北师大版八年级上册数学33轴对称与坐标变化优秀教案

合集下载

北师大版数学八年级上册3《轴对称与坐标变化》教学设计1

北师大版数学八年级上册3《轴对称与坐标变化》教学设计1

北师大版数学八年级上册3《轴对称与坐标变化》教学设计1一. 教材分析北师大版数学八年级上册3《轴对称与坐标变化》是学生在学习了平面直角坐标系、函数等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。

本节课的主要内容是让学生理解并掌握轴对称的性质,以及如何利用坐标变化来研究轴对称问题。

教材通过丰富的图片和实例,引导学生探索轴对称与坐标变化之间的关系,培养学生的空间想象能力和抽象思维能力。

二. 学情分析学生在七年级已经学习了平面直角坐标系和函数的基础知识,对坐标系中点的坐标有所了解,但对于如何利用坐标变化来研究图形的轴对称性质,可能还存在一定的困难。

因此,在教学过程中,需要教师引导学生利用已学的知识来探索新的内容,激发学生的学习兴趣,提高学生的自主学习能力。

三. 教学目标1.理解轴对称的定义及其性质。

2.掌握坐标变化规律,能够利用坐标变化来研究图形的轴对称性质。

3.培养学生的空间想象能力和抽象思维能力。

4.提高学生的自主学习能力,培养学生的合作精神。

四. 教学重难点1.轴对称的定义及其性质。

2.坐标变化规律的掌握和应用。

五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生探索轴对称与坐标变化之间的关系。

2.问题驱动法:教师提出问题,引导学生思考和探索,激发学生的学习兴趣。

3.合作学习法:学生分组讨论,共同解决问题,培养学生的合作精神。

4.归纳总结法:教师引导学生总结轴对称的性质和坐标变化规律。

六. 教学准备1.准备相关的图片和实例,用于导入和呈现。

2.准备练习题,用于操练和巩固。

3.准备PPT,用于展示和讲解。

七. 教学过程1.导入(5分钟)利用图片和实例,引导学生观察和思考轴对称的性质,激发学生的学习兴趣。

2.呈现(10分钟)展示轴对称的定义和性质,引导学生理解并掌握。

3.操练(10分钟)让学生分组讨论,共同解决练习题,巩固所学知识。

4.巩固(5分钟)教师针对学生的练习情况进行讲解和辅导,帮助学生巩固轴对称的性质。

北师大版数学八年级上册3《轴对称与坐标变化》教学设计3

北师大版数学八年级上册3《轴对称与坐标变化》教学设计3

北师大版数学八年级上册3《轴对称与坐标变化》教学设计3一. 教材分析《轴对称与坐标变化》是北师大版数学八年级上册第三章的内容。

本节课主要介绍了轴对称的性质以及坐标变化中的平移和旋转。

教材通过丰富的实例和图片,引导学生探索轴对称的性质,让学生在实际操作中感受坐标变化带来的几何图形的变换。

教材内容紧密联系实际,有助于激发学生的学习兴趣,提高学生的动手操作能力。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,对图形的变换有一定的了解。

但轴对称和坐标变化的知识较为抽象,学生需要通过实际操作和观察来进一步理解和掌握。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生积极参与,提高学生的动手操作和观察能力。

三. 教学目标1.理解轴对称的性质,能够判断一个图形是否为轴对称图形。

2.掌握坐标变化中的平移和旋转,能够运用坐标变化解决实际问题。

3.培养学生的观察能力、动手操作能力和解决问题的能力。

四. 教学重难点1.轴对称的性质及判断。

2.坐标变化中的平移和旋转的性质及运用。

五. 教学方法1.情境教学法:通过实际例子和图片,引发学生的兴趣,激发学生的学习欲望。

2.动手操作法:让学生亲自动手,进行实际的轴对称和坐标变换操作,提高学生的动手能力。

3.小组合作法:引导学生分组讨论和合作,培养学生的团队意识和沟通能力。

六. 教学准备1.准备相关的图片和实例,用于导入和讲解。

2.准备坐标纸和绘图工具,供学生动手操作。

3.准备练习题和拓展题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)教师通过展示一些实际例子和图片,如剪纸、建筑物的设计等,引导学生思考这些实例中的共同特点。

