七年级数学不等式知识点
初中数学不等式知识点大全

一元一次不等式知识点1.不等式不等式的概念:用不等号),,,,(≠≤<≥>表示不等关系的式子叫做不等式。
常用的表示不等关系的语言及符号:(1)大于、比……大、超过:>; (2)小于、比……小、低于:<;(3)不大于、不超过、至多:≥; (4)不小于、不低于、至少:≤;(5)正数:0>; (6)负数:0<;(7)非负数:0≥;(8)非正数:0≤【例1】下列式子中:① 21>-;② 13-≥x ;③ 3-x ;④ vt s =;⑤ y x 243<- ⑥ 2253+=-x x ;⑦ 022≥+a ;⑧ 222c b a ≠+.是不等式的有_________________.【例2】下列语句不能用不等式表示的是( )A. 1+m 是负数B. 2a 是正数C.n m +等于xD. 1-m 是非负数【练习1】下列式子:①05>;②043>+b a ;③2=x ;④1-x ;⑤53≠+x ;⑥732≤+a ;⑦812≥+x ,其中,不等式有______________.【练习2】符号“≥”的含义是“大于或等于”,即“不小于”;符号“≤”的含义是“小于或等于”,即“不大于”.请用文字语言翻译下列不等式:(1)02≥x :____________.(2)0≤-x :_____________.知识点2.不等式的基本性质不等式性质1 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变. 即如果b a >,那么c b c a c b c a ->-+>+,不等式的性质2 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.即 如果0,>>c b a ,那么cb c a bc ac >>,.不等式的性质3 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.即 如果0,<>c b a ,那么cb c a bc ac <<,. 不等式的性质4 如果b a >,那么a b <.不等式的性质5 如果c b b a >>,,那么c a >.【例1】由13+<-b a ,可得到的结论( )A. b a <B. 13-<+b aC. 31+<-b aD. 31-<+b a【例2】如果b a >,那么下列变形错误的是( )A. b a 33->-B. b b a 2>+C.b a 2222-<-D.b a +->+-11【例3】下列判断中,正确的是( )A. 若b a <,则c b c a <B. 若b a <,则22bm am <C. 若22bm am <,则b a <D. 若b a <,则22b a <【例4】 若0<<b a ,则下列式子:① 21+<+b a ;② 1>ba ;③ ab b a <+;④ba 11<. 其中正确的有_______________. 【例5】已知关于x 的不等式()21>-x a 可化为ax -<12,试化简:21++-a a .【练习1】若b a >,则下列不等式成立的是( )A . b a 22-<-B .b m a m 22<C .21-<-b aD .21+<+b a 【练习2】已知y x >,则下列不等式不成立的是( )A .66->-y xB .y x 33>C .y x 22-<-D .6363+->+-y x【练习3】下列叙述正确的是( )A .若b a =,则b a =B .若b a >,则b a >C .若b a <,则b a <D .若b a =,则b a ±= 【练习4】有理数n m ,在数轴上的位置如图示,则下列关系式中正确的个数( )0<+n m ;0>-m n ;n m 11>;02>-n m ;0>--m n A .1个 B .2个 C .3个 D .4个【练习5】如果0>+b a ,且0>b ,那么b a b a --,,,的大小关系为( )A .b a b a -<-<<B .b a a b <-<<-C .b a b a <-<-<D .a b b a -<<-<知识点3.不等式的解集1.使不等式成立的未知数的值,叫做这个不等式的解。
初中数学知识点梳理第四章不等式

初中数学知识点梳理第四章不等式初中数学第四章主要介绍了不等式的基本理论、解不等式的一般步骤以及一元一次不等式、一元二次不等式的解法等内容。
一、不等式的基本性质1.不等式的定义:不等式是表达两个数据之间大小关系的数学式,用不等号“<”、“>”、“≤”、“≥”等表示。
2.不等式的两端可以加上、减去相同的数,并且不等号方向不变。
3.不等式的两端可以乘以、除以正数,并且不等号方向不变;如果乘以或除以负数,则需要改变不等号的方向。
4.不等式的两端可以交换位置,但要改变不等号的方向。
