统计学(第三版课后习题答案
《统计学基础》第三版习题答案

各位老师读者好:《统计学基础》(王瑞卿主编,北京大学出版社,2016年8月第3版)每个项目后面设置了技能训练题库,由于统计学教材很多,不同的老师在编写时内容描述会有些许差异,所以有些习题答案可能有差异,答案以本教材为准。
祝各位工作、学习顺利。
真诚欢迎各位提出您的宝贵意见!王瑞卿2016年9月12日项目1 统计概论一、填空题1.现代统计的含义包括三个方面: 、 和 。
2.一个完整的统计工作过程可以划分为 、 、 、 四个阶段。
3.总体是由许多具有 的个别事物组成的整体;总体单位是 的组成单位。
4.标志是说明总体单位的特征的名称,按表现形式不同分为 和 两种。
5.统计指标按其所说明的总体现象内容的不同,可分为 和 。
参考答案1.统计工作统计资料统计学2. 统计设计统计调查统计整理统计分析3.共同属性总体4.数量标志品质标志5.数量指标质量指标二、单项选择题1.统计总体的同质性是指(B )。
A.总体各单位具有某一共同的品质标志或数量标志B.总体各单位具有某一共同的品质标志属性或数量标志值C.总体各单位具有若干互不相同的品质标志或数量标志D.总体各单位具有若干互不相同的品质标志属性或数量标志值2.某地区有800家工业企业,要研究这些企业的产品生产情况,总体是( A ),总体单位是( B )。
A.全部工业企业B.每一家工业企业C.每一件产品D.800家工业企业的全部工业产品3.要了解某班50名学生的学习情况,则总体是( A ),总体单位是( C )。
A.50名学生B.50个学生的学习成绩C.每一个学生D.每一个学生的学习成绩4.一个统计总体( B )。
A.只能有一个标志B.可以有多个标志C.只能有一个指标D.可以有多个指标5.张明的月工资为4560元,工资是( B ),4550是( C )。
A.品质标志B.数量标志C.变量值D.指标6.在调查设计时,学校作为总体,每个班作为总体单位,各班学生人数是( A )。
统计学(第三版)课后习题答案

附录1:各章练习题答案2.1 (1)属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 35~40 40~45 45~5046159610.015.037.522.515.0合计40 100.0 直方图(略)。
2.4 (1)排序略。
(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100直方图(略)。
2.5 (1)属于数值型数据。
(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60(3)直方图(略)。
2.6 (1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.7 (1(2)A班考试成绩的分布比较集中,且平均分数较高;B班考试成绩的分布比A班分散,且平均成绩较A班低。
2.8 箱线图如下:(特征请读者自己分析)2.9 (1)x =274.1(万元);Me=272.5 ;Q L =260.25;Q U =291.25。
(2)17.21=s (万元)。
2.10 (1)甲企业平均成本=19.41(元),乙企业平均成本=18.29(元);原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
统计学课后答案(第3版)第6章抽样分布与参数估计习题答案

第六章 抽样分布与参数估计习题答案一、单选1.B ;2.D ;3.D ;4.C ;5.A ;6.B ;7.C ;8.D ;9.A ;10.A 二、多选1.ADE ;2.ACDE ;3.ABCD ;4.ADE ;5.BCE6.ACD ;7.ACDE ;8.ACE ;9.BCE ;10.ABD 三、计算分析题1、解:n=10,小样本,由EXCEL 计算有:11.6498==S x ; (1)方差已知,由10596.14982⨯±=±nz x σα得,(494.9,501.1)(2)方差未知,由1011.62622.2498)1(2⨯±=-±nS n t x α得,(493.63,502.37)2、n=500为大样本,p=80/500=16%,则置信区间为 016.096.1%16500)16.01(16.096.1%16)1(2⨯±=-⨯±=-±n p p z p α=(14.4%,17.6%) 3、nx σσ=,由于大国抽取的样本容量大,则抽样平均误差小。
