数值计算方法-插值法 共53页
插值法的最简单计算公式

插值法的最简单计算公式全文共四篇示例,供读者参考第一篇示例:插值法是一种常用的数值计算方法,用于通过已知数据点推断出未知数据点的值。
在实际问题中,往往会遇到数据点不连续或者缺失的情况,这时就需要通过插值法来填补这些数据点,以便更准确地进行计算和分析。
插值法的最简单计算公式是线性插值法。
线性插值法假设数据点之间的变化是线性的,通过已知的两个数据点来推断出中间的未知数据点的值。
其计算公式为:设已知数据点为(x0, y0)和(x1, y1),需要插值的点为x,其在(x0, x1)之间,且x0 < x < x1,插值公式为:y = y0 + (y1 - y0) * (x - x0) / (x1 - x0)y为插值点x对应的值,y0和y1分别为已知数据点x0和x1对应的值。
通过这个线性插值公式,可以方便地计算出中间未知点的值。
举一个简单的例子来说明线性插值法的应用。
假设有一组数据点为(1, 2)和(3, 6),现在需要插值得到x=2时的值。
根据线性插值公式,我们可以计算出:y = 2 + (6 - 2) * (2 - 1) / (3 - 1) = 2 + 4 * 1 / 2 = 2 + 2 = 4当x=2时,线性插值法得到的值为4。
通过这个简单的例子,可以看出线性插值法的计算公式的简单易懂,适用于很多实际问题中的插值计算。
除了线性插值法,还有其他更复杂的插值方法,如多项式插值、样条插值等,它们能够更精确地拟合数据并减小误差。
在一些简单的情况下,线性插值法已经足够满足需求,并且计算起来更加直观和方便。
在实际应用中,插值法经常用于图像处理、信号处理、数据分析等领域。
通过插值法,可以将不连续的数据点连接起来,填补缺失的数据,使得数据更加完整和连续,方便后续的处理和分析。
插值法是一种简单而有效的数值计算方法,其中线性插值法是最简单的计算公式之一。
通过这个简单的公式,可以方便地推断出未知数据点的值,并在实际应用中发挥重要作用。
数值计算方法插值法资料

一次插值
当n 1时,求一次多项式P1(x),要求通过 x0, y0 , x1, y1
两点
y
y0 x0
y1 x1
P1(x) f(x)
二次插值
当n 2时,求二次多项式P2 (x),要求通过 x0, y0 , x1, y1 , x2, y2 三点
y
f(x)
y0 x0
y1 x1
y2 x2
P1(x)
知两点。
线性插值
插值函数和插值基函数
由直线的点斜式公式可知:
P1(x)
yk
yk 1 xk 1
yk xk
(x
xk ),把此式按照
yk和yk1写成两项:P1(x)
x xk1 xk xk 1
yk
x xk xk 1 xk
yk
,
1
记l k (x)
x xk1 xk xk 1
, lk1(x)
l
0 ( x)
x 20 10 20
1 10
(x
20),l1 ( x)
x 10 20 10
1 10
(x
10)
例子
于是,拉格朗日型一次插值多项式为:
P1 ( x)
y0l0 (x)
y1l1 ( x)
1 10
(x
20)
1.3010 10
(x
10)
故P1
(12)
1 10
(12
20)
1.3010 10
(12
决定
1
例子
例1:已知lg10 1 , lg 20 1.3010,利用插值一次 多项式求 lg12的近似值。 解:f (x) lg x,f (x) lg x,f (10) 1,f (20) 1.3010 设x0 10,x1 20,y0 1,y1 1.3010, 则插值基本多项式为:
数值计算方法第05章插值法

n( x0 ) a0 a1 x0 a2 x02 an x0n y0
n
(
x1
)
a0
a1 x1
a2 x12
an x1n
y1
n( xn ) a0 a1 xn a2 xn2 an xnn yn
17
1 x0 x02 x0n a0 f ( x0 )
一次
二次
三次 15
➢ 三个基本问题
插值多项式n(x)是否存在唯一? 若n(x)存在, 截断误差 f (x)-n(x)=? 如何求n(x)?