二、不等式的解法步骤1.将不等式化简,使其符合格式要求。
2.根据不等式的性质,找出合适的变量范围。
3.根据条件,求出变量的取值范围。
4.根据不等式的性质,确定不等式的解集。
三、一元一次不等式的解法1. 一元一次不等式是指只含有一个变量的一次函数不等式,形如ax + b < c 或 ax + b > c。
2.解一元一次不等式的步骤:(1) 将不等式化为形如ax + b < 0或ax + b > 0的形式。
(2)确定变量范围,找出通解的形式。
(3) 求解方程ax + b = 0,得出一个关键点,并将变量范围分为几个部分。
(4)根据关键点判断每个部分的取值情况,得出不等式的解集。
四、一元二次不等式的解法1. 一元二次不等式是指只含有一个变量的二次函数不等式,形如ax² + bx + c > 0或ax² + bx + c < 0。
2.解一元二次不等式的步骤:(1) 将不等式化为标准形式ax² + bx + c > 0或ax² + bx + c < 0。
(2)确定变量范围,找出通解的形式。
(3) 求解方程ax² + bx + c = 0,得出两个关键点,并将变量范围分为几个部分。
(4)根据关键点判断每个部分的取值情况,得出不等式的解集。
初中数学方程与不等式知识点总结

初中数学方程与不等式知识点总结方程和不等式是初中数学中的重要内容,它们在解决实际问题和数学运算中都有着广泛的应用。
接下来,让我们一起系统地梳理一下这部分的知识点。
一、方程(一)一元一次方程1、定义:只含有一个未知数,并且未知数的最高次数是 1 的整式方程叫做一元一次方程。
一般形式为:$ax + b = 0$($a \neq 0$,$a$,$b$为常数)。
2、解法:(1)移项:把含未知数的项移到方程的一边,常数项移到方程的另一边。
(2)合并同类项:将同类项进行合并,化简方程。
(3)系数化为 1:方程两边同时除以未知数的系数,得到方程的解。
例如:解方程$3x + 5 = 14$移项得:$3x = 14 5$合并同类项得:$3x = 9$系数化为 1 得:$x = 3$(二)二元一次方程组1、定义:由两个含有两个未知数,且未知数的次数都是 1 的整式方程组成的方程组叫做二元一次方程组。
2、解法:(1)代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,然后代入另一个方程,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得一个未知数的值,再将其代入原方程组中的一个方程,求得另一个未知数的值。
例如:解方程组$\begin{cases}x + y = 5 \\ x y = 1\end{cases}$由第一个方程得:$x = 5 y$,将其代入第二个方程得:$5 y y = 1$$5 2y = 1$$-2y =-4$$y = 2$将$y = 2$代入$x = 5 y$得:$x = 3$所以方程组的解为$\begin{cases}x = 3 \\ y = 2\end{cases}$(2)加减消元法:当两个方程中同一未知数的系数相等或互为相反数时,将两个方程的两边分别相加或相减,消去这个未知数,得到一个一元一次方程,解这个一元一次方程,求得一个未知数的值,再将其代入原方程组中的一个方程,求得另一个未知数的值。
人教版七年级下册数学 第九章 不等式与不等式组 不等式 不等式的性质(第一课时)

探究新知
知识点 2 不等式的性质2 用不等号填空: (1)5 > 3 ;
5×2 > 3×2 ; 5÷2 > 3÷2 . (2)2 < 4 ;
2×3 < 4×3 ;2÷4 < 4÷4 . 自己再写一个不等式,分别在它的两边都乘(或除以)同一 个正数,看看有怎样的结果?与同桌互相交流,你们发现了 什么规律?
解:(1)为了使不等式x-7>26中不等号的一边变为x,根 据不等式的性质1,不等式两边都加7,不等号的方向不 变,得 x-7+7 > 26+7,
x > 33.
这个不等式的解集在数轴上的表示如图所示:
0
33
探究新知
(2)为了使不等式3x<2x+1中不等号的一边变为x,根据
__不__等__式__性__质__1_,不等式两边都减去_2_x__,不等号的方向
探究新知
(3)已知 a<b,则 -a3
由不等式基本性质3,得
-a 3
>
-b 3
,
因为
-a 3
>
-b 3
,两边都加上2,
由不等式基本性质1,得
-a 3
+2
>
-b3+2
.
巩固练习
若 a>b, 用“>”或“<”填空: a-5 > b-5(根据不等式的性质 1 )
探究新知
如果_a_>_b_且__c_>_0_, 那么_a_c_>_b_c__
(或 a b ) cc
探究新知
不等式基本性质2
不等式的两边都乘(或除以)同一个正数, 不等号的方向不变.