4、(1)3.10100103===nS x σ(小时);=-=-=100)95.01(95.0)1(n p p p σ 2.18%(2)=⨯±=±3.10211202x z x σα(1099.4,1140.6) ⨯±=±2%952p z p σα2.18%=(90.64,99.36)5、为简化起见,按照重复抽样形式计算 (1)∑∑=ff s Si22=22.292; 472.010072.4===nS x σ(2)93.0691472.096.1100691002±=⨯±=±nSz x α=(690.07,691.93) 6、由于总体标准差已知,则用标准状态分布统计量估计nz x σα2=∆(1)10160170102022=-===∆αασz nz x则58.12=αz ,有%29.94)58.1(=F α=1-94.29%=5.71%,则概率%58.88%71.5%29.941=-=-=α (2)=⇒⨯=⇒⨯=∆n n nz x 2096.142σα97(个)(3)=⇒⨯=⇒⨯=∆n nnz x 2096.122σα385(个)允许误差缩小一半,样本容量则为原来的4倍。
统计学教材课后答案 第三版 袁卫 庞皓 曾五一 贾俊平主编

第四章、参数估计1.简述评价估计量好坏的标准答:评价估计量好坏的标准主要有:无偏性、有效性和相合性。
设总体参数θ的估计量有1ˆθ和2ˆθ,如果()1ˆE θθ=,称1ˆθ是无偏估计量;如果1ˆθ和2ˆθ是无偏估计量,且()1ˆD θ小于()2ˆD θ,则1ˆθ比2ˆθ更有效;如果当样本容量n →∞,1ˆθθ→,则1ˆθ是相合估计量。
2.说明区间估计的基本原理答:总体参数的区间估计是在一定的置信水平下,根据样本统计量的抽样分布计算出用样本统计量加减抽样误差表示的估计区间,使该区间包含总体参数的概率为置信水平。
置信水平反映估计的可信度,而区间的长度反映估计的精确度。
3.解释置信水平为95%的置信区间的含义答:总体参数是固定的,未知的,置信区间是一个随机区间。
置信水平为95%的置信区间的含义是指,在相同条件下多次抽样下,在所有构造的置信区间里大约有95%包含总体参数的真值。
4.简述样本容量与置信水平、总体方差、允许误差的关系答:以估计总体均值时样本容量的确定公式为例:()22/22z n E ασ= 样本容量与置信水平成正比、与总体方差成正比、与允许误差成反比。
练习题:●1.解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25,(1)样本均值的抽样标准差σ5=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E =α/2Z 6×0.7906=1.5496。
●2.解:(1)已假定总体标准差为σ=15元,则样本均值的抽样标准误差为x σ15=2.1429(2)已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E=α/2Z 6×2.1429=4.2000。
(3)已知样本均值为x =120元,置信水平1-α=95%,得 α/2Z =1.96,这时总体均值的置信区间为±α/2x Z 0±4.2=124.2115.8 可知,如果样本均值为120元,总体均值95%的置信区间为(115.8,124.2)元。
《统计学基础》第三版习题答案

各位老师读者好:《统计学基础》(王瑞卿主编,北京大学出版社,2016年8月第3版)每个项目后面设置了技能训练题库,由于统计学教材很多,不同的老师在编写时内容描述会有些许差异,所以有些习题答案可能有差异,答案以本教材为准。
祝各位工作、学习顺利。
真诚欢迎各位提出您的宝贵意见!王瑞卿2016年9月12日项目1 统计概论一、填空题1.现代统计的含义包括三个方面: 、 和 。
2.一个完整的统计工作过程可以划分为 、 、 、 四个阶段。
3.总体是由许多具有 的个别事物组成的整体;总体单位是 的组成单位。
4.标志是说明总体单位的特征的名称,按表现形式不同分为 和 两种。
5.统计指标按其所说明的总体现象内容的不同,可分为 和 。
参考答案1.统计工作统计资料统计学2. 统计设计统计调查统计整理统计分析3.共同属性总体4.数量标志品质标志5.数量指标质量指标二、单项选择题1.统计总体的同质性是指(B )。
A.总体各单位具有某一共同的品质标志或数量标志B.总体各单位具有某一共同的品质标志属性或数量标志值C.总体各单位具有若干互不相同的品质标志或数量标志D.总体各单位具有若干互不相同的品质标志属性或数量标志值2.某地区有800家工业企业,要研究这些企业的产品生产情况,总体是( A ),总体单位是( B )。
A.全部工业企业B.每一家工业企业C.每一件产品D.800家工业企业的全部工业产品3.要了解某班50名学生的学习情况,则总体是( A ),总体单位是( C )。
A.50名学生B.50个学生的学习成绩C.每一个学生D.每一个学生的学习成绩4.一个统计总体( B )。
A.只能有一个标志B.可以有多个标志C.只能有一个指标D.可以有多个指标5.张明的月工资为4560元,工资是( B ),4550是( C )。
A.品质标志B.数量标志C.变量值D.指标6.在调查设计时,学校作为总体,每个班作为总体单位,各班学生人数是( A )。
《统计学》课后练习题答案

A.透视表B.合并计算C.单变量求解D.分类汇总
5.小张收集了1957-2007年中国GDP的数据,如果要反映这50年我国生产发展的趋势,用什么图形最为合适?()(知识点3.5答案:D)