16
➢ 插值多项式n(x)的存在唯一性
n 次多项式n(x)有(n+1)个待定系数ai (i=0, 1, 2, …, n), 插值条件 n(xi)= f (xi)= yi (i=0, 1, 2, …, n)也是
表2.1.1 刹车距离实验数据
v 20 25 30 35 40 45 50
d 42 56 73.5 91.5 116 142.5 173
v 55 60 65 70 75 80
d 209.5 248 292.5 343 401 464
插值法是一种古老的数学方法。早在1000 多年前,我国历法上已经记载了应用一次插值 和二次插值的实例。
伟大的数学家:拉格朗日(Lagrange)、牛顿 Newton)、埃尔米特(Hermite)等人分别给出了 不同的解决方法。
生产实践中常常出现这样的问题:给出一批 离散样点,要求作出一条通过这些点的光滑 曲线,以便满足设计要求或进行加工。反映 在数学上,即已知函数在一些点上的值,寻 求它的分析表达式。因为由函数的表格形式 不能直接得出表中未列点处的函数值,也不 便于研究函数的性质。此外,有些函数虽有 表达式,但因式子复杂,不容易算其值和进 行理论分析,也需要构造一个简单函数来近 似它。
插值法数学计算方法

插值法数学计算方法插值法是一种数学计算方法,用于在已知数据点的基础上,通过构建一条插值曲线来估计未知数据点的值。
插值法可以应用于各种数学问题中,例如逼近函数、插值多项式、差值等。
本文将详细介绍插值法的原理和常见的插值方法。
一、插值法的原理插值法的基本思想是通过已知数据点的函数值来构建一个函数表达式,该函数可以通过插值曲线来估计任意点的函数值。
根据已知数据点的数量和分布,插值法可以采用不同的插值方法来构建插值函数。
插值法的原理可以用以下几个步骤来描述:1.收集已知数据点:首先,需要收集一组已知的数据点。
这些数据点可以是实际测量得到的,也可以是其他方式获得的。
2.选择插值方法:根据问题的特性和数据点的分布,选择适合的插值方法。
常见的插值方法包括拉格朗日插值法、牛顿插值法、埃尔米特插值法等。
3.构建插值函数:通过已知数据点,利用选择的插值方法构建插值函数。
这个函数可以拟合已知数据点,并通过插值曲线来估计未知数据点。
4.估计未知数据点:利用构建的插值函数,可以估计任意点的函数值。
通过插值曲线,可以对未知数据点进行预测,获得相应的数值结果。
二、常见的插值方法1.拉格朗日插值法:拉格朗日插值法基于拉格朗日多项式,通过构建一个具有多项式形式的插值函数来逼近已知数据点。
插值函数可以通过拉格朗日基函数计算得到,式子如下:P(x) = ∑[f(xi) * l(x)], i=0 to n其中,P(x)表示插值函数,f(xi)表示已知数据点的函数值,l(x)表示拉格朗日基函数。
2.牛顿插值法:牛顿插值法基于牛顿差商公式,通过构建一个递归的差商表来逼近已知数据点。
插值函数可以通过牛顿插值多项式计算得到,式子如下:P(x) = f(x0) + ∑[(f[x0, x1, ..., xi] * (x - x0) * (x - x1)* ... * (x - xi-1)] , i=1 to n其中,P(x)表示插值函数,f[x0, x1, ..., xi]表示xi对应的差商。
数值计算方法插值法

f[x1,x2,x3] …
f[x0,x1,x2 ,x3]
例阶2.1差1商求值f(xi)= x3在节点 x=0, 2, 3, 5, 6上的各
解xi :
计算得如下表 f[xi] f[xi,xi+1]
f[xi,xi+1,xi+2 ]
f[xi,xi+1,xi+2 ,xi+2]
00
28
80 4 20
27 8 19 19 4 5
an x0 n an1x0 n1 a1x0 a0 f (x0 )
an x1n
an1
x n1 1
a1x1 a0
f (x1 )
an xn n an1xn n1 a1xn a0 f (xn )
这是惟一一个性关说于明待,定不参论数用何种方法来构a造的0,,n+也a11阶不, 线论性用, 方何an种形式来表示插值多项式,
由线性代数知,任何一个不高于n次的多项式, 都可以表示成函数
1, x x0 , (x x0 )(x x1 ),, (x x0 )(x x1 )(x xn1 )
的线性组合, 也就是说, 可以把满足插值条件 p(xi)=yi (i=0,1,…,n)的n次插值多项式, 写成如下形式