学生通过观察和思考,发现这些实例都具有轴对称的性质。

教师总结轴对称的定义,并提出本节课的学习目标。

2.呈现(15分钟)教师通过讲解和演示,介绍轴对称的性质,如对称轴的定义、对称点的坐标关系等。

同时,教师引导学生进行实际的坐标变换操作,如平移和旋转,让学生感受坐标变化带来的图形变换。

北师大版八年级数学上册第三章【教案】3.3轴对称与坐标变化

北师大版八年级数学上册第三章【教案】3.3轴对称与坐标变化

3.3轴对称与坐标变化教学目标:(一)教学知识点经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识.(二)能力训练要求:能将图形坐标的变化与图形形状的变化之间的关系巧妙的结合在一起。

(三)情感与价值观要求培养学生参与观察、操作等活动的主动性及对思考结果的表达、角落的程度和水平。

教学重点:图形坐标变化与图形的平移之间的关系。

教学难点:在同一坐标系中感受图形上的点的坐标变化与图形变化之间的关系。

教学方法:导学法.教具准备:直尺、坐标纸若干张.教学过程:一、创设问题情境,引入新课:在直角坐标系中描出下列各点并用线段依次连接起来:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0).观察所得到的图形,你觉得它像什么?你们画出的图形和我这里的图形是否相同呢?二、讲授新课1.例题讲解例1:将上图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做以下变化:(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?先根据题意把变化前后的坐标作一对比.如下:(1)(0,1),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),(0,0),(10,4),(6,0),(10,1),(10,-1),(6,0),(8,-2),(0,0).(2)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),(3,0),(8,4),(6,0),(8,1),(8,-1),(6,0),(7,-2),(3,0).根据变化后的坐标,把变化后的图形在自己准备的坐标纸上画出来.第一问你们画出的图形与下面的图形相同吗?所得图案与原图案相比,整条鱼横向拉长为原来的2倍.即鱼变长了.第二问请同学们画一下。

八年级数学上册3.3轴对称与坐标变化教学设计 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化教学设计 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册3.3轴对称与坐标变化。

这部分内容是学生学习了平面直角坐标系、图形的轴对称变换等知识后进行的,是学生进一步学习函数、几何等知识的基础。

本节课主要让学生了解坐标与图形的轴对称变换之间的关系,学会如何运用坐标来表示图形的轴对称变换。

二. 学情分析学生在学习本节课之前,已经掌握了平面直角坐标系的知识,对图形的轴对称变换也有了一定的了解。

但是,学生可能对坐标与轴对称变换之间的关系理解不够深入,需要通过本节课的学习来进一步掌握。

三. 教学目标1.知识与技能:让学生掌握坐标与图形的轴对称变换之间的关系,能运用坐标来表示图形的轴对称变换。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生探索数学问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作交流的学习习惯。

四. 教学重难点1.重点:坐标与图形的轴对称变换之间的关系。

2.难点:如何运用坐标来表示图形的轴对称变换。

五. 教学方法采用问题驱动法、案例分析法、合作交流法等教学方法,引导学生通过自主学习、探究学习、合作学习,掌握坐标与图形的轴对称变换之间的关系。

六. 教学准备1.教师准备:教材、课件、教学素材等。

2.学生准备:课本、练习本、文具等。

七. 教学过程1.导入(5分钟)教师通过一个简单的轴对称变换案例,引导学生回顾轴对称变换的定义,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件展示坐标与轴对称变换之间的关系,让学生观察、思考,引导学生发现坐标与轴对称变换之间的规律。

3.操练(10分钟)教师给出一些具体的轴对称变换问题,让学生独立解决,进一步巩固坐标与轴对称变换之间的关系。

4.巩固(10分钟)教师学生进行小组讨论,分享各自解决问题的方法,互相学习,共同提高。

5.拓展(10分钟)教师引导学生运用所学知识解决一些实际问题,让学生感受数学与生活的紧密联系。

八年级数学北师大版上册 第3章《3.3 轴对称与坐标变化》教学设计 教案

八年级数学北师大版上册 第3章《3.3  轴对称与坐标变化》教学设计 教案

课题轴对称与坐标变化课型新课课时数 1 主备教师执教教师教学目标1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

