(完整word版)自学考试计量经济学核心知识点,推荐文档

合集下载

(完整)计量经济学考试重点整理

(完整)计量经济学考试重点整理

计量经济学考试重点整理第一章:P1:什么是计量经济学?由哪三组组成?定义:“用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不能和计量经济学混为一谈。

计量经济学与经济统计学绝非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。

经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分条件。

三者结合起来,就是力量,这种结合便构成了计量经济学。

”P9:理论模型的设计主要包含三部分工作,即选择变量,确定变量之间的数学关系,拟定模型中待估计参数的数值范围。

P12:常用的样本数据:时间序列,截面,虚变量数据P13:样本数据的质量(4点)完整性;准确性;可比性;一致性P15-16:模型的检验(4个检验)1、经济意义检验2、统计检验拟合优度检验总体显著性检验变量显著性检验3、计量经济学检验异方差性检验序列相关性检验共线性检验4、模型预测检验稳定性检验:扩大样本重新估计预测性能检验:对样本外一点进行实际预测P16计量经济学模型成功的三要素:理论、方法和数据。

P18-20:计量经济学模型的应用1、结构分析经济学中的结构分析是对经济现象中变量之间相互关系的研究.结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析。

计量经济学模型的功能是揭示经济现象中变量之间的相互关系,即通过模型得到弹性、乘数等。

2、经济预测计量经济学模型作为一类经济数学模型,是从用于经济预测,特别是短期预测而发展起来的。

计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律为主要技术手段。

对于非稳定发展的经济过程,对于缺乏规范行为理论的经济活动,计量经济学模型预测功能失效。

模型理论方法的发展以适应预测的需要。

3、政策评价政策评价是指从许多不同的政策中选择较好的政策予以实行,或者说不同的政策对经济目标所产生的影响的差异。

计量经济学重点知识整理

计量经济学重点知识整理

计量经济学重点知识整理计量经济学是经济学中重要的一个分支,主要研究经济现象和经济理论的数理化方法。

本文将整理计量经济学中的重点知识,帮助读者系统地理解和掌握这门学科。

一、计量经济学简介计量经济学是运用统计方法和经济模型对经济问题进行定量分析的学科。

它利用数理统计学的工具,根据经济理论和实证研究的需要,对经济现象进行测度和解释。

计量经济学方法的特点是同时考虑了外生性和内生性变量之间的关系,能够揭示其中的因果关系。

二、计量经济学的基本原理1. 线性回归模型线性回归模型是计量经济学中最基本的模型之一,用于描述因变量与自变量之间的线性关系。

常见的线性回归模型有简单线性回归模型和多元线性回归模型。

对于简单线性回归模型,可以通过最小二乘法估计模型参数,求得最佳拟合曲线。

而多元线性回归模型则通过矩阵运算推导出参数的估计公式。

2. 假设检验在计量经济学中,假设检验是一种重要的统计方法,用于验证经济理论的假设。

常见的假设检验包括 t 检验、F 检验和卡方检验等。

通过构建原假设和备择假设,并计算相应的统计量,可以对经济理论提出的假设进行检验,从而得出结论。

3. 时间序列分析时间序列分析是计量经济学中的一个重要分支,用于研究随时间变化的经济现象。

常见的时间序列分析方法包括自相关函数(ACF)和偏自相关函数(PACF)的计算,以及平稳性检验、白噪声检验、单位根检验等。

这些方法可以帮助我们了解时间序列数据的性质,并进行有效的预测。

4. 面板数据分析面板数据是计量经济学中常用的一种数据类型,指同一时期内多个个体或单位的多个观测数据。

面板数据分析方法可以更好地解决普通截面数据和时间序列数据的缺陷,提高分析的效果。

常见的面板数据模型包括固定效应模型和随机效应模型,通过估计模型参数,可以得到各个因素对经济变量的影响。

三、计量经济学的应用领域1. 消费者行为分析计量经济学方法可以应用于消费者行为的分析,通过对消费者支出和收入等因素的测度和分析,揭示消费者行为背后的规律。

计量经济学重点(DOC)

计量经济学重点(DOC)

