高中物理教案 第13章 热学
高中物理北师大版必修二《热学》教案

高中物理北师大版必修二《热学》教案引言:《热学》是高中物理必修课程的一部分,旨在通过学习热力学、热量传递和热机等内容,培养学生对热学基本概念和原理的理解与运用能力。
本教案将重点介绍《热学》的教学目标、教学重点和难点,以及具体教学内容和教学方法,帮助教师全面了解课程要求,合理安排课堂教学。
一、教学目标:通过本次教学,学生应该能够1. 理解热学的基本概念,包括热力学第一定律和第二定律;2. 掌握热量的传递方式,如传导、对流和辐射;3. 理解热机的工作原理与效率计算方法;4. 运用热学知识解决相关问题。
二、教学重点和难点:1. 教学重点:(1)热力学第一定律和第二定律的理解与应用;(2)热量传递方式的掌握和计算;(3)热机的工作原理与效率计算。
2. 教学难点:(1)对热力学第二定律的理解和应用;(2)热机设备的效率计算。
三、教学内容和教学方法:1. 教学内容:本单元主要包括以下几个部分:(1)热力学基本概念和定律;(2)热量传递方式;(3)热机的工作原理和效率计算。
2. 教学方法:(1)讲授法:通过教师的讲解,介绍热学的基本概念和定律,并简要阐述各个知识点的应用和实例。
(2)实验法:结合实际实验,让学生通过观察和测量来理解热量传递方式的特点和原理。
(3)讨论法:组织学生讨论热机工作原理和效率计算的方法,培养学生的问题解决能力和思维能力。
四、教学进度安排:本课程计划分为5个教学单元,预计每个单元的授课时间为2-3节课,具体安排如下:1. 第一单元:热力学基本概念和定律(1)教学内容:热学的发展历史、热力学基本概念、热力学第一定律和第二定律的内容;(2)教学方法:讲授法、讨论法;(3)教学时间:2节课。
2. 第二单元:热量传递方式(1)教学内容:传导、对流和辐射三种热量传递方式的原理和计算方法;(2)教学方法:实验法、讲授法;(3)教学时间:3节课。
3. 第三单元:热机的工作原理和效率计算(1)教学内容:热机的分类、热机的工作原理、效率计算等内容;(2)教学方法:实验法、讲授法、讨论法;(3)教学时间:3节课。
高中新教材物理热学教案

高中新教材物理热学教案
教材:高中物理新教材
目标:学生通过本课程的学习,能够掌握热学相关知识,理解热力学基本定律,以及应用
热学原理解决实际问题的能力。
一、引入(5分钟)
引导学生回顾上节课内容,介绍本节课将学习的内容,激发学生对物理学习的兴趣。
二、知识点讲解(30分钟)
1. 热力学基本定律
- 热传导、热辐射和热对流的概念和特点
- 热平衡和热传导的原理
- 热力学第一定律和第二定律的内涵和应用
2. 理想气体定律
- 理想气体的特性和状态方程
- 理想气体的压强、体积和温度之间的关系
- 气体状态方程的推导和应用
三、案例分析(15分钟)
根据学生平时生活中的实际情况,让学生运用热学知识解决一些问题,提升学生的应用能
力和理解能力。
四、练习与讨论(20分钟)
布置一些与热学相关的练习题,让学生在课堂上互相讨论、解答,帮助学生巩固所学内容,理清思路,提升解题能力。
五、总结与反思(5分钟)
对本节课学习内容进行总结,引导学生思考所学到的知识对他们的日常生活和未来学习的
重要性,鼓励学生继续努力学习。
六、作业布置
布置适量的热学相关作业,巩固学生在本节课学习的知识,鼓励学生主动进行学习。
七、课堂点评
对学生在课堂上的表现进行点评,鼓励积极参与课堂讨论与答题,提高学生的学习热情和学习效果。
以上是本节课的教学内容,希望通过本课程的学习,学生能够深入理解热学相关知识,提升自己的物理学习水平。
祝愿各位同学学习顺利!。
高中物理热学备课教案设计

高中物理热学备课教案设计课题:热力学基础学科:物理年级:高中课时:1课时教学目标:1. 了解热力学基本概念,包括热量、内能、热容等。
2. 掌握热力学基本定律,包括热传递、热平衡等。
3. 能运用热力学知识解决简单问题。
教学内容:1. 热力学基本概念:热量、内能、热容。