初中数学知识点:不等式

初中数学知识点:不等式(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!初中数学知识点:不等式初中数学知识点必备:不等式在我们平凡的学生生涯里,不管我们学什么,都需要掌握一些知识点,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
初中数学不等式知识点大全

初中数学不等式知识点大全一、不等式的基本概念1.不等式的定义:不等式是数学中表示两个数的大小关系的一种数学符号表示法。
2.不等式符号的意义:"<"表示小于、">"表示大于、"<="表示小于等于、">="表示大于等于。
3.一元一次不等式、二元一次不等式和多变量不等式的定义和性质。
4.不等式的解集:表示满足不等式的全部解的集合,可以用数轴表示。
二、不等式的性质1.不等式的传递性:如果a<b,b<c,则a<c。
2.不等式两边加减同一个数,不影响不等关系的大小。
3.不等式两边乘除同一个正数,不影响不等关系的大小。
4.不等式两边乘除同一个负数,不等关系会发生改变。
5.不等式两边取倒数时,要注意变号问题。
6.乘以不等式时,要考虑所乘以的数的正负情况。
三、不等式的解法1.第一类不等式(一元一次不等式)的解法:根据不等式的性质,将不等式中的未知数移到一边,得到关于未知数的集合表示的解,进而求解交集、并集或全集。
2.第二类不等式(一元二次不等式)的解法:将不等式变形为一元二次函数的图像问题,通过观察函数图像,确定不等式的解集。
3.系统不等式的解法:将多个不等式作为一个整体进行考虑,得到多个不等式的交集或并集形式,再求解。
四、一些常见的数学不等式1.加减法不等式:例如2x+3>7,根据性质将未知数移到一边,得到解集x>22.乘除法不等式:例如3x/5>=6,根据性质将未知数移到一边,得到解集x>=10。
3.绝对值不等式:例如,3x+5,<7,根据绝对值的性质进行分段讨论,得到解集-4<x<24.开方不等式:例如√(x-1)>3,根据开方的定义和性质进行讨论,得到解集x>10。
5.取整不等式:例如[x]>2,根据整数函数的定义和性质进行讨论,得到解集x>3五、不等式的应用1.不等式在图像问题中的应用:例如求一元一次不等式的解集时,可以将不等式表示的区间在数轴上进行标注,直观地表示解集。
人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义
人教版七年级数学下册第9章。
一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。
常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。
2.不等式的解与解集不等式的解是使不等式成立的未知数的值。
不等式的解集是一个含有未知数的不等式的解的全体。
解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。
其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。
5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。
对于每段话,进行小幅度的改写,使其更加通顺易懂。
解一元一次不等式和解一元一次方程类似。
不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。
这是解不等式时最容易出错的地方。
例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。
小学数学-小学七年级数学下册-不等式及其解集
人教版 数学 七年级 下册9.1不等式/9.1不等式9.1.1不等式及其解集9.1不等式/很多人在自己的童年生活中,都做过跷跷板的游戏,当一个大人和一个小孩同时坐上等臂长的跷跷板的两边时会发生什么现象呢?导入新知9.1 不等式/1. 了解不等式概念和不等式的解.2. 理解不等式的解集,能正确表示不等式的解集.素养目标3. 培养数感,渗透数形结合的思想.知识点1不等式的概念现实生活中,数量之间存在着相等与不相等的关系.例如,小明的身高为155cm,小聪的身高为156cm ,则我们可以用不等号“>”或“<”来表示他们的身高之间的关系.如:156 > 155或155 < 156.155cm156cm【思考】如图所示,处于平衡状态的托盘天平的右盘放上一质量为50g的砝码,左盘放上一个圆球后向左倾斜,问圆球的质量x g与质量为50g的砝码之间具有怎样关系?我们很容易知道圆球的质量大于砝码的质量,即x > 50.