A.直方图B.散点图C.饼图D.折线图
37
பைடு நூலகம்33.6
130-140
12
10.9
103
93.6
19
17.3
140-150
5
4.5
108
98.2
7
6.4
150-160
2
1.8
110
100.0
2
1.8
合计
110
100
—
—
—
—
A.树苗高度低于110厘米的占总数的39.1%B.树苗高度低于110厘米的占总数的84.5%
C.树苗高度高于130厘米的有19棵D.树苗高度高于130厘米的有103棵
第二章数据的收集与整理
2.1数据的来源
2.2统计调查方案设计
2.3调查方法
2.4调查的组织方式:普查、抽样调查、重点调查、典型调查
2.5抽样的组织方式:简单随机抽样、系统抽样、分层抽样、整群抽样
2.6数据的审定:误差
2.7数据的分组
2.8.编制次数分布表:频数(次数)、频率
习题
一、单项选择题
1.小吴为写毕业论文去收集数据资料,()是次级数据。(知识点:2.1答案:C)
A.指标B.标志C.变量D.标志值
8.以一、二、三等品来衡量产品质地的优劣,那么该产品等级是()。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
统计学(第三版)课后答案 袁卫等主编

统计学第一章1.什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。
统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。
2.简要说明统计数据的来源答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。
间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得。
3.简要说明抽样误差和非抽样误差答:统计调查误差可分为非抽样误差和抽样误差。
非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。
抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。
4.答:(1)有两个总体:A品牌所有产品、B品牌所有产品(2)变量:口味(如可用10分制表示)(3)匹配样本:从两品牌产品中各抽取1000瓶,由1000名消费者分别打分,形成匹配样本。
(4)从匹配样本的观察值中推断两品牌口味的相对好坏。
第二章、统计数据的描述思考题1描述次数分配表的编制过程答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。
按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。
按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组。
统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表。
2.解释洛伦兹曲线及其用途答:洛伦兹曲线是20世纪初美国经济学家、统计学家洛伦兹根据意大利经济学家帕累托提出的收入分配公式绘制成的描述收入和财富分配性质的曲线。
洛伦兹曲线可以观察、分析国家和地区收入分配的平均程度。
3. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。
《统计学基础》第三版习题答案

各位老师读者好:《统计学基础》(王瑞卿主编,北京大学出版社,2016年8月第3版)每个项目后面设置了技能训练题库,由于统计学教材很多,不同的老师在编写时内容描述会有些许差异,所以有些习题答案可能有差异,答案以本教材为准。
祝各位工作、学习顺利。
真诚欢迎各位提出您的宝贵意见!王瑞卿2016年9月12日项目1 统计概论一、填空题1.现代统计的含义包括三个方面: 、 和 。
2.一个完整的统计工作过程可以划分为 、 、 、 四个阶段。
3.总体是由许多具有 的个别事物组成的整体;总体单位是 的组成单位。
4.标志是说明总体单位的特征的名称,按表现形式不同分为 和 两种。
5.统计指标按其所说明的总体现象内容的不同,可分为 和 。
参考答案1.统计工作统计资料统计学2. 统计设计统计调查统计整理统计分析3.共同属性总体4.数量标志品质标志5.数量指标质量指标二、单项选择题1.统计总体的同质性是指(B )。
A.总体各单位具有某一共同的品质标志或数量标志B.总体各单位具有某一共同的品质标志属性或数量标志值C.总体各单位具有若干互不相同的品质标志或数量标志D.总体各单位具有若干互不相同的品质标志属性或数量标志值2.某地区有800家工业企业,要研究这些企业的产品生产情况,总体是( A ),总体单位是( B )。
A.全部工业企业B.每一家工业企业C.每一件产品D.800家工业企业的全部工业产品3.要了解某班50名学生的学习情况,则总体是( A ),总体单位是( C )。