2. 热力学基本定律:热传递、热平衡。
教学重点:1. 热力学基本概念的理解和应用。
2. 热力学基本定律的掌握和运用。
教学步骤:一、导入(5分钟)1. 出示一个热力学实验,引导学生讨论热力学的概念和意义。
2. 提出本节课的学习目标,并激发学生的学习兴趣。
二、讲解(10分钟)1. 讲解热力学基本概念,包括热量、内能、热容的定义和计算方法。
2. 讲解热力学基本定律,包括热传递、热平衡的原理和应用。
三、实践(15分钟)1. 组织学生进行热力学实验,观察热传递、热平衡的现象。
2. 让学生根据实验数据计算热量、内能、热容等参数,并进行讨论。
四、总结(5分钟)1. 总结本节课的重点内容,强化学生对热力学基础知识的掌握。
2. 提出学生可能存在的问题,并指导学生继续深入学习。
五、作业布置(5分钟)1. 布置相关的课外阅读和练习题,巩固学生的学习成果。
2. 提醒学生按时完成作业,以便下节课进行复习和进一步学习。
教学反思:本节课通过引导学生参与实践活动,激发了学生的学习兴趣,并帮助学生巩固了热力学基础知识。
但是,在实践环节中,学生的合作能力有待提高,需要更多的组织和指导。
下节课将重点强化学生的实践能力和问题解决能力,帮助学生更好地理解和应用热力学知识。
高中物理热学现象教案

高中物理热学现象教案课时安排: 2课时教学目标:1. 了解热学现象的基本概念和原理。
2. 理解热传导、热辐射和热对流的区别和联系。
3. 能够通过实验和观察,探究热学现象的规律。
教学重点:1. 热传导、热辐射和热对流的概念和区别。
2. 热学现象的实验探究。
教学难点:1. 各种热学现象之间的联系和相互影响。
2. 如何正确进行实验,观察和总结热学现象。
教学准备:1. 实验器材:热传导试验装置、热辐射实验器、热对流实验装置。
2. 实验材料:杯热水、铝棒、红外线检测器等。
教学步骤:第一课时:1. 概念讲解:介绍热学现象的基本概念和三种方式。
2. 实验演示:通过热传导试验装置展示热传导的过程,观察热传导的规律。
3. 小组讨论:讨论热传导、热辐射和热对流之间的联系和区别。
第二课时:1. 概念讲解:深入理解热辐射和热对流的概念,并与热传导进行比较。
2. 实验探究:通过热辐射实验和热对流实验,观察热辐射和热对流的特点和规律。
3. 总结讨论:总结各种热学现象之间的联系和相互影响,并讨论其在日常生活中的应用。
教学延伸:1. 研究各种材料的导热性能,并探讨其影响因素。
2. 探究太阳辐射对地球表面的影响,理解地球气候变化的原因。
教学反馈:1. 组织学生进行小测验,检验他们对热学现象的理解程度。
2. 鼓励学生积极参与讨论和分享实验心得,加深对热学现象的理解。
教学评价:1. 结合学生的表现和实验结果,对学生的理解能力和实验技能进行评价。
2. 鼓励学生提出问题和建议,帮助他们更好地理解和应用热学知识。
教学反思:1. 总结本课程的教学效果和存在的问题,为今后的教学提供参考。
2. 不断更新教学材料和内容,提高教学质量和效果。
《分子热运动》教学设计 2022年人教版物理教案

《分子热运动》教学过程设计一、引入新课引入:(课前在教室的地面上偷偷地洒一些香水)◆探究活动1:在教室内喷洒香水,请同学们讨论香味是如何传播的?盛夏时节,百花绽放。
四溢的花香引来了长喙天蛾,它们悬浮在空中吸食花蜜。
花香是如何传播的呢?其实不是气味跑到了我们的鼻子里,而是一些带有香味的分子,进入空气中,向各个方向散布开来。
当它们到达我们的鼻子里时,我们就会闻到香味。
思考、交流分析归纳激发兴趣从学生熟知的现象入手来分析,符合学生的认知特点,使学生有亲切感,乐于探究。
二、探究新知一、物质的构成:通过视频了解物质的构成。
1.常见的物质是由极其微小的粒子——分子、原子构成的。
2.分子的大小:直径约为10-10m。
3.分子间有空隙。
二、分子热运动:1.扩散现象:不同物质互相接触时,彼此进入对方的现象。