教学重点难点教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

教学准备三角板、课件教学过程个性化修改一、引入新课1.什么叫轴对称图形?沿着某一直线对折,直线两旁的部分能够完全重合的图形就是轴对称图形;这条直线称为对称轴2.如何在平面直角坐标系中确定点P的位置?二、自学导航8分钟,完成教材68----69页的内容,并回答以下问题。

1、认真阅读例题,你可以做出怎样的总结?2、关于坐标轴对称的点的坐标有什么特点?3、完成课本P69页第2题。

三、精讲1、△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:①△ABC与△A1B1C1有怎样的位置关系?△ABC 与△A 1B 1C 1关于x 轴对称②关于x 轴对称的两点,它们的横坐标 ,纵坐标 ;2.如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.① 两面小旗之间有怎样的位置关系?关于y 轴成轴对称。

② 关于y 轴对称的两点,它们的横坐标 ,纵坐标 。

反过来,坐标具有这种关系的点有怎样的位置关系?四、课堂检测1.平面直角坐标系中,点P (2,3)关于x 轴对称的点的坐标为( ).2. 已知点A (a ,1)与点A 1(5,b )关于y 轴对称,则a= ,b= . 讨论:点P (2,-3)到x 轴、y 轴和坐标原点的距离分别多少? 点M (-3,4)到x 轴、y 轴和坐标原点的距离分别多少? 点P(a,b)与坐标原点的距离22b a3. 已知点M (m ,-5). ①点M 到x 轴的距离是____;②若点M 到y 轴的距离是4;那么 m 为____.4. 点P 到x 轴的距离是2.5;到y 轴的距离是4.5. 求点P 的坐标.五、拓展提升在x 轴上有一条河,现准备在河流边上建一个抽水站P ,使得抽。

北师大版数学八年级上册3.3轴对称与坐标变换(教案)

北师大版数学八年级上册3.3轴对称与坐标变换(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解轴对称与坐标变换的基本概念。轴对称是指一个图形可以沿着某条直线对折,对折后的两部分完全重合。它是几何学中的一种重要变换,广泛应用于艺术、建筑和工程设计等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过坐标变换找到轴对称图形的对称点,以及它在解决实际问题中的应用。
3.重点难点解析:在讲授过程中,我会特别强调轴对称的概念和坐标变换的方法这两个重点。对于难点部分,比如对称点的坐标求解,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与轴对称与坐标变换相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过坐标变换找到图形的轴对称点。
北师大版数学八年级上册3.3轴对称与坐标变换(教案)
一、教学内容
本节课选自北师大版数学八年级上册第三章第三节“轴对称与坐标变换”。教学内容主要包括以下两点:
1.轴对称:掌握轴对称的概念,了解轴对称的性质,能够判断一个图形是否为轴对称图形,并找出对称轴;能够利用轴对称设计简单的图案。
2.坐标变换:掌握平移、旋转等坐标变换的方法,了解坐标变换对图形的影响;能够运用坐标变换解决实际问题,如求解对称点的坐标。
结合本节课内容,通过实际操作、探索与思考,使学生更好地理解轴对称与坐标变换的概念,提高空间想象能力和解决问题的能力。
二、核心素养目标
1.培养学生的几何直观与空间想象能力:通过轴对称与坐标变换的学习,使学生能够观察、分析并描述几何图形及其运动,提高对图形的感知和认识,发展空间想象力。
2.提升学生的逻辑推理与问题解决能力:引导学生运用轴对称性质和坐标变换方法,进行严密的逻辑推理,解决实际问题,培养分析问题和解决问题的能力。

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计1

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计1

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计1一. 教材分析《轴对称与坐标变化》是北师大版八年级数学上册第三章第三节的内容。

本节内容是在学生已经掌握了坐标系、二元一次方程组等知识的基础上,引出轴对称的概念,并探讨其在坐标系中的运用。

通过本节内容的学习,使学生理解轴对称的性质,学会运用坐标系解决轴对称问题,提高学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在学习本节内容时,已具备一定的数学基础,但对于轴对称的概念和其在坐标系中的应用可能还存在一定的困惑。

