正北方向匀速行驶,在C处看见正西方两座相距10海里的灯塔A和B恰好与该船在同一直线上,继续航行半小时后,在D处看见灯塔B在南偏西60°方向上,灯塔A在南偏西75°方向上,则该船的速度应该是()海里/小时.A . 10B . 5C . 10D . 513. (2分)(2020·常德) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc <0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A . 4B . 3C . 2D . 114. (2分)(2019·新乡模拟) 如图,等边三角形ABC,B点在坐标原点,C点的坐标为(4,0),则点A的坐标为()A . (2,3)B . (2,2 )C . (2 ,2)D . (2,2 )15. (2分) (2019九上·海淀期中) 如图,在平面直角坐标系xOy中,抛物线与x轴交于A, B两点. 若顶点C到x轴的距离为8,则线段AB的长度为()A . 2B .C .D . 4二、填空题 (共6题;共7分)16. (1分) (2017七下·简阳期中) 若a>b,则 ________ (用“>“或“<“填空)17. (1分) (2016九上·滨州期中) 若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是________18. (1分) (2019八上·越秀期中) 如图:∠EAF=15°,AB=BC=CD,则∠ECD等于________°.19. (2分)如图,⊙O是等边三角形ABC的外接圆,D、E是⊙O上两点,则∠D=________ °,∠E=________ °.20. (1分)如图,A是反比例函数y=(x>0)图象上一点,点B、D在 y轴正半轴上,△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,△ABD的面积为1,则该反比例函数的表达式为________ .21. (1分)如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为________.三、解答题 (共7题;共69分)22. (10分) (2020八下·渠县期末)(1)若解关于x的分式方程会产生增根,求 m的值.(2)若方程的解是正数,求 a的取值范围.23. (10分)如图,点C、E、B和F在同一直线上,AC∥DF,AC=DF,BC=EF,求证:(1)△ABC≌△DEF;(2)AB∥ED.24. (5分)(2016·滨州) 某运动员在一场篮球比赛中的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分篮板(个)助攻(次)个人总得分数据4666221011860注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.25. (1分)某射击小组进行射击练习,教练将该小组成员的某次射击成绩绘制成统计图(如图),则这组成绩的众数是________ .26. (15分)(2020·苏家屯模拟) 如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为 .(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.27. (17分) (2017·和县模拟) 如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在△ABC的外部,FB=FA,EA=EC,∠FBA=∠DBC=∠ECA.(1)①填空:△ACE∽________∽________;(2)求证:△CDE∽△CBA;(3)求证:△FBD≌△EDC;(4)若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由.28. (11分)(2020·禹州模拟) 如图(1)问题发现如图1,是等边三角形,点D,E分别在边BC,上.若,则AB,CE,BD,DC之间的数量关系是________;(2)拓展探究如图2,是等腰三角形,,,点D,E分别在边BC,AC上.若,则(1)中的结论是否仍然成立?请说明理由.(3)解决问题如图3,在中,∠B=30°, AB= AC =4cm,点P从点A出发,以1cm/s的速度沿A-→B方向匀速运动,同时点M从点B出发,以√↓3cm/s的速度沿B→C方向匀速运动,当其中一个点运动至终点时,另一个点随之停止运动.连接PM,在PM右侧作∠PMG= 30°,该角的另-边交射线CA于点G,连接PG .设运动时间为t(s),当为等腰三角形时,直接写出t的值.参考答案一、选择题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共6题;共7分)16-1、17-1、18-1、19-1、20-1、21-1、三、解答题 (共7题;共69分) 22-1、22-2、23-1、23-2、24-1、25-1、26-1、26-2、27-1、27-2、27-3、27-4、28-1、28-2、。
内蒙古巴彦淖尔市2019-2020学年中考数学二月模拟试卷含解析
内蒙古巴彦淖尔市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在同一平面直角坐标系中,函数y=x+k 与ky x=(k 为常数,k≠0)的图象大致是( ) A . B .C .D .2.关于x 的一元二次方程x 2+2x+k+1=0的两个实根x 1,x 2,满足x 1+x 2﹣x 1x 2<﹣1,则k 的取值范围在数轴上表示为( ) A . B . C .D .3.下列各组单项式中,不是同类项的一组是( ) A .2x y 和22xyB .3xy 和2xy -C .25x y 和22yx -D .23-和34.如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC ,若AB=8,CD=2,则cos ∠ECB 为( )A .35B .31313C .23D .13135.如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE ,BF ,DF ,DG ,CG 分别交于点,,,,P Q K M N ,设BPQ V ,DKM △,CNH △的面积依次为1S ,2S ,3S ,若1320S S +=,则2S 的值为( )A.6 B.8 C.10 D.126.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数()A.40°B.50°C.60°D.90°7.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是()A.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题8.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.409.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.11.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°12.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:2x2﹣8=_____________14.