a0 a1(x x0) a2(x x0)(x x1) an (x x0)(x x1)(x xn1)
f[x0 , x1]=
f(x1)- f(x0) x1 – x0
f[x1 , x0]
f(x0)- f(x1) =
x0 – x1
f x0 , x1, x2 f x1, x2 , x0 f x0 , x2 , x1
性质3 若f[x, x0, x1 , …, xk ]是 x 的 m 次多项式, 则 f[x, x0, x1 ,…, xk , xk+1]是 x 的 m-1 次多项式
数值计算中的插值方法与误差分析

数值计算中的插值方法与误差分析数值计算是一门应用数学学科,广泛应用于科学与工程领域。
在实际问题中,我们常常需要通过已知的离散数据点来估计未知的数值。
插值方法就是为了解决这个问题而设计的。
插值方法是一种基于已知数据点,推断出未知数据点的数值计算方法。
常见的插值方法有拉格朗日插值、牛顿插值等。
下面我们将重点介绍这两种方法。
1. 拉格朗日插值法拉格朗日插值法是插值方法中最常见的一种。
它是基于拉格朗日多项式的思想。
假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。
拉格朗日插值法的基本思想是通过插值多项式来逼近原函数。
具体步骤如下:(1)根据已知数据点构造Lagrange插值多项式:L(x) = Σ(yi * Li(x)), i = 0, 1, ..., n其中,Li(x) = Π((x-xj)/(xi-xj)), j ≠ i(2)计算未知点x对应的函数值y:y = L(x)拉格朗日插值法的优点是简单易懂,计算方便。
然而,它也存在着一些问题,比如插值多项式的次数较高时,多项式在插值区间外的振荡现象明显,容易引起插值误差。
2. 牛顿插值法牛顿插值法是另一种常见的插值方法。
它是基于差商的思想。
假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。
牛顿插值法的基本思想是通过插值多项式来逼近原函数。
具体步骤如下:(1)计算差商:f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ..., xi+k-1]) / (xi+k - xi)(2)根据已知数据点构造Newton插值多项式:N(x) = f[x0] + Σ(f[x0, x1, ..., xi] * Π(x - xj)), i = 0, 1, ..., n-1(3)计算未知点x对应的函数值y:y = N(x)牛顿插值法的优点是适用范围广,可以方便地添加新的数据点进行插值。
数值计算方法

数值计算方法数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
它包括了数值分析、数值逼近、数值代数、数值微分方程等多个领域。
数值计算方法在科学工程领域有着广泛的应用,例如在物理学、化学、生物学、经济学和工程学等领域都有着重要的地位。
本文将介绍数值计算方法的基本原理和常用技术,并探讨其在实际问题中的应用。
一、数值计算方法的基本原理。
数值计算方法的基本原理是将实际问题转化为数学模型,然后通过计算机算法来求解这个数学模型。
在实际问题中,往往会遇到一些复杂的方程或者函数,无法通过解析方法求解。
这时就需要借助数值计算方法来进行近似求解。
数值计算方法主要包括了离散化、逼近和求解三个步骤。
1. 离散化。
离散化是将连续的问题转化为离散的问题。
在实际问题中,往往会遇到一些连续的函数或者方程,无法直接求解。
这时就需要将连续的问题转化为离散的问题,然后通过计算机算法来求解。
离散化的方法有很多种,比如有限差分法、有限元法、谱方法等。
2. 逼近。
逼近是指通过一些简单的函数或者多项式来近似表示复杂的函数或者方程。
在实际问题中,往往会遇到一些复杂的函数或者方程,无法直接求解。
这时就需要通过逼近的方法来近似表示这个函数或者方程,然后通过计算机算法来求解。
逼近的方法有很多种,比如插值法、拟合法、最小二乘法等。
3. 求解。
求解是指通过计算机算法来求解离散化的问题或者逼近的问题。
在实际问题中,往往会遇到一些复杂的离散化问题或者逼近问题,无法直接求解。
这时就需要通过计算机算法来求解这个离散化问题或者逼近问题。
求解的方法有很多种,比如迭代法、直接法、迭代法等。