一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车速应满足什么条件?A50千米11 :2012 :0040分钟=2/3小时设车速是x千米/时从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即①②分析:【思考】下列式子有什么区别?区别:①只有(4)的式子里含有“=”符号;②除了(4)的式子里含有“>”或“<”或“≥”或“≤”或“≠”符号;(1)(2)(3)x ≠50(4)x =5(5)x ≥9(6)x ≤10共同点:l 式子里含有不是“=”的符号.l 式子里没有“=”号;观察 , ,x≥9,x ≠50,x ≤10想一想它们有什么共同点?用不等号(<,>,≥,≤,≠)连接的式子叫做不等式.例1 判断下列式子是不是不等式:① -1<3; ② -x +2=4;③ 3x ≠ 4y ; ④ 6 > 2;⑤ 2x -3; ⑥ 2m < n.是;不是;是;是;不是;是.素养考点 1不等式的识别9.1不等式/下列式子哪些是不等式?哪些不是不等式?为什么?①-2<5;②x+3>6;③4x-2y≤0;④a-2b;⑤a+b≠c;⑥5m+3=8;⑦8+4<7;⑧ .巩固练习答:①②③⑤⑦⑧是不等式,④⑥不是,因为④不含不等号,⑥是等式.9.1 不等式/(1) a 与1的和是正数;(2)y 的2倍与1的和小于3;(3) y 的3倍与x 的2倍的和是非负数(4) x 乘以3的积加上2最多为5.(1) a +1>0;(2)2y +1<3;(3)3y +2x ≥0;(4)3x +2≤5.例2 用不等式表示:解:素养考点 2用不等式表示数量关系探究新知9.1不等式/用不等式表示:(1)a是正数 ;(2)a是非正数 ;(3)a与5和小于7 ; (4)a与2的差不小于-1;a >0;a ≤0;a + 5 < 7;a -2 ≥-1.巩固练习交流:下面给出的数中,能使不等式x >50成立吗?你还能找出其他的数吗?20, 40, 50, 100. 当x=20,20<50, 不成立;当x=40,40<50, 不成立;当x=50,50=50, 不成立;当x=100,100>50, 成立.解:知识点 2不等式的解和解集我们曾经学过“使方程两边相等的未知数的值是方程的解”,与方程类似 , 能使不等式成立的未知数的值叫不等式的解.代入法是检验某个值是否是不等式的解的简单、实用的方法.例如:100是x >50的解.判断下列数中哪些是不等式 的解:60,73,74.9,75.1,76,79,80,90.你还能找出这个不等式的其他解吗?这个不等式有多少个解?(2)你从表格中发现了什么规律?(1)你发现了哪些数是这个不等式的解?x 607374.975.176798090不是是是不是不是是是是无数个一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.【讨论】1.不等式的解和不等式的解集是一样的吗?2.不等式的解与解不等式一样吗?求不等式的解集的过程叫解不等式.满足一个不等式的未知数的某个值满足一个不等式的未知数的所有值个体全体如:x=3是2x-3<7的一个解如:x<5是2x-3<7的解集某个解定是解集中的一员解集一定包括了某个解不等式的解与不等式的解集的区别与联系联系不等式的解不等式的解集区别定义特点形式例 下列说法正确的是( )A. x =3是2x +1>5的解B. x =3是2x +1>5的唯一解C. x =3不是2x +1>5的解D. x =3是2x+1>5的解集A 素养考点 1不等式的解和解集的判断9.1 不等式/解:3.2,4.8,8,12是不等式的解;-4,-2.5,0,1,2.5,3不是.下列数中,哪些是不等式x +3﹥6的解?哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,12.巩固练习9.1 不等式/判断下列说法是否正确?(1) x =2是不等式x +3<4的解; ( )(2) 不等式x +1<2的解有无穷多个; ( )(3) x =3是不等式3x <9的解; ( )(4) x =2是不等式3x <7的解集. ( )√×××巩固练习第一种:用式子(如x >2),即用最简形式的不等式 (如x >a 或x <a )来表示.第二种:用数轴,一般标出数轴上某一区间,其中的点对应的数值都是不等式的解.用数轴表示不等式的解集的步骤:第一步:画数轴;第二步:定界点;第三步:定方向.知识点 3不等式解集的表示方法【画一画】 利用数轴来表示下列不等式的解集.(1)x >-1;(2) x < .-101变式:已知x 的取值范围在数轴上表示如图,你能写出x 的取值范围吗?