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是15.如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC 、CD 上滑动,且E 、F 不与B 、C 、D 重合.当点E 、F 在BC 、CD 上滑动时,则△CEF 的面积最大值是____.16.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE =5cm , 且tan ∠EFC=,那么矩形ABCD 的周长_____________cm .17.分解因式:2363m m -+=__________.18.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?20.(6分)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).求n和b的值;求△OAB的面积;直接写出一次函数值大于反比例函数值的自变量x的取值范围.21.(6分)“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.22.(8分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?23.(8分)(阅读)如图1,在等腰△ABC 中,AB=AC ,AC 边上的高为h ,M 是底边BC 上的任意一点,点M 到腰AB 、AC 的距离分别为h 1,h 1.连接AM .∵ABM ACM ABC S S S ∆∆∆+= ∴12111222h AB h AC hAC +=(思考)在上述问题中,h 1,h 1与h 的数量关系为: .(探究)如图1,当点M 在BC 延长线上时,h 1、h 1、h 之间有怎样的数量关系式?并说明理由. (应用)如图3,在平面直角坐标系中有两条直线l 1:334y x =+,l 1:y=-3x+3,若l 1上的一点M 到l 1的距离是1,请运用上述结论求出点M 的坐标.24.(10分)在⊙O 中,弦AB 与弦CD 相交于点G ,OA ⊥CD 于点E ,过点B 作⊙O 的切线BF 交CD 的延长线于点F .(I )如图①,若∠F=50°,求∠BGF 的大小;(II )如图②,连接BD ,AC ,若∠F=36°,AC ∥BF ,求∠BDG 的大小.25.(10分)如图,已知AB 是⊙O 的弦,C 是 »AB 的中点,AB=8,AC= 25 ,求⊙O 半径的长.26.(12分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.27.(12分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(3=1.73,结果保留一位小数.)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】【详解】选项A中,由一次函数y=x+k的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.故选B.2.D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1•x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式组的解集为﹣2<k≤0,在数轴上表示为:,故选D.点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.3.A【解析】【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.4.D【解析】【分析】连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度.利用锐角三角函数的定义即可求出答案.【详解】解:连接EB,由圆周角定理可知:∠B=90°,设⊙O的半径为r,由垂径定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:13∴cos∠ECB=CBCE=1313,故选D.【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型.5.B【解析】【分析】由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为12,△BPQ与△CNH相似比为13,由相似三角形的性质,就可以求出1S,从而可以求出2S.【详解】∵矩形AEHC是由三个全等矩形拼成的,∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴12AB BQ AD DM ==,13AB BQ AC CH ==, ∵EF=FG= BD=CD ,AC ∥EH ,∴四边形BEFD 、四边形DFGC 是平行四边形, ∴BE ∥DF ∥CG ,∴∠BPQ=∠DKM=∠CNH , 又∵∠BQP=∠DMK=∠CHN , ∴△BPQ ∽△DKM ,△BPQ ∽△CNH ,∴221211()24S BQ S DM ⎛⎫=== ⎪⎝⎭,221311()39S BQ S CH ⎛⎫=== ⎪⎝⎭, 即214S S =,319S S =,1320S S +=Q ,∴11920S S +=,即11020S =, 解得:12S =, ∴214S S =42=⨯8=,故选:B . 【点睛】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S 2=4S 1,S 3=9S 1是解题关键. 6.B 【解析】 分析:根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可. 详解: ∵AB ⊥BC , ∴∠ABC=90°, ∵点B 在直线b 上, ∴∠1+∠ABC+∠3=180°, ∴∠3=180°-∠1-90°=50°, ∵a ∥b , ∴∠2=∠3=50°. 故选B.点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键.7.C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数”为y=ax2+bx经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.考点:(1)命题与定理;(2)新定义型8.B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.9.A【解析】【分析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.10.B【解析】【分析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出. 【详解】∠ACB=90°,∠A=30°,BC=AB.BC=2,AB=2BC=22=4,D是AB的中点,CD=AB=4=2.E,F分别为AC,AD的中点,EF是△ACD的中位线.EF=CD=2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选A.考点:多边形内角与外角;三角形内角和定理.12.C【解析】【分析】过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.