变压器励磁涌流分析
变压器励磁涌流的原因

变压器励磁涌流的原因、特点和消除措施来源1 励滋涌流对变压器切除外部故障后进行空载合闸,电压突然恢复的过程中,变压器可能产生很大的冲击电流,其数值可达额定电流的6~8倍,将这个电流称之为励磁涌流。
产生励磁涌流的原因是变压器铁芯的严重饱和和励磁阻抗的大幅度降低。
2 励磁涌流的特点励磁涌流数值很大,可达额定电流的6~8倍。
励磁涌流中含有大量的直流分量及高次谐波分量,其波形偏向时间轴一侧。
励磁涌流具有衰减特性,开始部分衰减得很快,一般经过0.5~1s后,其值通常不超过0.25~0.5倍的额定电流,对于大容量变压器,其全部衰减时间可能达到几十秒。
3 消除励磁涌流影响所采取的补偿措施励磁涌流的产生会对变压器的差动保护造成误动作,从而使变压器空载合闸无法进行,为了消除励磁涌流对保护的影响,一般可以采用接入速饱和变流器的补偿措施。
3.1 接入速饱和变流器接入速饱和变流器阻止励磁涌流传递到差动继电器中,如图1。
当励磁涌流进入差动回路时,由于速饱和变流器的铁芯具有极易饱和的特性,其中很大的非周期分量使速饱和变流器的铁芯迅速严重饱和,励磁阻抗锐减,使得励磁涌流中几乎全部非周期分量及部分周期分量电流从速饱和变流器的一次侧绕组通过,变换到二次侧绕组的电流就很小,差动保护就不会动作。
只要合理调节速饱和变流器一二次侧绕组匝数,就可以更好的消除励磁涌流对差动保护的影响。
图1 接入速饱和变流器3.2 差动保护速饱和变流器贵州省印江县供电局甘金桥水电站,差动保护速饱和变流器一次侧由差动线圈(工作线圈)、平衡线圈组成。
由差动保护速饱和变流器的原理得出,只要合理调节差动线圈和平衡线圈,就可以消除励磁涌流对差动保护的影响。
差动线圈的具体整定是:差动线圈在5、6、8、10、13、20匝处有抽头,差动继电器相应动作电流值可整定为12、10、7.5、6、4.6、3A。
通过以上对变压器励磁涌流产生的特点及其对差动保护的影响,以及如何消除励磁涌流对差动保护的影响进行了分析,在检查中发现速饱和变流器中的差动线圈在20匝处,这样继电器的动作电流就为3A,保护时限为0s,而变压器实际中要产生4.56A励磁涌流,要在0.5~1s后才开始衰减,显然差动保护整定电流不能躲过励磁涌流的影响而造成断路器跳闸。
变压器励磁涌流产生机理及抑制措施

变压器励磁涌流产生机理及抑制措施变压器是电力系统中不可或缺的电气设备,用于提高或降低交流电压。
然而,在变压器的日常运行中,会产生一种特殊的电流——励磁涌流。
励磁涌流的产生原因、影响及抑制措施,一直是电气领域研究的焦点问题之一。
一、变压器励磁涌流的产生机理变压器励磁涌流是由于变压器在没有负载的情况下,一侧电源给定电压后,产生的瞬时电流波动引起的。
其产生的原因主要有两个方面。
1. 变压器自身磁化特性变压器是由铁芯、线圈等部件组成的,当交流电源施加在一侧线圈上时,铁芯上会产生一个磁通量,使得另一侧线圈中也会产生一定的电势。
在低频条件下,变压器的铁芯上的磁场在每个电源周期内都会发生磁化与去磁化过程,即由于铁芯饱和,磁通量无法瞬间变化,从而在每个周期内形成一个磁滞回线。
当电源供给的电压陡然由0V变化到正常值时,铁芯中的磁场并不会即刻达到稳态,从而导致瞬间电流的波动,造成产生励磁涌流。
2. 电源特性影响电源的内阻、电源的输出电压质量均会影响励磁涌流的产生。