◆探究活动2:扩散现象(1)气体扩散实验(盛有二氧化氮的广口瓶、空广口思考、交流、总结通过教师的问题设置,进一步激发了学生的学习兴趣。
瓶、玻璃片):将空瓶子倒扣在装着红棕色二氧化氮气体的瓶子上面,抽掉盖在二氧化氮瓶上的玻璃板。
实验现象:一段时间后,两瓶气体彼此进入对方,颜色混合均匀,变为浅红棕色。
实验结论:气体分子在不停运动。
(2)液体扩散实验(演示实验结合视频)(烧杯2个、硫酸铜溶液、漏斗)在烧杯里装一半清水,水下面注入硫酸铜溶液。
硫酸铜溶液的密度比水大,沉在下部,可以看到无色的清水与蓝色硫酸铜溶液之间有明显的界面。
实验现象:一段时间后,硫酸铜溶液和水混合均匀。
实验结论:液体分子在不停运动。
(3)固体扩散实验(视频)实验现象:几年后电子显微镜下观察到的合金。
实验结论:固体分子在不停运动。
2.一般情况下,固体之间的扩散最慢,气体之间的扩散最快。
3.扩散现象表明:一切物质的分子都在永不停息地做观察、思考、讨论、总结观察、思考、讨论、总结观察、思学生通过教师的“演示”实验和学生参与实验有机的结合,激发兴趣。
宏观的物理现象揭示物质的微观结构,渗透物理学的思想和方法。
高中物理必修一热学教案

高中物理必修一热学教案
课题:热学概念
教学目标:
1. 了解热学的基本概念和研究对象;
2. 掌握热学中常见的热力学过程及相关定律原理;
3. 能够应用所学知识解决实际问题。
教学重点和难点:
重点:热学的基本概念和热力学定律原理。
难点:理解热力学定律在实际问题中的应用。
教学准备:
1. 教材:高中物理教材《物理(必修1)》
2. 多媒体教学设备
3. 实验材料
教学过程:
一、导入(5分钟)
教师通过实例引导学生思考:为什么夏天的水热起来后会变成蒸汽?为什么有些物体感觉热,有些物体感觉冷?
二、讲解热学概念(10分钟)
1. 介绍热学的定义和研究对象;
2. 讲解热力学基本概念,如温度、热量、热容等;
3. 解释热学定律,如热传导定律、热辐射定律等。
三、展示实验(15分钟)
教师进行实验演示,让学生观察并记录实验现象,并通过实验验证热学定律原理。
四、讨论解析(10分钟)
1. 学生就实验现象展开讨论;
2. 教师指导学生运用所学知识解析实验现象。
五、练习和作业(10分钟)
教师布置相关练习题目,巩固学生对热学知识的掌握,同时布置作业,要求学生进一步拓展研究内容。
六、课堂总结(5分钟)
教师对本节课的重点内容进行总结,并提出下次课程安排。
【教学反思】
通过本节课的教学,学生对热学的基本概念有了初步了解,同时也对热力学定律有了更深入的认识。
在未来的教学中,应该进一步引导学生进行实验探究,让学生在实践中更好地理解和应用所学知识。
高中物理热学备课教案模板

高中物理热学备课教案模板一、教学目标:1. 理解热学的基本概念和热力学定律。
2. 掌握热量的传递方式和热平衡的条件。
3. 能够运用热学知识解决实际问题。
二、教学重点和难点:重点:热平衡的条件和热传递的方式。
难点:应用热学知识解决实际问题。
三、教学内容安排:1. 热学的基本概念和热力学定律。
2. 热量的传递方式和热平衡的条件。
3. 热学问题的计算和实际应用。
四、教学过程安排:第一节:热学的基本概念和热力学定律1. 师生互动,引入热学知识,让学生了解热学的研究对象和基本概念。
2. 讲解热力学定律,包括热力学第一定律和热力学第二定律的内容。
3. 练习题目,让学生掌握热力学定律的应用。
第二节:热量的传递方式和热平衡的条件1. 讲解热量的传递方式,包括导热、对流和辐射等方式。
2. 解释热平衡的条件,让学生了解热平衡是什么以及如何判断热平衡。
3. 练习题目,帮助学生掌握热量传递方式和热平衡条件的应用。
第三节:热学问题的计算和实际应用1. 案例分析,让学生运用热学知识解决实际问题。
2. 讨论热学在生活和工作中的应用,激发学生对物理学的兴趣。
3. 思考题目,让学生思考热学知识对环境保护和节能减排的重要性。
五、教学反馈及总结:1. 回顾本节课所学内容,让学生总结重点知识点。
2. 解答学生提出的问题,帮助学生消化和吸收知识。