【详解】如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°3∵平行四边形ABCD的周长为12,∴AB=12(12-2x)=6-x,∴y=AD∙BE=(6-x)×32333x x+0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C. 【点睛】本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2(x+2)(x﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).考核知识点:因式分解.掌握基本方法是关键.14.4【解析】【分析】当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.【详解】当CD∥AB时,PM长最大,连接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M为CD中点,OM过O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC,∵⊙O直径AB=8,∴半径OC=4,即PM=4.【点睛】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.153【解析】解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF =S△ABC=12BC•AH=1222AB BH43“垂线段最短”可知:当正三角形AEF的边AE与面积会最小,又∵S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大,∴S △CEF =S 四边形AECF ﹣S △AEF =43﹣12×23×22(23)(3)- =3. 故答案为:3.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE ≌△ACF ,得出四边形AECF 的面积是定值是解题的关键. 16.36. 【解析】试题分析:∵△AFE 和△ADE 关于AE 对称,∴∠AFE =∠D =90°,AF =AD ,EF =DE.∵tan ∠EFC ==,∴可设EC =3x ,CF =4x ,那么EF =5x ,∴DE =EF =5x.∴DC =DE +CE =3x +5x =8x.∴AB =DC =8x.∵∠EFC +∠AFB =90°, ∠BAF +∠AFB =90°,∴∠EFC =∠BAF.∴tan ∠BAF =tan ∠EFC =,∴=.∴AB =8x,∴BF =6x.∴BC =BF +CF =10x.∴AD =10x.在Rt △ADE 中,由勾股定理,得AD 2+DE 2=AE 2.∴(10x )2+(5x )2=(5)2.解得x =1.∴AB =8x =8,AD =10x =10.∴矩形ABCD 的周长=8×2+10×2=36. 考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理. 17.3(m-1)2 【解析】试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m 2-6m+3=3(m 2-2m+1)=3(m-1)2. 故答案为:3(m-1)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).18.①②③⑤ 【解析】 【分析】轴交点情况进行推理,进而对所得结论进行判断. 【详解】①由图象可知:抛物线开口方向向下,则a 0<,对称轴直线位于y 轴右侧,则a 、b 异号,即b 0>, 抛物线与y 轴交于正半轴,则c 0>,abc 0<,故①正确;②对称轴为bx 12a=-=,b 2a =-,故②正确; ③由抛物线的对称性知,抛物线与x 轴的另一个交点坐标为()1,0-,所以当x 1=-时,y a b c 0=-+=,即a b c 0-+=,故③正确;④抛物线与x 轴有两个不同的交点,则2b 4ac 0->,所以24ac b 0-<,故④错误; ⑤当x 2=时,y 4a 2b c 0=++>,故⑤正确.故答案为①②③⑤. 【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组 【解析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人, 如图:(3)设需从甲组抽调x 名同学到丙组, 根据题意得:3(11-x )=21+x 解得x=1.(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解20.(1)-1;(2)52;(3)x>1或﹣4<x<0.【解析】【分析】(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线y=x+3与y轴的交点为C,由S△AOB=S△AOC+S△BOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.【详解】(1)把A点(1,4)分别代入反比例函数y=kx,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=4x的图象上,∴n=44=﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=12×3×1+12×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=kx中k的几何意义,这里体现了数形结合的思想.21.(1)60,1°.(2)补图见解析;(3)3(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案. 【详解】(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×1560=1°, 故答案为60,1.(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况, ∴恰好抽到1个男生和1个女生的概率为1220=35. 【点睛】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比. 22. (1) 每次下调10% (2) 第一种方案更优惠. 【解析】 【分析】(1)设出平均每次下调的百分率为x ,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平解:(1)设平均每次下调的百分率为x ,根据题意得 5000×(1-x )2=4050解得x=10%或x=1.9(舍去) 答:平均每次下调10%. (2)9.8折=98%,100×4050×98%=396900(元)100×4050-100×1.5×12×2=401400(元), 396900<401400,所以第一种方案更优惠. 答:第一种方案更优惠. 【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键. 23.【思考】h 1+h 1=h ;【探究】h 1-h 1=h .理由见解析;【应用】所求点M 的坐标为(13,1)或(-13,4). 【解析】 【分析】思考:根据等腰三角形的性质,把代数式12111222h AB h AC hAC +=化简可得12h h h +=.