电源内阻较大时,输出电压下降幅度较大,对于变压器来说,电流的波动幅度会更大。
同时,电源产生电压的质量也会影响励磁涌流,例如,电源输出电压存在10%、20%的谐波成分时,变压器励磁涌流的幅值会更大。
二、励磁涌流的影响变压器励磁涌流产生后,将会对变压器和电力系统的安全及稳定性产生影响。
1. 变压器内部温度升高励磁涌流的产生将会引起变压器内部电阻损耗增加,从而导致变压器温度升高。
严重情况下,会导致变压器绝缘材料老化、泄漏及烧毁等事故发生。
2. 电力系统不稳定励磁涌流的存在会造成系统电压波动,电力系统的稳定性得不到保障,从而会降低其工作效率,甚至带来负面的经济损失。
三、励磁涌流的抑制措施为了避免励磁涌流带来的安全隐患及电力系统的不稳定性,有一些抑制措施可以采取。
1. 增加阻抗变压器防励磁涌流的一种常用方法是在变压器的一侧或两侧增加阻抗,这样可以限制励磁涌流的幅值并且控制其衰减时间。
变压器励磁涌流及鉴别方法 (1)精选全文

iμ.C:反向涌流,在 wt=4π/3时达到最大值;
iμ.A,iμ.B,iμ.C的间断角 和二次谐波分别为: 78.6°,49.6°, 78.6°和14.8%, 37.6%,14.8%。
结合上面的算例,对于一般情况,三相变压器励磁涌流有以 下特点:
• 3 间断角鉴别的方法
间断角鉴别----励磁涌流的波形中会出现间断角,而变压器内 部故障时流入差动继电器的稳态差电流是正弦波,不会出现 间断角。间断角鉴别的方法就是利用这个特征鉴别励磁涌流 和故障电流,即通过检测差电流波形是否存在间断角,当间 断角大于整定值时将差动保护闭锁。
动作判据:间断角判据,波宽判据。
3. 三相励磁涌流中有一相或两相二次谐波含量比较小,但至 少有一相比较大。
4. 励磁涌流的波形仍然是间断的,但间断角显著减小,其中 又以对称性涌流的间断角最小。但对称性涌流有另外一个特 点:励磁涌流的正向最大值与反向最大值之间的相位相差 120°。这个相位差称为“波宽”,显然稳态故障电流的波宽为 180°。
最严重的情况是在电压过零时刻(α=0)合闸, 最大值为
2Φm+Φr,远大于Φsat,造成变压器的严重饱和。
在励磁涌流分析中,通常用θ=wt+α来代替时间,这样 是以
2π为周期变化的。在(0,2π)周期内,θ1<θ<2π-θ1时发生饱 和,而θ=π时饱和最严重。令Φ=Φsat,由图6-12可得:
1
Arc cos(m
二次谐波制动元件的动作判据: I2 K2 I1
I1,I2----分别为差动电流中的基波分量和二次谐波分量的幅 值。 K2----二次谐波制动比,按躲过各种励磁涌流下最小的二次谐 波含量整定,整定范围通常为K2=15%~20%,具体数值据现 场空载合闸试验或运行经验确定。 “三相或门制动”方案----三相差动电流中只要有一相的二次谐 波含量超过制动比K2,就将三相差动继电器全部闭锁。
变压器励磁涌流问题分析及对策

作者简介院汪明渊1983耀冤袁男袁本科袁工学学士袁高级工程师袁从事发电厂电气技术管理工作遥
统工程袁2018渊11冤院119. 3 周永亮袁万丽君袁邢帆帆.变压器励磁涌流的算法分析咱J暂.通信电源
技术袁2018渊7冤院94-95.
2 孙凯.单片机控制系统的抗干扰技术咱J暂.宜春学院学报袁2008渊抗干扰技术咱M暂.北京院北京航空航天出版 社袁2001.