-2x <-2表示-1的点表示 的点方向向右方向向左空心圆表示不含此点探究新知9.1不等式/归纳总结用数轴表示不等式的解集,应记住下面的规律:1.大于向右画,小于向左画;2.>,<画空心圆.12例 直接写出x +4<6的解集,并在数轴上表示出来. 解:x <2.这个解集可以在数轴上表示为:解:(1)x <-4(2)x >4.0-44(1)(2)变式1:已知x 的解集如图所示,你能写出x 的解集吗?素养考点1在数轴上表示不等式解集变式2:直接写出不等式2x>8的解集,并在数轴上表示出来.解:x>4.这个解集在数轴上表示为:04变式3:直接写出不等式-2x>8的解集.解:x<-4.巩固练习9.1不等式/在数轴上表示下列不等式的解集:(1) x>-1; (2) x≥-1;(3) x<-1; (4) x≤-1.分析:按画数轴,定界点,走方向的步骤作答.答案:如图:连接中考9.1不等式/语句“x的与x的和不超过5”可以表示为( )A A.B.C. D.1. 用不等式表示下列数量关系:(1)a 是正数;(2)x 比-3小;(3)两数m 与n 的差大于5.a > 0;x <-3;m-n >5.2.下列不是不等式5x -3<6的一个解的是( )A.1B.2C.-1D.-2B 基础巩固题3.在数轴上表示不等式3x>5的解集,正确的是( )AA 012 012CB 01212D4.判断下列式子是不是不等式:(1)-3>0; (2)4x+3y<0;(3)x=3; (4)x2+xy+y2;(5)x≠5; (6)x+2>y+5.解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.5.直接写出下列不等式的解集.x +3>6的解集是 ;2x <18的解集是; x -2>0的解集是 .x >3x<9x >2解:当x =63时, ,不等式成立,所以x =63是不等式 的解 ; 当x =60时, ,不等式不成立,所以x =60不是不等式 的解;当x =54时, ,不等式不成立,x =63是不等式 的解吗?x =60呢?x =54呢? 能力提升题已知一支圆珠笔x 元,签字笔与圆珠笔相比每支贵y 元. 小华想要买3支圆珠笔和10支签字笔,若付50元仍找回若干元,则如何用含x ,y 的不等式来表示小华所需支付的金额与50元之间的关系?解: 3x +10(x+y )<50.拓广探索题9.1 不等式/不等式→实际问题中不等式的表示概念↓↓解、解集课堂小结9.1不等式/课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习。
初中数学知识点——不等式
初中数学知识点——不等式引言:在初中数学中,不等式是一个非常重要的知识点,它是解决一元一次方程组和二元一次方程组的基础。
在本文中,我们将详细介绍不等式的相关知识点,并提供大量的练习题和参考答案,以帮助学生们深入了解和掌握这一知识点。
一、概念和性质1.1 不等式的类型不等式有三种类型:严格不等式、非严格不等式和混合不等式。
① 严格不等式:用“<”或“>”表示,例如:x > 5。
② 非严格不等式:用“≤”或“≥”表示,例如:x ≤ 5。
③ 混合不等式:既包括严格不等式,又包括非严格不等式,例如:3 < x ≤ 5。
1.2 不等式的解集不等式的解集是指所有满足不等式的数的集合。
例如:x + 2 > 5 的解集是{x | x > 3}。
1.3 不等式的性质不等式的性质包括:① 两个不等式相加或相减仍是不等式;② 不等式两边同时乘或除以一个正数,不等式方向不变;③ 不等式两边同时乘或除以一个负数,不等式方向反转。
二、解不等式2.1 解一元一次不等式解一元一次不等式的步骤如下:① 移项:将所有项移到一边;② 合并同类项:将同类项合并;③ 系数化为正数:如果某一项系数为负数,则将不等式两边同时乘上-1,使此项系数变为正数;④ 除以系数:将所有项的系数化为1。
例如:2x - 5 > 7步骤①:2x > 12;步骤②:2x - 12 > 0;步骤③:-2x + 12 > 0;步骤④:x > 6。
2.2 解一元一次不等式组解一元一次不等式组的方法和解一元一次方程组的方法类似,但是要注意不等式方向的改变,即如果某个不等式的符号反转了,则对应的不等式方向也要反转。
例如:{2x + y > 5; x - y ≤ 3}解法如下:① 将不等式组化为标准形式:{2x + y - 5 > 0; x - y - 3 ≤ 0}② 解方程x - y - 3 ≤ 0,得到x ≤ y + 3;③ 将x ≤ y + 3 代入2x + y - 5 > 0 中,得到3y > -1;④ 解不等式3y > -1,得到y > -1/3;⑤ 将y > -1/3 代入x ≤ y + 3 中,得到x ≤ 8/3。
初中数学不等式知识点大全