A.50名学生B.50个学生的学习成绩C.每一个学生D.每一个学生的学习成绩4.一个统计总体( B )。
A.只能有一个标志B.可以有多个标志C.只能有一个指标D.可以有多个指标5.张明的月工资为4560元,工资是( B ),4550是( C )。
A.品质标志B.数量标志C.变量值D.指标6.在调查设计时,学校作为总体,每个班作为总体单位,各班学生人数是( A )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hah 和网速是无形的1:各章练习题答案2.1 (1)属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.02.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 35~40 40~45 45~5046159610.015.037.522.515.0合计40 100.0 直方图(略)。
2.4 (1)排序略。
(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。
2.5 (1)属于数值型数据。
(2)分组结果如下:分组 天数(天)-25~-20 6 -20~-15 8 -15~-10 10 -10~-5 13 -5~0 12 0~5 4 5~10 7 合计60(3)直方图(略)。
2.6 (1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
(2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分布比A 班分散,且平均成绩较A 班低。
2.82.9 L U 。
(2)17.21 s (万元)。
2.10 (1)甲企业平均成本=19.41(元),乙企业平均成本=18.29(元);原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
2.11 x =426.67(万元);48.116=s (万元)。
2.12 (1)(2)两位调查人员所得到的平均身高和标准差应该差不多相同,因为均值和标准差的大小基本上不受样本大小的影响。
(3)具有较大样本的调查人员有更大的机会取到最高或最低者,因为样本越大,变化的范围就可能越大。
2.13 (1)女生的体重差异大,因为女生其中的离散系数为0.1大于男生体重的离散系数0.08。
(2) 男生:x =27.27(磅),27.2=s (磅); 女生:x =22.73(磅),27.2=s (磅); (3)68%;(4)95%。
2.14 (1)离散系数,因为它消除了不同组数据水平高地的影响。
(2)成年组身高的离散系数:024.01.1722.4==s v ; 幼儿组身高的离散系数:032.03.713.2==s v ;由于幼儿组身高的离散系数大于成年组身高的离散系数,说明幼儿组身高的离散程度相对较大。
2.152.16 (1)方差或标准差;(2)商业类股票;(3)(略)。
2.17 (略)。
第3章 概率与概率分布3.1设A =女性,B =工程师,AB =女工程师,A+B =女性或工程师 (1)P(A)=4/12=1/3 (2)P(B)=4/12=1/3 (3)P(AB)=2/12=1/6(4)P(A+B)=P(A)+P(B)-P(AB)=1/3+1/3-1/6=1/23.2求这种零件的次品率,等于计算“任取一个零件为次品”(记为A )的概率()P A 。
考虑逆事件A =“任取一个零件为正品”,表示通过三道工序都合格。
据题意,有:()(10.2)(10.1)(10.1)0.648P A =---=于是 ()1()10.6480.352P A P A =-=-=3.3设A 表示“合格”,B 表示“优秀”。
由于B =AB ,于是)|()()(A B P A P B P ==0.8×0.15=0.123.4 设A =第1发命中。
B =命中碟靶。
求命中概率是一个全概率的计算问题。
再利用对立事件的概率即可求得脱靶的概率。
)|()()|()()(A B P A P A B P A P B P += =0.8×1+0.2×0.5=0.9 脱靶的概率=1-0.9=0.1或(解法二):P (脱靶)=P (第1次脱靶)×P(第2次脱靶)=0.2×0.5=0.1 3.5 设A =活到55岁,B =活到70岁。
所求概率为:()()0.63(|)0.75()()0.84P AB P B P B A P A P A ==== 3.6这是一个计算后验概率的问题。
设A =优质率达95%,A =优质率为80%,B =试验所生产的5件全部优质。
P(A)=0.4,P (A )=0.6,P (B|A )=0.955, P(B |A )=0.85,所求概率为:6115.050612.030951.0)|()()|()()|()()|(===A B P A P A B P A P A B P A P B A P +决策者会倾向于采用新的生产管理流程。