二、数值计算方法的常用技术。
数值计算方法有很多种常用技术,下面将介绍一些常用的技术。
1. 有限差分法。
有限差分法是一种常用的离散化方法,它将微分方程转化为差分方程,然后通过计算机算法来求解。
有限差分法的基本思想是将函数在一些离散点上进行逼近,然后通过差分近似来求解微分方程。
数值计算方法第2版 第4章 插值法

x y
x0 y0
x1 y1
y1 y0 ( x x0 ) x1 x0 x x0 x x1 y0 y1 l0 ( x) y0 l1 ( x) y1 x0 x1 x1 x0
2 表达式 拉格朗日插值多项式
P ( x)
公式的结构:它是两个一次函数的线性组合 线性插值基函数
第4章 插值法
4.1 引言 4.2 拉格朗日插值 4.3 逐次线性插值 4.4 牛顿插值 4.5 等距节点插值 4.6 反插值 4.7 埃尔米特插值 4.8 分段插值法 4.9 三次样条插值
4.1 引言
4.1.1 插值问题及代数多项式插值
1 插值 已知某些(有限)点的函数值求其余点的函数值。 定义 函数y=f(x)在区间[a,b]上有函数值 yi f ( xi ),i 0,1,, n
满足插值条件 P ( xi ) yi , (i 0,1, 2)
l0 A( x x1 ) ( x x2 ) l0 ( x0 ) A( x0 x1 ) ( x0 x2 ) 1
的n次抛物线 y=P (x),近似代替曲线 y=2.1 线性插值(二点一次插值) 1 定义 已知f(x0)=y0,f(x1)=y1 , x0≠x1 要构造线性函数 P(x)=a0 + a1 x , 使满足插值条件 P(x0)=y0 , P(x1)=y1 .
y y0 y1 y0 x x0 x1 x0 P ( x) y0
y 10 11
解
x0=100, x1=121, x=115
P ( x) x x0 x x1 y0 y1 x0 x1 x1 x0
115 P(115)
115 121 115 101 10 11 10.914 100 121 121 100
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
b
x0x1
xixi+1
xn-1 xn
若记 R (x) = f(x) - p(x) 则 R(x) 就是用 p(x) 近似代替 f(x) 时的截断误差, 或称 插值余项我们可根据后面的定理来估计它的大小。
定理2 设f(x)在a, b有n+1阶导数, x0, x1,…, xn 为 a, b上n+1个互异的节点, p(x)为满足
是函数
y在f区(x间)[a, b]上的n+1个互异的节点
多项式,则求插值多项式P(x)
(i=0,1,2,…,n
)上的插x 值i
的问题就归结为求它的系数 (i=0,1,2,…,n )。
ai
由插值条件:
p(xi)(if=0(,x1i,)2,…,n),可得
anx0n an1x0n1 a1x0 a0 f (x0) anx1n an1x1n1 a1x1 a0 f (x1) anxnn an1xnn1 a1xn a0 f (xn)
1 xn xn2 xnn
称为Vandermonde(范德蒙)行列式,因xi≠xj (当i≠j),故V≠0。根据解线性方程组的克莱姆
(Gramer)法则,方程组的解
存在惟一,从而P(x)被惟一确定。
a0,a1,,an
插值多项式的误差
在插值区间a, b上用插值多项式p(x)近似代替f(x), 除了在插值节点xi上没有误差外, 在其它点上一般是存在误差的。
都是n次 l k (的x零) 点,故可设
x0,x1, ,xk1,xk1, ,xn
l k ( x ) A k ( x x 0 ) x x ( 1 ) ( x x k 1 ) x x ( k 1 ) ( x x n )
其中 为A k待定常数。由条件
,可求lk得(xk ) 1
Ak
n
Ak (xk xj ) 1 于是 j0 jk
1 Ak n
(xk x j )
j0 jk
代入上式,得
n
(x xj )
lk (x)
j0 jk
n
x xj
n
(xk x j )
j0 xk x j
jk
j0 jk
x 称
l
k
(x)
为关于基点
p(xi) = f(xi) (i=1,2, …, n) 的n 次插值多项式,那么对于任何x a, b有 插值余项
R(x)f(x)p(x)f(n1)()(x)
(n1)!