探究:当点M 在BC 延长线上时,连接AM ,可得ABM ACM ABC S S S ∆∆∆-=,化简可得12h h h -=.应用:先证明AB AC =,△ABC 为等腰三角形,即可运用上面得到的性质,再分点M 在BC 边上和在CB 延长线上两种情况讨论,第一种有1+My=OB ,第二种为M y -1=OB ,解得M 的纵坐标,再分别代入2l 的解析式即可求解.【详解】 思考Q ABM ACM ABC S S S ∆∆∆+=即12111222h AB h AC hAC += Q AB AC =∴h 1+h 1=h .探究 h 1-h 1=h . 理由.连接AM ,∴12111222h AB h AC hAC -= ∴h 1-h 1=h . 应用 在334y x =+中,令x=0得y=3; 令y=0得x=-4,则: A (-4,0),B (0,3) 同理求得C (1,0),5AB =,又因为AC=5,所以AB=AC ,即△ABC 为等腰三角形. ①当点M 在BC 边上时, 由h 1+h 1=h 得:1+My=OB ,My=3-1=1, 把它代入y=-3x+3中求得:13x M =,∴1,23M ⎛⎫ ⎪⎝⎭; ②当点M 在CB 延长线上时, 由h 1-h 1=h 得: M y -1=OB ,M y =3+1=4, 把它代入y=-3x+3中求得:13x M =-,∴1,43M ⎛⎫- ⎪⎝⎭,综上,所求点M 的坐标为1,23⎛⎫ ⎪⎝⎭或1,43⎛⎫- ⎪⎝⎭.【点睛】本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键. 24.(I )65°;(II )72°(I)如图①,连接OB,先利用切线的性质得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四边形内角和可计算出∠AOB=130°,然后根据等腰三角形性质和三角形内角和计算出∠1=∠A=25°,从而得到∠2=65°,最后利用三角形内角和定理计算∠BGF的度数;(II)如图②,连接OB,BO的延长线交AC于H,利用切线的性质得OB⊥BF,再利用AC∥BF得到BH⊥AC,与(Ⅰ)方法可得到∠AOB=144°,从而得到∠OBA=∠OAB=18°,接着计算出∠OAH=54°,然后根据圆周角定理得到∠BDG的度数.【详解】解:(I)如图①,连接OB,∵BF为⊙O的切线,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=12(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如图②,连接OB,BO的延长线交AC于H,∵BF为⊙O的切线,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=12(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.25.5【解析】试题分析:连接OC 交AB 于D ,连接OA ,由垂径定理得OD 垂直平分AB ,设⊙O 的半径为r , 在△ACD 中,利用勾股定理求得CD=2,在△OAD 中,由OA 2=OD 2+AD 2,代入相关数量求解即可得. 试题解析:连接OC 交AB 于D ,连接OA ,由垂径定理得OD 垂直平分AB ,设⊙O 的半径为r ,在△ACD 中,CD 2+AD 2=AC 2,CD=2,在△OAD 中,OA 2=OD 2+AD 2,r 2=(r-2)2+16,解得r=5,∴☉O 的半径为5.26.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k bk b+=⎧⎨+=⎩10700kb=-⎧⇒⎨=⎩.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27.塔CD的高度为37.9米【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.试题解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.则有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=3AC.∵16+DE=DC,∴16+AC=3AC,解得:AC=83+8=DE.所以塔CD的高度为(83+24)米≈37.9米,答:塔CD的高度为37.9米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巴彦淖尔市数学中考二模试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共10分)
1. (1分) (2019七上·福田期末) -3的相反数的倒数是()
A .
B .
C .
D .
2. (1分)(2019·衢州模拟) 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()
A .
B .
C .
D .
3. (1分)配方法解方程2 − x−2=0变形正确的是()
A .
B .
C .
D .
4. (1分) (2017九上·海口期中) 如图,在△ABC中,DE∥BC,DB=2AD,DE=4,则BC边的长等于()
A . 6
B . 8
C . 10
D . 12
5. (1分) (2018九上·北京月考) 从正方形的铁皮上,截去2cm宽的一条长方形,余下的面积48cm2 ,则原来的正方形铁皮的面积是()
A . 9cm2
B . 68cm2
C . 8cm2
D . 64cm2
6. (1分)(2018·井研模拟) 一组数据4,5,6,4,4,7,,5的平均数是5.5,则该组数据的中位数和众数分别是()
A . 4,4
B . 5,4
C . 5,6
D . 6,7
7. (1分) (2017八下·郾城期中) ▱ABCD的对角线AC、BD相交于点O,下列条件中,不能判定▱ABCD是菱形的是()
A . ∠A=∠D
B . AB=AD
C . AC⊥BD
D . CA平分∠BCD
8. (1分)如图,AB是⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且CO=CD,则∠PCA=()
A . 30°
B . 45°
C . 60°
D . 67.5°
9. (1分) (2019九上·辽阳期末) 如图,在平行四边形ABCD中,E为CD上一点,连接AE,BE,BD,且AE,BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()
A . 2:3
B . 2:5
C . 3:5
D . 3:2
10. (1分) (2018九上·南山期末) 如图,己知在矩形ABCD中,AB=2,BC=6,点E从点D出发,沿DA方向以每秒1个单位的速度向点A运动,点F从点B出发,沿射线AB以每秒3个单位的速度运动,当点E运动到点A 时,E、F两点停止运动.连接BD,过点E作EH⊥BD,垂足为H,连接口,交BD于点G,交BC于点旭连接CF.给出下列结论:①△CDE∽△CBF;②∠DBC=∠EFC;③ =;④GH的值为定值;上述结论中正确的个数为()
A . 1
B . 2
C . 3
D . 4
二、填空题 (共5题;共6分)
11. (1分)某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,
1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是________.