4 结语
通过对变压器励磁涌流的特点分析袁 掌握产生励磁涌流 问题的原因尧规律和影响遥 提出一系列预防措施袁使处理策略 能够在实际的问题中进行运用袁并达到良好的处理效果袁保障 变压器运行的安全性和稳定性遥 参考文献 1 王文学.变压器励磁涌流产生机理及抑制措施探讨咱J暂.煤袁2018渊7冤院
81-82. 2 王宝权袁魏碧芳.变压器励磁涌流抑制方法分析及仿真咱J暂.信息系
渊2冤延迟合闸方式遥 延迟合闸方式是先将 A 相进行合闸袁 其他两相 B 和 C 的感应磁通能够从预制相应磁通开始袁 沿着 回线产生相应的变化遥 其中 C 相的磁通饱和状态最先发生袁经 过变压器非线性特征的影响袁使 C 相的绕组电感超过 B 相袁刺 激 B 相磁通的快速增长袁达到 B 和 C 相磁通的一致状态时袁就 能够产生剩磁互相消除的作用遥 延迟合闸与快速合闸的方式 相比袁 主要的差异性在于延迟合闸方式是先将变压器某相进 行合闸袁在 3 个工频周期之后再将其他两相进行合闸遥 对于先 合闸的变压器某相剩磁有所掌握后袁 就能够对其他两相的合 闸进行良好的控制遥
电力变压器的励磁涌流判据

1.电流波形特征识别法
1.1二次谐波制动原理
二次谐波制动法是计算差流中的二次谐波分量,若其值较大则判定为涌流,常用的判别式为:
式中:Id2和
二次谐波制动原理简单明了,有多年的运行经验,目前国内外实际投入运行的微机变压器保护大都采用该原理。但是,采用二次谐波制动原理的变压器保护,面临着以下几个问题:
差动保护一直是电力变压器的主保护,其理论根据是基尔霍夫电流定律,对于纯电路设备,差动保护无懈可击。但是,对于变压器而言,由于内部磁路的联系,本质上不再满足基尔霍夫电流定律,变压器励磁电流成了差动保护不平衡电流的一种来源。大型电力变压器正常运行时的励磁电流通常低于额定电流的1%,所以适当设定差动保护动作值仍可准确区分变压器内部故障与外部故障。但是,电力变压器运行条件复杂,过励磁时励磁电流可达额定电流的水平,空载合闸或者变压器外部短路被突然切除而端电压突然恢复时,暂态励磁电流(即励磁涌流)的大小有时可与短路电流相比拟。这样大的不平衡电流必然导致差动保护误动,为此,变压器差动保护的主要矛盾一直集中在准确鉴别励磁涌流和内部故障电流上。
为消除剩磁不确定性的影响,采用ψ-id曲线斜率dψ/did,区分励磁涌流和内部故障电流,如图1所示。变压器正常运行于未饱和时,数值较大且为一常数;铁心饱和时,数值较小;发生励磁涌流时,铁心交替饱和,将在大值与小值间周期变化;而内部故障时,数值较小且为常数
变压器的励磁涌流产生原因及特点

变压器的励磁涌流产生原因及特点
产生原因:
1.铁芯非线性特性:在励磁过程中,铁芯会经历从饱和到非饱和的过程,而在饱和和非饱和状态下,铁芯的磁导率存在较大的差异。
当励磁电
流突变时,铁芯的饱和状态发生变化,导致磁通密度的非线性变化,进而
产生励磁涌流。
2.电压突变:在电压突变的瞬间,变压器的磁通密度变化较大,导致
涌流现象的出现。
特点:
1.波动范围大:励磁涌流的幅值会随着励磁电流的大小和励磁电源特
性的不同而变化。
通常情况下,励磁涌流的波动幅值会比较大,但是短暂,并且随着时间的推移会逐渐回归正常工作状态。
2.涌流时间短:励磁涌流一般持续的时间比较短暂,通常在数十毫秒
到数百毫秒之间。
3.作用范围广:励磁涌流会对整个变压器回路产生影响,不仅会造成
励磁线圈中的涌流,也会对次级绕组和电网产生影响。
4.会影响电机和负载设备:励磁涌流在电机和负载设备上产生的过电
压和过电流可能会导致电机和负载设备的损坏。
5.会引起设备振动和噪声:励磁涌流会引起变压器的振动和噪声,对
设备和周围环境造成不良影响。
励磁涌流对变压器和电网的影响是不可忽视的,因此在实际应用中需
要采取一些措施来限制和减小励磁涌流的影响,例如采用特殊的励磁变压
器、引入励磁涌流限制电抗器等。
此外,合理调整变压器的设计和励磁电源的参数也能有效减小励磁涌流的幅值和时间。
变压器励磁涌流产生机理及抑制措施

采用交流励磁:通过控制交流励磁电压来调节磁通,从而抑制励磁涌流。
采用无功功率补偿:通过无功功率补偿来调节磁通,从而抑制励磁涌流。
采用磁通控制策略:通过优化磁通控制策略来抑制励磁涌流。
PART FOUR
深度学习:利用深度学习算法,如卷积神经网络(CNN)、长短时记忆网络(LSTM)等,对励磁涌流进行预测和识别。