3. 布置课外作业,巩固本节课所学内容。
六、教学资源准备:1. 教科书、课件、实验器材等教学资料。
2. 多媒体设备、投影仪等教学工具。
七、教学效果评估:1. 课堂表现评价。
2. 作业成绩评价。
3. 学生学习情况调查。
物理高中热学教案

物理高中热学教案
课题:热力学基础
教学目标:
1. 了解热力学的基本概念和原理;
2. 掌握热力学中常见的术语和符号;
3. 能够运用热学知识解决相关问题。
教学内容:
1. 热力学的基本概念
2. 热力学中的能量转化
3. 热力学定律和术语
4. 热力学过程的分析
教学重点和难点:
1. 热力学的基本原理和概念;
2. 热力学定律和术语的理解;
3. 热力学过程的分析和计算。
教学过程:
一、导入(5分钟)
通过一个简单的问题引入热学的概念,引发学生思考和讨论。
二、讲解和探究(25分钟)
1. 讲解热力学的基本概念和原理;
2. 探讨热力学中的能量转化和热力学定律;
3. 引导学生分析热力学过程,并解决相关问题。
三、练习和讨论(15分钟)
组织学生进行相关的练习和讨论,巩固所学知识。
四、总结和拓展(5分钟)
对本节课的内容进行总结,并引入下节课内容的预习。
教学反馈:
通过课堂练习和讨论,及时检测学生的掌握程度,并针对性地进行反馈和辅导。
教学评价:
通过课后作业和测试,评估学生对热学知识的掌握情况,并根据评价结果进行教学调整和辅导。
教学拓展:
引导学生拓展应用热学知识解决实际问题,培养学生的问题解决能力和创新意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章热学[选修3-3] 第1节分子动理论__内能(1)布朗运动是液体分子的无规则运动。
(×)(2)温度越高,布朗运动越剧烈。
(√)(3)分子间的引力和斥力都随分子间距的增大而增大。
(×)(4)-33 ℃=240 K。
(×)(5)分子动能指的是由于分子定向移动具有的能。
(×)(6)当分子力表现为引力时,分子势能随分子间距离的增大而增大。
(√)(7)内能相同的物体,它们的分子平均动能一定相同。
(×)1.阿伏加德罗常数N A=6.02×1023 mol-1,是联系宏观量和微观量的桥梁。
2.扩散现象和布朗运动都说明分子是永不停息地做无规则运动,且都随温度升高而变得更加剧烈。
3.两分子间距为r0时分子力为零,分子势能最低,但不一定为零。
4.温度是分子平均动能的标志,温度相同时,各种物体分子的平均动能均相同。
突破点(一)微观量的估算1.两种分子模型物质有固态、液态和气态三种情况,不同物态下应将分子看成不同的模型。
(1)固体、液体分子一个一个紧密排列,可将分子看成球形或立方体形,如图所示,分子间距等于小球的直径或立方体的棱长,所以d = 36Vπ(球体模型)或d =3V (立方体模型)。
(2)气体分子不是一个一个紧密排列的,它们之间的距离很大,所以气体分子的大小不等于分子所占有的平均空间。
如图所示,此时每个分子占有的空间视为棱长为d 的立方体,所以d =3V 。
2.宏观量与微观量的转换桥梁作为宏观量的摩尔质量M mol 、摩尔体积V mol 、密度ρ与作为微观量的分子质量m 、单个分子的体积V 0、分子直径d 都可通过阿伏加德罗常数联系起来。
如下所示。
(1)一个分子的质量:m =M molN A 。
(2)一个分子所占的体积:V 0=V molN A (估算固体、液体分子的体积或气体分子平均占有的空间)。
(3)1 mol 物质的体积:V mol =M mol ρ。
(4)质量为M 的物体中所含的分子数:n =MM molN A 。
(5)体积为V 的物体中所含的分子数:n =ρV M mol N A 。
[题点全练]1.铜摩尔质量为M ,密度为ρ,阿伏加德罗常数为N A 。
1个铜原子所占的体积是( )A.MρN A B.ρM N AC.ρN A MD.M ρ解析:选A 铜的摩尔体积V mol =M ρ,则一个铜原子所占的体积为V 0=V molN A =M ρN A ,A 正确。