一、 单选5*2 1、 线性相关系数r 与拟合优度R 2关系2、F 统计量公式及其变形3、t 检验与F 检验矛盾的原因 多重共线性的特点4、R 2与 的比较可见,当K=0时相等R 2总是小于 ;甚至可能为负数(若出现负数,视同等于0)。

2222221222[()()]()ˆ()()()xyi i i i ixx yyiLx x y y x x R r x x y y L L y y β---====---∑∑∑∑∑2222/1(1)/(1)1R k R n k F R n k R k --==⋅----~(,1)/(1)ESS kF F k n k RSS n k =----2R 22/(1)11111(1)/(1)11RSS n k RSS n n R R TSS n TSS n k n k ----=-=-⋅=-------2R5、6、回归的标准误差,即把下面的平方7、双对数模型单对数模型二、名词解释5*41、普通最小平方和(OLS):即最小二乘法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。

2、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分3、总平方和(TSS): 即总离差平方和,用TSS 表示,用以度量被解释变量的总变动。

2ˆσ是包含所有k 个自变量时的均方误差 2ˆ);1kRSS n k σ=--ux y ++=10ln ββ2222()i iTSS y y y ny Y Y ny'=-=-=-∑∑22011222ˆ()ˆˆˆˆi i i i i i k ki i ESS y y y x y x y x y ny''nyββββ=-=++++-=-∑∑∑∑∑βX Y 2201122ˆ()ˆˆˆˆi i ii i i i i k ki iRSS y y y y x y x y x y ''ββββ=-=-----==∑∑∑∑∑∑Y'Y -βX Yuy y ++=ln ln ln 10ββ4、样本决定系数(R 2):回归平方和占总平方和的比重。

计量经济学 主要知识点

计量经济学  主要知识点

《计量经济学》《经济计量学》《Econometrics》一、主要知识点第一章绪论第一节计量经济学一、经济计量学的产生过程1930 世界经济计量学会二、经济计量学与其他学科的关系计量经济学的定义第二节建立计量经济学模型的步骤和要点一、数据类型1、时间序列数据2、截面数据3、面板数据二、经济变量与经济参数(一)、经济变量1、内生变量和外生变量内生变量(endogenous variable):随机变量,模型自身决定;内生变量影响模型中内生变量,同时又受外生变量和其它内生变量影响。

外生变量(exogenous variable):通常为非随机变量,在模型之外决定。

而外生变量只影响模型中的内生变量,不受模型中任何其它变量影响。

2、解释变量与被解释变量3、滞后变量与前定变量(二)建模步骤和要点。

模型假定把所研究的经济变量之间的关系用适当的数学模型表达出来。

估计参数模型检验:经济意义的检验、统计推断的检验、计量经济的检验、预测的检验第三节计量经济学模型的应用模型应用:政策评价、经济预测、结构分析、检验和发展经济理论第二章一元线性回归模型第一节概述一、相关关系与回归分析1、函数关系与统计相关关系2、相关分析与回归分析的区别和联系二、总体回归模型与样本回归模型1、总体回归模型(PRF):总体回归函数随机扰动项2、样本回归模型(SRF):样本回归函数残差第二节简单线性回归模型的参数估计一、对线性回归模型的假设(古典假定)如何表示?1、零均值假定2、同方差假定3、无自相关假定4、 与解释变量不相关5、 正态性假定二、普通最小二乘法(OLS )1、 OLS 的思想 参数估计式2、Y i 的分布三、普通最小二乘估计量的统计性质 高斯—马尔可夫定理 BLUE1、参数估计量的性质 高斯-马尔科夫定理2、 总体方差/随机扰动项方差的估计式3、 参数估计量的概率分布四、最大似然估计的概念第三节 简单线性回归模型的检验一、对估计值的直观判断(经济意义的检验) 二、拟和优度的检验1、 TSS=ESS+RSS2、 TSS ESS RSS 各自的含义3、 R2的构造4、 ∑∑==22212ˆiyx TSSESS R iβ5、 2R [0,1]三、对1β的显著性检验(T 检验) 检验步骤 四、均值预测与个值预测的置信区间 P49 第三章 多元线性回归模型 第一节 概述一、基本概念偏回归系数及其解释二、多元线性回归的基本假定如何表示和理解?1、零均值假定2、同方差假定3、无自相关假定4、无多重共线性5、扰动项与解释变量不相关6、正态性假定第二节多元线性回归模型的最小二乘估计一、矩阵形式的OLS参数估计式二、总体方差/随机扰动项方差的OLS估计式三、参数估计量的性质:同一元情形四、样本容量问题第三节多元回归模型的检验一、拟和优度检验1、判定系数2、调整后的判定系数二、对单个回归系数的显著性检验(T检验)检验步骤三、总体回归模型的显著性检验(F检验)检验步骤第四节预测对个值预测、区间预测的理解:p74第五节可以线性化的其他函数形式一、线性回归模型的形式:对参数而言是线性的回归系数的含义:边际效应二、几种常见的线性回归模型1、 双对数模型 回归系数的经济含义:弹性2、 半对数模型3、 倒数变换模型第六节 受约束回归 基本思想和检验步骤 第四章 违背经典假设的回归模型第一节 异方差一、异方差1、 异方差,指的是回归模型中的随机误差项的方差不是常数。