影响电力系统的安全性:励磁涌流可能导致电力系统故障,影响电力系统的安全性。
影响电力设备的寿命:励磁涌流可能导致电力设备过热、绝缘老化等,影响设备的使用寿命。
励磁涌流可能导致继电保护装置误动作,影响电力系统的安全运行。
励磁涌流可能导致继电保护装置的测量误差增大,影响保护装置的准确性。
励磁涌流可能导致继电保护装置的通信中断,影响电力系统的监控和调度。
励磁涌流可能导致继电保护装置的硬件损坏,影响电力系统的可靠性。
PART THREE
采用Y/△接线方式:将变压器的三相绕组连接成Y/△形,可以有效抑制励磁涌流。
采用自耦变压器:自耦变压器具有抑制励磁涌流的作用,可以降低变压器的励磁涌流。
采用串联电抗器:在变压器的输入端串联电抗器,可以有效抑制励磁涌流。
原理:利用数字信号处理技术对励磁涌流信号进行实时监测和处理
01
应用:适用于各种类型的变压器,包括电力变压器、特种变压器等
03
特点:实时性强,响应速度快,抑制效果好
02
技术难点:信号采集、数据处理、控制策略等
04
现代控制理论:包括自适应控制、模糊控制、神经网络控制等
01
模糊控制:利用模糊逻辑进行控制,适用于非线性、时变系统
CONTENTS
PART ONE
01
变压器是一种利用电磁感应原理进行能量转换的电气设备。
220kV变压器空载合闸励磁涌流及抑制措施分析

220kV变压器空载合闸励磁涌流及抑制措施分析引言励磁涌流是变压器合闸电源时的一种暂态状况,所有三个相以及接地中性点都有可能出现涌流。
对变压器差动保护来讲,励磁涌流可视为一种差动电流。
暂态涌流并不属于故障条件,保护仍需制动,这是变压器差动保护设计时需考虑的重要因素。
随着电力变压器制造中新型硅钢性能的改进以及采用速度很快的差动继电器,励磁涌流现象变得更为突出。
1励磁涌流产生机理及危害变压器铁芯的非线性饱和特性会导致其空载合闸时产生励磁涌流。
涌流的波形、大小和持续时间取决于许多特性因素,如变压器容量、绕组接法、合闸时电压的相位角、合闸绕组所在部位、铁芯的剩磁及磁化特性等。
励磁涌流仅流进变压器一侧的保护区(即实际电源侧),由于在差动保护看起来为真实的差动电流而使继电器动作。
励磁涌流主要分为:合闸涌流、合应涌流和恢复涌流。
其中,合闸涌流的本质是合闸的时候,变压器磁通不能突变。
由于合闸角、主变剩磁等原因,会导致主变磁通饱和,产生很大的励磁电流。
变压器纵差(分相差动)保护用来保护主变三侧,但是励磁涌流始终是纵差(分相差动)保护无法完全解决的问题,其原因在于用电量保护来保护磁联系的元件,必然存在缺陷。
励磁涌流主要危害:(1)可能引起变压器差动保护动作,造成投运失败,影响送电效率。
(2)数值大的励磁涌流会导致变压器及断路器因电力过大而受损,连续冲击会降低变压器绕组机械强度,损坏电气设备。
(3)导致周边换流站直流换相失败或功率波动。
2涌流检测方法当电力变压器合闸电源时,灵敏的差动保护可能误动。
为使差动保护躲过涌流,必须采取措施使算法能区分涌流状况与故障状况。
波形对称法:将流入继电器的差流进行微分,将微分后波形的前半周数据和后半周数据逐点做对称比较,故障电流基本上是工频正弦波,波形对称。
而励磁涌流时,三相差动电流中有大量的二次谐波和三次谐波分量存在,波形发生畸变、间断、不对称,利用算法检测出这种畸变,即可识别出励磁涌流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现有的励磁涌流的识别方法
(一)基于二次谐波的识别方法
1.二次谐波制动原理,用二次谐波幅值和基波幅值的比值和 设定好的定值进行比较。
2.二次谐波衰减原理
(二)基于波形特征的识别方法
1.间断角原理,通过检测涌流波形中间断角的大小来识别励 磁涌流
2.波形对称原理,利用差电流导数波形的前半波和后半波进 行对称比较来判断是否发生励磁涌流。若不对称则为励磁涌流。
signals 2
6 Multimeter
450 MVA 500 -230 kV Three -Phab
C
c
A B C Three -Phase Fault
Continuous powergui
signals 3 signals 4 signals 5 signals 6 signals 7
不考虑剩磁时励磁涌流仿真结果(α=0)