2.[多选](2016·上海高考)某气体的摩尔质量为M ,分子质量为m 。
若1摩尔该气体的体积为V m ,密度为ρ,则该气体单位体积分子数为(阿伏加德罗常数为N A )( )A.N AV m B.M mV mC.ρN A MD.ρN A m解析:选ABC 1摩尔该气体的体积为V m,则单位体积分子数为n=N AV m,气体的摩尔质量为M,分子质量为m,则1 mol气体的分子数为N A=Mm,可得n=MmV m,气体的密度为ρ,则1摩尔该气体的体积V m=Mρ,则有n=ρN AM,故D错误,A、B、C正确。
3.(2018·运城期末)已知地球到月球的平均距离为384 400 km,金原子的直径为3.48×10-9m,金的摩尔质量为197 g/mol。
若将金原子一个接一个地紧挨排列起来,筑成从地球通往月球的“分子大道”,试问(N A=6.02×1023 mol-1):(1)该“分子大道”需要多少个原子?(2)这些原子的总质量为多少?解析:(1)N=384 400 0003.48×10-9=1.10×1017(个)。
(2)总质量为M=NN AM A=3.6×10-8 kg。
答案:(1)1.10×1017(2)3.6×10-8 kg突破点(二)扩散现象、布朗运动与分子热运动扩散现象、布朗运动与分子热运动的比较[题点全练]1.[多选](2015·全国卷Ⅱ)关于扩散现象,下列说法正确的是( )A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生E.液体中的扩散现象是由于液体的对流形成的解析:选ACD 扩散现象与温度有关,温度越高,扩散进行得越快,选项A正确;扩散现象是由于分子的无规则运动引起的,不是一种化学反应,选项B、E错误,选项C正确;扩散现象在气体、液体和固体中都能发生,选项D正确。
2.[多选](2018·保定期末)我国已开展空气中PM2.5浓度的监测工作。
PM2.5是指空气中直径等于或小于2.5 μm 的悬浮颗粒物,其飘浮在空中做无规则运动,很难自然沉降到地面,吸入后对人体形成危害。
矿物燃料燃烧的排放物是形成PM2.5的主要原因。
下列关于PM2.5的说法中正确的是( )A.PM2.5的尺寸与空气中氧分子的尺寸的数量级相当B.PM2.5在空气中的运动属于分子热运动C.PM2.5的运动轨迹是由大量空气分子对PM2.5无规则碰撞的不平衡和气流运动决定的D.倡导低碳生活,减少煤和石油等燃料的使用,能有效减小PM2.5在空气中的浓度E.PM2.5必然有内能解析:选CDE “PM2.5”是指直径小于或等于2.5 μm 的颗粒物,大于氧分子尺寸的数量级,A错误;PM2.5在空气中的运动是固体颗粒的运动,不是分子的运动,B错误;PM2.5的运动轨迹是由大量空气分子碰撞的不平衡和气流运动共同决定的,C正确;减少矿物燃料燃烧的排放,能有效减小PM2.5在空气中的浓度,D正确;PM2.5是大量分子组成的颗粒物,一定具有内能,E正确。
3.[多选](2018·衡水模拟)关于布朗运动,下列说法正确的是( )A.布朗运动是液体分子的无规则运动B.液体温度越高,布朗运动越剧烈C.布朗运动是由于液体各部分温度不同而引起的D.悬浮在液体中的固体小颗粒做布朗运动具有的能是机械能E.布朗运动是微观粒子的运动,其运动规律遵循牛顿第二定律解析:选BDE 布朗运动是悬浮微粒的无规则运动,A 错误。
布朗运动的剧烈程度与温度有关,液体温度越高,布朗运动越剧烈,B正确。
布朗运动是由于来自各个方向的液体分子对固体小颗粒撞击作用的不平衡引起的,C错误。
悬浮在液体中的固体小颗粒做布朗运动具有的能是机械能,D 正确。
布朗运动是悬浮的固体小颗粒不停地做无规则的宏观的机械运动,故其运动规律遵循牛顿第二定律,E正确。