(完整word版)计量经济学复习笔记

(完整word版)计量经济学复习笔记

计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究主体是经济现象及其发展变化的规律。

2、运用计量分析研究步骤:模型设定一一确定变量和数学关系式估计参数一一分析变量间具体的数量关系模型检验一一检验所得结论的可靠性模型应用一一做经济分析和经济预测3、模型变量:解释变量:表示被解释变量变动原因的变量,也称自变量,回归元。

被解释变量:表示分析研究的对象,变动结果的变量,也成应变量。

内生变量:其数值由模型所决定的变量,是模型求解的结果。

外生变量:其数值由模型意外决定的变量。

外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。

前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响, 但能够影响我们所研究的本期的内生变量。

前定变量:前定内生变量和外生变量的总称。

数据:时间序列数据:按照时间先后排列的统计数据。

截面数据:发生在同一时间截面上的调查数据。

面板数据:虚拟变量数据:表征政策,条件等,一般取0或1.4、估计评价统计性质的标准无偏:E (人3 )= 3 随机变量,变量的函数?有效:最小方差性一致:N趋近无穷时,3估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比CH2 CH3线性回归模型模型(假设)一一估计参数一一检验一一拟合优度一一预测1、模型(线性)(1)关于参数的线性模型就变量而言是线性的;模型就参数而言是线性的。

Yi = 3 1+ 3 2lnX i+u线性影响随机影响Y i=E (Y|X i) +u E (Y|X i) =f(X i)= 3 1+3 2lnX 引入随机扰动项,(3)古典假设A零均值假定 E ( U i |X i) =0B同方差假定Var(u i|XJ=E(u i2)=2(TC无自相关假定Cov(u i ,u j)=0D随机扰动项与解释变量不相关假定Cov(u i ,X i )=0E正态性假定u~N(0, d 2)F无多重共线性假定Rank(X)=k2、估计在古典假设下,经典框架,可以使用OLS方法:OLS 寻找min Ee i2人B iois = (Y均值)-人B 2(X均值)人B 2ois = Ex i y〃Ex i23、性质OLS回归线性质(数值性质)(1)回归线通过样本均值(X均值,Y均值)(2)估计值人Y的均值等于实际值Y的均值(3)剩余项e i的均值为0(4)被解释变量估计值人Y与剩余项8不相关Cov(人Y,ej=0(5)解释变量X与剩余项8不相关Cov(e i,X i)=0在古典假设下,OLS的统计性质是BLUE统计最佳线性无偏估计4、检验(1) Z检验Ho: B 2=0原假设验证B 2是否显著不为0标准化:Z= (A B 2- B 2) /SE (A B 2)〜N( 0,1 ) 在方差已知,样本充分大用Z检验拒绝域在两侧,跟临界值判断,是否B2显著不为0(2) t检验一一回归系数的假设性检验方差未知,用方差估计量代替 A d 2=Ee i2/(n-k) 重点记忆t =(人卩2- B 2) / A SE (A B 2)〜t (n-2)拒绝域:|t|>=t 2/a( n-2)拒绝,认为对应解释变量对被解释变量有显著影响。