因此,在教学过程中,需要教师通过生动形象的讲解和丰富的实例,帮助学生理解和掌握轴对称的性质和坐标系在解决轴对称问题中的应用。

三. 教学目标1.理解轴对称的概念,掌握轴对称的性质。

2.学会运用坐标系解决轴对称问题。

3.提高学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.轴对称的概念和性质。

2.坐标系在解决轴对称问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动思考和探索。

2.使用生动形象的讲解和丰富的实例,帮助学生理解和掌握轴对称的性质和坐标系在解决轴对称问题中的应用。

3.学生进行合作交流,提高学生的团队协作能力。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备轴对称的实物模型,如剪刀、纸张等。

3.准备坐标系的相关教具,如坐标轴模型等。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称现象,如剪刀、纸张等,引导学生关注轴对称的概念。

然后,教师提问:“请大家思考一下,什么是轴对称?”让学生进行思考和讨论。

2.呈现(10分钟)教师通过PPT呈现轴对称的定义和性质,让学生初步了解轴对称的概念。

同时,教师结合实例进行讲解,帮助学生理解和掌握轴对称的性质。

3.操练(10分钟)教师学生进行小组讨论,让学生运用坐标系解决一些轴对称问题。

教师给予学生一定的指导,并引导学生总结解决轴对称问题的方法。

4.巩固(10分钟)教师通过一些练习题,让学生巩固本节课所学的知识。

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。

本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。

二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。

但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。

三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。

2.能够运用坐标变化规律,解决实际问题。

3.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。

2.教学难点:如何运用坐标变化规律解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。

六. 教学准备1.准备相关的多媒体教学课件和教学素材。

2.准备坐标纸、剪刀、胶水等实验材料。

3.设计好课堂练习题和课后作业。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。

引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。

引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。

3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。

要求学生用自己的语言描述坐标变化规律。

4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。

教师巡回指导,解答学生的疑问。

5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级上册数学33轴对称与坐标变化优秀教案3.3轴对称与坐标变化
写出对称点的坐标.
1.探索图形坐标变化的过程;(重点)2.了解掌握图形坐标变化与图
形轴对称之间的关系.(难点)
分别作点A,B,C关于某轴、y解析:
轴的对称点即可.
解:如图所示.
A1(1,4),B1(3,1),A2(-1,-4),B2(-3,-1),C点关于某轴、y轴的对称点的坐标不变.
方法总结:作对称图形应先确定关键点的对称点,再顺次连接各点即
可作图.
探究点三:平面直角坐标系中的规律探究
如图,已知A1(1,0),A2(1,1),
A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2022的坐标为
________.
一、情境导入
在我们的生活中,对称是一种很常见的现象.把如图所示成轴对称的
黄鹤楼图形放在平面直角坐标系中,其对称轴为某条坐标轴.那么,图形
上对称的坐标会有什么关系呢?试一试.
二、合作探究
探究点一:关于某轴、y轴对称的点的坐标
点A(2a-3,b)与点A′(4,a+
2)关于某轴对称,求a,b.
解析:此题应根据关于某轴对称的两个点的坐标的特点:横坐标相同,纵坐标互为相反数,得2a-3与4相等,b与a+2互为相反数.
解:由点A(2a-3,b)与点A′(4,a+2)关于某轴对称知2a-3=4,a+
2=-b.711
所以a=,b=-.22
方法总结:在平面直角坐标系中,关于
坐标轴对称的点的坐标关系:若A(某,y)与B(m,n)关于某轴对称,
则有某=m,y=-n;若A(某,y)与B(m,n)关于y轴对称,则有某=-m,y=n.
探究点二:作图——轴对称变换
如下图所示,△ABC三个顶点的坐
标分别为A(-1,4),B(-3,1),C(0,0),作出△ABC关于某轴、y
轴的对称图形.并
解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),
A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),
A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每
四个点的横、纵坐标,发现存在着一定规律性.因为2022=503某4+3,
所以点A2022在第二象限,纵坐标和横坐标互为相反数,所以A2022的坐标为(-504,504).故填(-504,504).
方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.
三、板书设计。

相关文档
最新文档