突破点(三) 分子力、分子势能与分子间距离的关系[典例] [多选](2018·泰安模拟)甲分子固定在坐标原点O ,只在两分子间的作用力作用下,乙分子沿x 轴方向运动,两分子间的分子势能E p 与两分子间距离x 的变化关系如图所示,设乙分子在移动过程中所具有的总能量为0,则下列说法正确的是( )A .乙分子在P 点时加速度为0B .乙分子在Q 点时分子势能最小C.乙分子在Q点时处于平衡状态D.乙分子在P点时动能最大E.乙分子在P点时,分子间引力和斥力相等[解析] 由题图可知,乙分子在P点时分子势能最小,此时乙分子受力平衡,甲、乙两分子间引力和斥力相等,乙分子所受合力为0,加速度为0,A、E正确。
乙分子在Q 点时分子势能为0,大于乙分子在P点时的分子势能,B错误。
乙分子在Q点时与甲分子间的距离小于平衡距离,分子引力小于分子斥力,合力表现为斥力,所以乙分子在Q点合力不为0,故不处于平衡状态,C错误。
乙分子在P点时,其分子势能最小,由能量守恒可知此时乙分子动能最大,D 正确。
[答案] ADE[方法规律](1)分子势能在平衡位置有最小值,无论分子间距离如何变化,靠近平衡位置,分子势能减小,反之增大。
(2)判断分子势能变化的两种方法方法一:利用分子力做功判断。
分子力做正功,分子势能减小;分子力做负功,分子势能增加。
方法二:利用分子势能E p与分子间距离r的关系图线判断,如图所示。
要注意此图线和分子力与分子间距离的关系图线形状虽然相似,但意义不同,不要混淆。
[集训冲关]1.[多选]两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近。
在此过程中,下列说法正确的是( )A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变解析:选BCE 分子力应先增大,后减小,再增大,所以A选项错;分子力先为引力,做正功,再为斥力,做负功,B选项正确;根据能量守恒可知分子动能先增大后减小,分子势能先减小后增大,分子动能和分子势能之和保持不变,所以C、E选项正确,D错误。
2.[多选](2018·抚顺模拟)关于分子间的作用力,下列说法正确的是( )A.分子之间的斥力和引力同时存在B.分子之间的斥力和引力大小都随分子间距离的增大而减小C.分子之间的距离减小时,分子力一直做正功D.分子之间的距离增大时,分子势能一直减小E.分子之间的距离变化时,可能存在分子势能相等的两个点解析:选ABE 分子间既存在引力,也存在斥力,只是当分子间距离大于平衡距离时表现为引力,小于平衡距离时表现为斥力,故A正确;分子间的引力和斥力都随分子间距离的减小而增大,随分子间距离的增大而减小,故B正确;分子间距大于r0时,分子力表现为引力,相互靠近时,分子力做正功,分子间距小于r0时,分子力表现为斥力,相互靠近时,分子力做负功,故C错误;两分子之间的距离大于r0时,分子力表现为引力,当分子之间的距离增加时,分子力做负功,分子势能增加,故D错误;当两分子之间的距离等于r0时,分子势能最小,从该位置起增加或减小分子距离,分子力都做负功,分子势能增加,分子之间的距离变化时,可能存在分子势能相等的两个点,故E正确。
3.[多选](2018·海口模拟)两分子间的斥力和引力的合力F与分子间距离r的关系如图中曲线所示,曲线与r轴交点的横坐标为r0。
相距很远的两分子在分子力作用下,由静止开始相互接近。
若两分子相距无穷远时分子势能为零,下列说法正确的是( )A.在r>r0阶段,F做正功,分子动能增加,势能减小B.在r<r0阶段,F做负功,分子动能减小,势能也减小C .在r =r 0时,分子势能最小,动能最大D .在r =r 0时,分子势能为零E .分子动能和势能之和在整个过程中不变解析:选ACE 由E p r 图可知:在r >r 0阶段,当r 减小时F 做正功,分子势能减小,分子动能增加,故A 正确;在r <r 0阶段,当r 减小时F 做负功,分子势能增加,分子动能减小,故B 错误;在r =r 0时,分子势能最小,但不为零,动能最大,故C 正确,D 错误;在整个相互接近的过程中,分子动能和势能之和保持不变,故E 正确。