(完整word版)计量经济学重点(简答论述题)(word文档良心出品)

(完整word版)计量经济学重点(简答论述题)(word文档良心出品)

计量经济学重点(简答题)一、什么是计量经济学?计量经济学,又称经济计量学,它是以一定的经济理论和实际统计资料为依据,运用数学、统计学和计算机技术,通过建立计量经济学模型,定量分析经济变量之间的随机因果关系.。

二、计量经济学的研究的步骤是什么?1)理论模型的设计A.理论或假说的陈述;B.理论的数学模型的设定;C.理论的计量经济模型的设定。

i.把模型中不重要的变量放进随机误差项中;ii.拟定待估参数的理论期望值。

2)获取数据数据来源:网络、统计年鉴、报纸、杂志数据类别:时间序列数据、截面数据、混合数据、虚变量数据。

数据要求:完整性、准确性、可比性、一致性i.完整性:模型中包含的所有变量都必须得到相同容量的样本观察值。

ii.准确性:统计数据或调查数据本身是准确的。

iii.可比性:数据口径问题。

iv.一致性:指母体与样本的一致性。

3)模型的参数估计:普通最小二乘法。

4)模型的检验:经济学检验;统计学检验;计量经济学检验;模型的预测检验。

5)模型的应用:结构分析;经济预测;政策评价;经济理论的检验与发展。

三、简述统计数据的类别?时间序列数据、截面数据、混合数据、虚变量数据。

1)时间序列数据:按时间先后排列收集的数据。

采纳时间序列数据的注意事项:A.所选择的样本区间的经济行为一致性问题。

B.样本数据在不同样本点之间的可比性问题。

C.样本数据过于集中的问题。

不能反映经济变量间的结构关系,应增大观察区间。

D.模型的随机误差项序列相关问题。

2)截面数据:又称横向数据,是一批发生在同一时间截面上的调查数据。

研究某时点上的变化情况。

采纳截面数据的注意事项:A.样本与母体的一致性问题。

B.随机误差项的异方差问题。

3)混合数据:也称面板数据,既有时间序列数据,又有截面数据。

4)虚变量数据:又称二进制数据,只能取0和1两个值,表示的是某个对象的质量特征。

四、模型的检验包括哪几个方面?具体含义是什么?1)经济学检验:参数的符合和大致取值。

计量经济学基础知识梳理(超全)

计量经济学基础知识梳理(超全)
“微小”的含义取决于具体情况。
2.自然对数
近似计算的作用: 定义y对x的弹性(elasticity)为
y x %y x y %x
换言之,y对x的弹性就是当x增加1%时y的百分数变化。
若y是x的线性函数:y 0 1x ,则这个弹性是
y x
x y
1
x y
1
0
x
1x
它明显取决于x的取值(弹性并非沿着需求曲线保持不变)。
在经验研究工作中还经常出现使用对数函数的其他可 能性。假定y>0,且
logy 0 1x 则 logy 1x ,从而 100 logy 100 1x。
由此可知,当y和x有上述方程所示关系时,
%y 100 1x
例: 对数工资方程
假设小时工资与受教育年数有如下关系:
logwage 2.78 0.094edu
y 0 1 x;dy dx 1 2 x1 2
y 0 1logx;dy dx 1 x y exp0 1x;dy dx 1 exp0 1x
4.微分学
当y是多元函数时,偏导数的概念便很重要。假定y=f
(x1,x2),此时便有两个偏导数,一个关于x1,另一个关
于 x1的x2普。通y对导x1数的。偏类导似数的记,为yxy1就,是就固是定把xx12时看方做程常对数x时2的方导程数对。
的最大值出现在x*=8/4=2处,并且这个最大值是6+8×2-
2×(2)2=14。
y 16
14
12
10
8
6
4
2
0
x
0
1
2
3
4
1.二次函数
对方程式 y 0 1x 2x2
2 0 意味着x对y的边际效应递减,这从图中清晰可

计量经济学知识点(超全版)

计量经济学知识点(超全版)