初中数学不等式知识点大全知识点1:不等式不等式是用不等号(。
≥、<、≤、≠)表示不等关系的式子。
常用的表示不等关系的语言及符号有:1.大于、比……大、超过。
2.小于、比……小、低于。
<;3.不大于、不超过、至多:≥;4.不小于、不低于、至少。
≤;5.正数。
6.负数:<;7.非负数:≥;8.非正数:≤。
例1中是不等式的有-1>2,3x≥-1,3x-4<2y,3x-5=2x+2,a^2+2≥0,a^2+b^2≠c^2.例2中不能用不等式表示的是m+n等于。
练1中是不等式的有5>x,3a+4b>y,2a+3≤7,x^2+1≥8.练2中(1)的含义是x^2大于等于0,(2)的含义是-x小于等于0.知识点2:不等式的基本性质不等式有以下基本性质:1.不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
即如果a>b,那么a+c>b+c,a-c>b-c。
2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
即如果a>b,c>0,那么ac>bc,a/b>b/b。
3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
即如果a>b,c<0,那么ac<bc,a/b<b/a。
4.如果a>b,那么b<a。
5.如果a>b,b>c,那么a>c。
例1中由a-3<b+1可得到的结论是a<b+4.例2中如果a>b,那么下列变形错误的是2-2a>2-2b。
例3中正确的判断是若a<b,则a^2<b^2.例4中若a1,a+b<ab。
例1】解下列不等式组,结果正确的是()B.不等式组x7的解集是x 1解析:用数轴法解不等式组,先求出每一个不等式的解集,再找出它们的公共部分。
对于不等式组x7的解集是x 1x 1其解集为x7,x1,即x7.结果正确的是B.练1】嘉年华小区计划新建50个停车位,已知新建1个地上停车位和1个地下停车位需0.7万元,新建3个地上停车位和2个地下停车位需1.6万元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学不等式知识点
不等式,在数学的世界里是一种常见的关系式,是指两个数之间的大小关系。
七年级数学中,不等式是一个重要的知识点,同时也是初步学习代数知识的基础。
本文将详细介绍七年级数学不等式知识点,帮助读者更好地掌握这一重要内容。
一、不等式的定义
不等式是用不等于号<、>、≤、≥等符号表示两个数之间大小关系的一种数学关系式。
二、不等式的表示
1. 等于号:表示两个数相等,例如5=5;
2. 大于号:表示大于的关系,例如3>2;
3. 小于号:表示小于的关系,例如2<3;
4. 大于等于号:表示大于或等于的关系,例如3≥3,3>2;
5. 小于等于号:表示小于或等于的关系,例如3≤3,2<3。
三、不等式的性质
1. 加减相等性:对不等式两边同时加上(或减去)同一个数,不等式的方向不变,例如a>b,则a+c>b+c;
2. 乘除相等性:对不等式两边同时乘(或除)同一个正数,不等式的方向不变;对不等式两边同时乘(或除)同一个负数,不等式的方向翻转,例如a>b(b>0),则a×c>b×c(c>0);a>b(b>0),则a÷c<b÷c(c>0);a>b(b>0),则a÷c>b÷c(c<0);
3. 转换符号:不等式两边同时取反,不等式的方向翻转,例如-b<-a,则a>b;
4. 移项:当不等式的符号改为“=”时,其左右两边可以通过移
动数字和符号的方式转化来实现,例如a+b>c,可化为a>c-b。
四、不等式的求解
不等式的求解需要根据题目给出的条件关系,通过加减乘除等基本运算和不等式的基本性质来推导出不等式的解集。
例如:若a+b>c,且c+2<5,则求a+b的最小值。
解:由题得,a+b>c,即a+b-c>0;c+2<5,即c<3。
将a+b-c与0同时乘以一个正数k,则有k(a+b-c)>0,即a+b-c>k×0。
即
a+b>c,故a+b-c>0,即a+b>c。
同时,由c<3得c-3<0,即a+b-(c-3)>a+b-3>0。
因此,有a+b>3,即a+b的最小值为3。
五、不等式的应用
不等式在实际生活中有着广泛的应用,例如经济学中的价格不等式、生物学中的物种数量不等式等。
在数字解谜游戏《数独》中,不等式也有重要应用。
数独的基本规则是将1-9的数字填入每个方格中,使每列、每行和每个粗实
线框内的九个方格各不重复且数字之和为45。
通过填充数字的大小关系,不等式在数独游戏中也扮演重要角色。
通过对不等式的学习,我们不仅能够更好地认识数字间的大小关系,还能够提高我们的数学运算能力,同时也有助于我们在日常生活中更好地应用数学知识。