a<<b 且依赖于x
n
其中 (x ) (x x 0 )x( x 1 ) (x x n)(x x i), a ,b
第二章 插值法
§ 1引言 问题的提出
– 函数解析式未知,通过实验观测得到的一组数据,
即在某个区间[a, b]上给出一系列点的函数值 yi=
f(xi)
– 或者x给出函x数0 表 x1
x2
…… xn
y
y0
y1
y2
…… yn
y=p(x)
y=f(x)
原理: P (x ) a n x n a n 1 x n 1 a 1 x a 0
的n次插i值基函数(i=0,1,…,n)
以n+1个n次基本插值多项式 为基础,就能直接写出满足插值条件
lk(x)k (0,1, ,n)
的n次代数插P 值( 多x i项)式 。f(x i) (i 0 ,1 ,2 , ,n )
事实上,由于每个插值基函数
都是n次值多P 项( x 式) , 所l 以0 ( 他x 们) y 的0 线 性l 1 组( x 合) y 1 ln ( x ) y n
满足 P (x i) f(x i) (i 0 ,1 ,2 , ,n )
则称P(x)为f(x)的n次插值多项式。这种插值法通常称为代数插值法。其几何意 义如下图所示
y y=P(x) y=f(x)
y1 x0 x1
yn xn x
定理1 n次代数插值问题的解是存在且惟一的
证明: 设n次多项式
P ( x ) a n x n a n 1 x n 1 a 1 x a 0
证明 ( 略 )Mn1,则
|Rn(x)|(nMn11)!|n1(x)|,
拉格朗日插值多项式
两个插值点可求出一次插值多项式,而三 个插值点可求出二次插值多项式。插值点增加到n+1 个时,也就是通过n+1个不同的已知点
,个来特构殊造n一次个多次项数式为n的代的数插多值项问式题P,(x使)。其与在推各导节抛点物插上值(x满的i,足基yi函)i数(类0似,1,, 先构,n造)一
lk(x)k (0,1, ,n)
n
P(x) lk(x)yk k0 是次数不超过n次的多项式 , 称形如(2.8)式的插
值多项式为n次拉格朗日插值多项式。并记为
(2.8)
Ln (x)
引入记号
n 1 (x ) (x x 0 )x ( x 1 ) (x x n )
(2
则得
n 1 ( x k ) ( x k x 0 ) ( x k x k 1 )x k ( x k 1 ) ( x k x n )
于是
L n(x)k n 0yk(x xk n ) 1(n x )1(xk)
(2.1
§3 均差与牛顿插值多项式 拉格朗日插值多项式结构对称,使用方
这是惟一一个性关说于明待,定不参论数用何种方法来构a造的0,,n+也a11阶不, 线论性用,方何an种形式来表示插值多项式,
程组只,其要系满数足矩插阵值行条列件式(2为.1)其结果都是相互恒等的。
1 x0 x02 x0n
1
V
x1
x12
x1n
n
i1
i1
(xi
j0
xj )
li (x)
xi
l k ( x 0 ) 0 , , l k ( x k 1 ) 0 , l k ( x k ) 1 , l k ( x k 1 ) 0 , , l k ( x n ) 0
即
lk(xi)ki10
(ik) (ik)
由条件 lk(xi )(0)知,i k