1.经济变量:经济变量是用来描述经济因素数量水平的指标。

(3分)2.解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

(2分)它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。

(1分)3.被解释变量:是作为研究对象的变量。

(1分)它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。

(2分)4.内生变量:是由模型系统内部因素所决定的变量,(2分)表现为具有一定概率分布的随机变量,是模型求解的结果。

(1分)5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。

(2分)它影响模型中的内生变量,其数值在模型求解之前就已经确定。

(1分)6.滞后变量:是滞后内生变量和滞后外生变量的合称,(1分)前期的内生变量称为滞后内生变量;(1分)前期的外生变量称为滞后外生变量。

(1分)7.前定变量:通常将外生变量和滞后变量合称为前定变量,(1分)即是在模型求解以前已经确定或需要确定的变量。

(2分)8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,(2分)它一般属于外生变量。

(1分)9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,(2分)是以数学形式对客观经济现象所作的描述和概括。

(1分)10.函数关系:如果一个变量y的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。

(3分)11.相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。

(3分)12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。

(3分)13.高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯-马尔可夫定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自学考试计量经济学核心知识点1、费里希(R.Frish)是经济计量学的主要开拓者和奠基人。

2、经济计量学与数理经济学和树立统计学的区别的关键之点是“经济变量关系的随机性特征”。

3、经济计量学识以数理经济学和树立统计学为理论基础和方法论基础的交叉科学。

它以客观经济系统中具有随机性特征的经济关系为研究对象,用数学模型方法描述具体的经济变量关系,为经济计量分析工作提供专门的指导理论和分析方法。

4、时序数据即时间序列数据。

时间序列数据是同一统计指标按时间顺序记录的数据列。

5、横截面数据是在同一时间,不同统计单位的相同统计指标组成的数据列。

6、对于一个独立的经济模型来说,变量可以分为内生变量和外生变量。

内生变量被认为是具有一定概率分布的随机变量,它们的数值是由模型自身决定的;外生变量被认为是非随机变量,它们的数值是在模型之外决定的。

7、对于模型中的一个方程来说,等号左边的变量称为被解释变量,等号右边被称为解释变量。

在模型中一个方程的被解释变量可以是其它方程的解释变量。

被解释变量一定是模型的内生变量,而解释变量既包括外生变量,也包括一部分内生变量。

8、滞后变量与前定变量。

有时模型的设计者还使用内生变量的前期值作解释变量,在计量经济学中将这样的变量程为滞后变量。

滞后变量显然在求解模型之前是已知量,因此通常将外生变量与滞后变量合称为前定变量。

9、控制变量与政策变量。

由于控制论的思想不断渗入经济计量学,使某些经济计量模型具有政策控制的特点,因此在经济计量模型中又出现了控制变量、政策变量等名词。

政策变量或控制变量一般在模型中表现为外生变量,但有时也表现为内生变量。

10、经济参数分为:外生参数和内生参数。

外生参数一般是指依据经济法规人为确定的参数,如折旧率、税率、利息率等。

内生参数是依据样本观测值,运用统计方法估计得到的参数。

如何选择估计参数的方法和改进估计参数的方法,这是理论经济计量学的基本任务。

11、用数学模型描述经济系统应当遵循以下两条基本原则:第一、以理论分析作先导;第二模型规模大小要适度。

12、联立方程模型中的方程一般划分为:随机方程和非随机方程。

随机方程是根据经济机能或经济行为构造的经济函数关系式。

在随机方程中,被解释变量被认为是服从某种概率分布的随机变量,且假设解释变量是非随机变量。

非随机方程是根据经济学理论和政策、法规的规定而构造的反应映某些经济变量关系得恒等式。

13、所谓经济计量分析工作是指依据经济理论分析,运用经济计量模型方法,研究现实经济系统的结构、水平、提供经济预测情报和评价经济政策等的经济研究和分析工作。

14、经济计量分析工作的程序包括四部分:1、设定模型;2、估计参数;3、检验模型;4、应用模型。

15、在社会经济现象中,变量之间的关系可分为两类:函数关系和相关关系。

函数关系是指如果给定解释变量X的值,被解释变量Y的值就唯一地确定了,Y与X的关系就是函数关系,即Y=f(X)。

相关关系是指如果给定了解释变量X的值,被解释变量Y的值不是唯一确定,Y与X的关系就是相关关系。

16、回归分析与相关关系的联系与区别:回归分析研究一个变量(被解释变量)对于一个或多个其它变量(解释变量)的依存关系,其目的在于根据解释变量的数值来估计或预测被解释变量的总体均值。