3.7 令A 1、A 2、A 3分别代表从甲、乙、丙企业采购产品,B 表示次品。
由题意得:P (A 1)=0.25,P (A 2)=0.30, P (A 3)=0.45;P (B |A 1)=0.04,P (B |A 2)=0.05,P (B |A 3)=0.03;因此,所求概率分别为:(1))|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= =0.25×0.04+0.30×0.05+0.45×0.03=0.0385 (2)3506.00385.00135.00.030.450.050.300.040.2503.045.0)|(3==++=⨯⨯⨯⨯B A P3.8据题意,在每个路口遇到红灯的概率是p =24/(24+36)=0.4。
设途中遇到红灯的次数=X ,因此,X ~B(3,0.4)。
其概率分布如下表:3.9 设被保险人死亡数=X ,X ~B (20000,0.0005)。
(1)收入=20000×50(元)=100万元。
要获利至少50万元,则赔付保险金额应该不超过50万元,等价于被保险人死亡数不超过10人。
所求概率为:P(X ≤10)=0.58304。
(2)当被保险人死亡数超过20人时,保险公司就要亏本。
所求概率为: P(X >20)=1-P(X ≤20)=1-0.99842=0.00158 (3)支付保险金额的均值=50000×E (X ) =50000×20000×0.0005(元)=50(万元) 支付保险金额的标准差=50000×σ(X )=50000×(20000×0.0005×0.9995)1/2=158074(元)3.10 (1)可以。
当n 很大而p 很小时,二项分布可以利用泊松分布来近似计算。
本例中,λ= np =20000×0.0005=10,即有X ~P (10)。
计算结果与二项分布所得结果几乎完全一致。
(2)也可以。
尽管p 很小,但由于n 非常大,np 和np(1-p)都大于5,二项分布也可以利用正态分布来近似计算。
本例中,np=20000×0.0005=10,np(1-p)=20000×0.0005×(1-0.0005)=9.995, 即有X ~N (10,9.995)。
相应的概率为: P (X ≤10.5)=0.51995,P(X ≤20.5)=0.853262。
可见误差比较大(这是由于P 太小,二项分布偏斜太严重)。
【注】由于二项分布是离散型分布,而正态分布是连续性分布,所以,用正态分布来近似计算二项分布的概率时,通常在二项分布的变量值基础上加减0.5作为正态分布对应的区间点,这就是所谓的“连续性校正”。
(3)由于p =0.0005,假如n =5000,则np =2.5<5,二项分布呈明显的偏态,用正态分布来计算就会出现非常大的误差。
此时宜用泊松分布去近似。
3.11(1))6667.1()30200150()150(-<-<=<Z P Z P X P ==0.04779 合格率为1-0.04779=0.95221或95.221%。
(2) 设所求值为K ,满足电池寿命在200±K 小时范围内的概率不小于0.9,即有:|200|(|200|){||}0.93030X KP X K P Z --<=<≥=即:{}0.9530KP Z <≥,K /30≥1.64485,故K ≥49.3456。
3.12设X =同一时刻需用咨询服务的商品种数,由题意有X ~B(6,0.2)(1)X 的最可能值为:X 0=[(n+1)p]=[7×0.2]=1 (取整数) (2)∑=--=≤-=>2668.02.01)2(1)2(k k k k C X P X P=1-0.9011=0.0989第4章 抽样与抽样分布4.1 a. 20, 2 b. 近似正态 c. -2.25 d. 1.504.2 a. 0.0228 b. 0.0668 c. 0.0062 d. 0.8185 e. 0.0013 4.3 a. 0.8944 b. 0.0228 c. 0.1292 d. 0.9699 4.4 a. 101, 99 b. 1 c. 不必 4.5 趋向正态4.6. a. 正态分布, 213, 4.5918 b. 0.5, 0.031, 0.9384.7. a. 406, 1.68, 正态分布 b. 0.001 c. 是,因为小概率出现了 4.8. a. 增加 b. 减少4.9. a. 正态 b. 约等于0 c. 不正常 d. 正态, 0.06 4.10 a. 0.015 b. 0.0026 c. 0.15874.11. a. (0.012, 0.028) b. 0.6553, 0.7278 4.12. a. 0.05 b. 1 c. 0.000625第5章 参数估计5.1 (1)79.0=x σ。
(2)E =1.55。
5.2 (1)14.2=x σ。
(2)E =4.2。
(3)(115.8,124.2)。
5.3 (2.88,3.76);(2.80,3.84);(2.63,4.01)。
5.4 (7.1,12.9)。
5.5 (7.18,11.57)。