磁通变化规律
励磁电流变化规律
不考虑剩磁时励磁涌流仿真结果(α=pi/2)
磁通变化规律
励磁电流变化规律
励磁涌流间断性尖顶波谐波分析结果
励磁涌流电流所具有的特征
1. 励磁涌流的幅值大
2.任何情况下空载投入变压器,至少两相出现励磁涌流
3.含有很大的非周期分量,饱和越严重,非周期分量越大
(五)差有功法
变压器正常运行时,消耗的有功极小,当发生励磁涌流时, 由于变压器存储磁能,第一周期消耗的有功较大,第二周期则 消耗的较小。但是,当发生内部短路造成绝缘击穿时,变压器 则消耗很大的有功,不会出现差有功,据此即可判断是否发生 励磁涌流。
现有的励磁涌流的识别方法
(六)基于智能理论的判别方法
变压器最严重的磁过饱和情况
变压器铁心磁化曲线 正常运行时工作与磁 化曲线的线性区
正常运行时的励磁电流分析分析
铁心过饱和引起的励磁电流激增分析
B H
励磁涌流仿真分析
A
N
B
C
3000 MVA 500 kV Equivalent
+ -
v
Va1 signals 1
+ -
v
Va2
+ -
v
Va3
+
i -
即电源投入瞬间变压器磁路中的磁通除了含有余弦波形
的稳态值-ΦmCosωt磁通外,还有一个数值为稳态磁通幅
值Φm的偏磁Φp。
(3)当α=α
m cos m cos(t )
偏磁Φp的产生主要是由于磁通不能突变造成的,偏磁
Φp用于抵消合闸瞬间稳态分量的瞬态值,其大小和合闸
初相角直接相关。
ia
+
i -
ib
+
i -
ic
Breaker Control
magnitude signal
angle
Fourier 1
magnitude signal
angle
Fourier 2
magnitude signal
angle
Fourier 3
c 12 Breaker1
c 2
1 Breaker2
c 12 Breaker3
3.小波变换法,通过对差流中高次谐波和奇异点进行检测来 判断是否发生了励磁涌流。
现有的励磁涌流的识别方法
(三)磁通特性识别法
发生励磁涌流时,磁链—差流曲线即变压器的空载特性曲线, 即磁化曲线。而发生内部故障时,其磁链—差流曲线则和磁化 曲线有较大出入。
(四)基于变压器模型的识别方法
1.基于变压器回路方程原理 2.励磁阻抗变化原理
偏磁Φp分析
Ф Фsat
饱和磁通
Фp.max
最大偏磁
ФRes
Ф(稳态磁通) 剩磁
ω
-ФRes -Фp.max
剩磁 最大偏磁
-Фsat
饱和磁通
图 1-2 变压器磁路中各磁通分量关系图
剩磁Φres
B H
剩磁Φres
从以上分析可以看出 1、变压器铁心中剩磁的大小直接和分闸时 铁心中的稳态磁通瞬时值直接相关。 2、不考虑剩磁的自动消退情况下,如果能 将分闸相位角和合闸相位角进行很好的配合, 就可以使剩磁和偏磁相互抵消,很好的抑制 磁饱和,从而抑制涌流! 3、对于单相变压器,经原理和实验分析可 知变压器在某个相位角α时磁势被切断,下 次就在α时合闸,就可使偏磁完全抵消剩磁。
1.励磁涌流的产生机理
对于单相变压器
i1
Ф
U1
N1
N2
U2
图1-1 变压器示意图
偏磁Φp分析
可得出在t=0时,电压初相角α与磁通Φ的关系如下:
(1)当
2
mSint
即电源投入瞬间变压器磁路中的磁通Φ
立即进入与电源电压相同正弦波形的稳态值;
(2)当α=0
m mCost
个人成长学习报告(三)
变压器励磁涌流分析
牛志雷 2011年6月2日
主要内容
1.变压器何时会产生励磁涌流 1.励磁涌流产生机理 2.励磁涌流的特征 3.励磁涌流的识别 4.考虑励磁涌流时的变压器差
动保护设计
何时会产生励磁涌流
变压器两端电压发生突变时: 1、变压器空载合闸时。 2、变压器外部短路故障切除后,电压 恢复时。 3、并联运行的其他变压器发生励磁涌 流时,就会在本变压器中产生和应涌流。
4.波形偏离时间轴一侧,出现间断,饱和越严重,间断角越小 励磁涌流的间断角,与铁芯饱和磁通、剩磁的大小,合闸时刻 都有很大关系。 5.一般有一相或两相谐波含量比较小,但至少有一相比较大, 且励磁涌流中含有较大的二次谐波。
励磁涌流对变压器差动保护的影响
1.1变压器等效电路
U1=-E1+I1(R1+jX1σ) U2'=E2'-I2'(R2+jX2σ) I1+I2'=Im≈I0 -E1=-E2=Im(Rm+jXm)=ImZm