相关分析研究变量之间相互关联的程度,用相关系数来表示,相关系数又分为简单相关系数和复相关系数;前者表示两个变量之间的相互关联程度,后者描述三个或三个以上变量之间的相关程度。

回归分析和相关分析二者是有联系的,它们都是研究相关关系的方法。

但二者之间也有区别:相关分析关心的是变量之间的相关程度,但并不能给出变量之间的因果关系;而回归分析则要通过建立回归方程来估计解释变量与被解释变量之间的因果关系。

此外,在回归分析中,定义被解释变量为随机变量,解释变量为非随机变量;而在相关分析中,把所考察的变量都看作是随机变量。

17、总体回归模型是根据总体的全部资料建立的回归模型,又称为理论模型。

样本回归模型是根据样本资料建立的回归模型。

在绝大多数情形下,得到总体的全部资料是不可能的。

18、估计回归参数的方法主要有最小二乘法,极大似然估计法和矩估计法,其中最简单的是普通最小二乘法。

这种方法要求回归模型满足以下假设:1.随机误差μi的均值为零,即:E(μi)=0;2.所有随机误差μi都有相同的方差,即:Var(μi)=E(μi—E(μi))2=E(μi2)=σ2;3.任意两个随机误差μi和μj(i≠j)互不相关,也即μi和μj的协方差为零:E(μi—E(μj))(μi—E(μj))=E(μiμj)=04.解释变量X是确定变量,与随机误差μi不相关。

5.对回归参数进行统计检验时,还须假定μi服从正态分布。

满足上述假定的线性回归模型称为经典线性回归模型。

19、求解一元线性回归模型参数的应用公式:nΣXY—ΣXΣY ΣYΣX2—ΣXΣXY——β1=——————————β0=————————————=Y—β1XnΣX2—(ΣX)2nΣX2—(ΣX)2其中X、Y均为样本值。

20、利用普通最小二乘法求的样本回归直线具有以下特点:(1)样本回归直线必然通过点X的均值和点Y的均值;(2)预测值Y的平均值与实际值Y的平均值相等;(3)残差ei均值为零;(4)残差ei与解释变量X不相关。

21、普通最小乘估计量的特性:(1)无偏性:E(β0)= β0,E(β1)= β1由不同样本得到的β0和β1可能大于或小于总体的β1和β0,但平均起来等于总体参数。

(2)线性特性:即估计量β0和β1均为样本观测值Y的线性组合。

(3)有效性:即β1和β0的方差最小。

22、简单线性回归模型的检验(1)对估计值的直观判断:1.对回归系数β1的符号判断;2.对β1的大小判断。

(2)拟合优度的检验:拟合优度是指样本回归直线与样本观测值之间的拟合程度,通常用判定系数r2表示。

检验拟合优度的目的,是了解释变量X对被解释变量Y的解释程度。

X对Y的解释能力越强,残差ei的绝对值就越小,从而样本观测值离回归直线的距离越近。

判定系数计算公式:ESS Σ(Y(预测值)—Y(均值)) β12(回归系数)Σ(X(样本值)—X(均值))r2=———=——————————————=————————————————————TSS Σ(Y(样本值)—Y(均值)) Σ(Y(样本值)—Y(均值))判定系数r2的两个重要性质:1.它是一个非负的量。

2.它是在0与1之间变化的量。

当r2=1时,所有的观测值都落在样本回归直线上,是完全拟合;当r2=0时,解释变量与被解释变量之间没有关系。

23、相关系数是衡量变量之间线性相关的指标。

用r表示,它具有下列性质:(1)它是可正可负的数(2)它是在-1与+1之间变化的量。

(3)它具有对称性,即X与Y之间的相关系数与Y与X值将的相关系数相同。

(4)如果X和Y在统计上独立,则相关系数为零。

当r=0,并不说明两个变量之间一定独立。

这是因为,r仅适用于变量之间的线性关系,而变量之间可能存在非线性关系。

Σ(X(样本值)—X(均值))(Y(样本值)—Y(均值))r=—————————————————————————————[Σ(X(样本值)—X(均值))2Σ(Y(样本值)—Y(均值))2]1/2r=±[r2]1/2并且r的符号与回归系数β1的符号相同。