12. (1分) (2017九下·永春期中) 将一矩形纸条按如图所示折叠,若,则________°.
13. (1分)在同圆中,若,则AB ________2CD(填>,<,=).
14. (1分) (2019八上·朝阳期末) 如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为________.
15. (2分) (2020九下·台州月考) 如图,直线l1的解析式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.
(1)求直线l2的解析表达式;
(2)求△ADC的面积;
(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请求出点P的坐标.
三、解答题 (共7题;共16分)
16. (1分) (2020七上·洛宁期末) 计算
(1)(﹣1)10×2+(﹣2)3÷4
(2)﹣14﹣(﹣2)× ×[2﹣(﹣3)2].
17. (3分)(2019·汕头模拟) 某校对600名学生进行了一次“心理健康”知识测试,从中抽取了部分学生成绩(得分取正整数,满分为100分)作为样本,绘制了下面尚未完成的表格和频数分布直方图(住:无50.5以
下成绩)
分组频数频率
50.5~60.520.04
60.5~70.580.16
70.5~80.510C
A~90.5B0.32
90.5~100.5140.28
合计
(1)频数分布表中A=________,B=________,C=________;
(2)补全频数分布直方图;
(3)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有多少人?
18. (2分)(2019·莆田模拟) 如图,菱形ABCD中,∠ABC=60°,E为AB中点,F为BC上一点,G为CD 上一点,连接EF , FG ,且∠BFE=∠CFG .
(1)若G为CD中点时,求证:EF=FG;
(2)设x=,y=,求y关于x的函数解析式.
19. (2分)(2016·武侯模拟) 计算下面各题
(1)计算: +(﹣1)2﹣4cos30°﹣| |
(2)解不等式组,并将它的解集在下面的数轴上表示出来.
20. (2分)(2018·吴中模拟) 如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
21. (3分)(2017·黄冈) 已知:如图所示,在平面直角坐标系xoy中,四边形OABC是矩形,OA=4,OC=3,动点P从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、点Q的运动时间为t(s).
(1)
当t=1s时,求经过点O,P,A三点的抛物线的解析式;
(2)
当t=2s时,求tan∠QPA的值;
(3)
当线段PQ与线段AB相交于点M,且BM=2AM时,求t(s)的值;
(4)
连接CQ,当点P,Q在运动过程中,记△CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式.
22. (3分)(2019·润州模拟) 如图,在菱形ABCD中,边长为2 ,∠BAD=120°,点P从点B开始,沿着B→D方向,速度为每秒1个单位,运动到点D停止,设运动的时间为t(秒),将线段AP绕点A逆时针旋转60°,得到对应线段的延长线与过点P且垂直AP的垂线段相交于点E,
(≈1.73,sin11°≈0.19,cos11°≈0.98,si n19°≈0.33,tan19°≈0.34,sin41°≈0.65,tan41°≈0.87)
(1)当t=0时,求AE的值.
(2) P点在运动过程中,线段PE与菱形的边框交于点F.(精确到0.1)
问题1:如图2,当∠BAP=11°,AF=2PF,则OQ=________.
问题2:当t为何值时,△APF是含有30°角的直角三角形,写出所有符合条件的t的值________.
(3)当点P在运动过程中,求出△ACE的面积y关于时间t的函数表达式.(请说明理由)
参考答案一、单选题 (共10题;共10分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共5题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
15-2、
15-3、
三、解答题 (共7题;共16分) 16-1、
16-2、
17-1、
17-2、
17-3、
18-1、
18-2、
19-1、19-2、
20-1、20-2、21-1、
21-2、21-3、
22-1、22-2、
22-3、。