相关系数与判定系数在概念上仍有明显区别:前者建立在相关分析的理论基础上,研究的是两个随机变量之间的线性相关的关系,不仅反映变量之间的因果关系;后者建立在回归分析的理论基础上,研究的是一个普通变量(X)对另一个随机变量的定量解释程度。

24、相关系数的检验(t检验)一般说来,相关系数可以反映X与Y之间的线性相关程度。

r的绝对值越接近于1,X与Y之间的线性关系就越密切。

但相关系数通常是根据样本数据得到的,因而带有一定的随机性,且样本越小其随机型就越大。

因此,我们有必要依据样本相关系数r对总体相关系数ρ进行统计检验。

可构造t统计量:r(n—2)1/2t=——————其中r为相关系数,n为样本数,服从(n-2)的t分布;查t分布得(1—r2) 1/2 相应的临界值tα/2如果有:|t|≥tα/2则认为X与Y之间存在显著的线性相关关系。

反之若有|t|≤tα/2则认为X与Y之间不存在显著的线性相关关系。

25、在一元线性回归模型中Y=β0+β1X+μi,β1代表解释变量X对被解释变量Y的线性影响。

如果X对Y的影响是显著的,则有β1≠0;若X对Y的影响不显著,则有β1=0。

由于真实参数β1是未知的,我们只能依据样本估计值对β1进行统计检验。

26、多重判定系数R2:为了说明二元回归方程对样本观测值拟合的优劣,需要定义多重判定系数。

多重判定系数与简单判定系数r2一样,R2也定义为有解释的变差(ESS)与总变差(TSS)之比。

显然,R2也是一个在0与1 之间的数。

R2的值越接近1,拟合优度就越高。

R2=1时,RSS=0,表明被解释变量Y的变化完全由解释变量X1和X2决定;当R2=0,表明Y的变化与X1,X2无任何关系。

同时对于两个被解释变量相同而解释变量个数不同的模型,包含解释变量多的模型就会有较高的R2值。

27、复相关系数R表示所有解释变量与Y的线性相关程度。

在二元回归分析中,复相关系数R表示的就是解释变量X1 X2与被解释变量Y之间的线性相关程度。

28、对总体回归模型的显著性检验(F检验)多元线性回归模型的总体显著性检验是检验所有解释变量对Y的共同影响是否显著。

构造F统计量:ESS/(k-1) R2/(k—1)F=——————=———————————其中k为模型中的参数个数,n为样本个数RSS/(n—k) (1—R2)/(n—k) 对于给定的显著性水平,自由度为k—1和n—k,查F分布表可得临界值Fα(k-1,n-k),如果有F≥Fα(k-1,n-k)则认为X1和X2对Y的线性影响是显著的;反之,如果有F≤Fα(k-1,n-k),则总体线性回归模型不能成立。

29、方差非齐性:经典线性回归分析的一个基本假定就是回归模型中的随机误差项的方差为常数,称为方差齐性假定或同方差性假定。

如果回归模型中的随机误差项的方差不是常数,则称随机误差项的方差非齐性或为异方差。

异方差主要存在于横截面数据中。

存在异方差性将导致的后果:1.参数的普通最小二乘估计虽然是无偏的,但却是非有效的。

2.参数估计量的方差估计量是有偏的,这将导致参数的假设检验也是非有效的。

30、方差非齐性的检验:1.样本分段比较法,这种方法由戈德菲尔德(S.M.Goldfeld)和匡特(R.E.Quandt)于1972年提出的,又称为戈德菲尔德-匡特检验。

2.残差回归检验法,这种方法是用模型普通最小二乘估计的残差或其绝对值与平方作为被解释变量,建立各种回归方程,然后通过检验回归系数是否为0,来判断模型的随机误差项是否有某种变动规律,以确定异方差是否存在。

相关文档
最新文档