电阻应变计在电桥中的接线方法

合集下载

电桥电路

电桥电路
sc35由上式表明由应变片感受到的通过电桥可以线性地转变为电压的变化ubd只要对这个电压的变化量进行标定就可用仪表指示出所测量的公式35还表明相邻桥臂的应变相减相对桥臂的应变相加这一特性称为电桥的加减特性今后将多次用到这一特性下面给出几种常见高、精度高、测量
分类。
(1)按电源分,有直流电桥和交流电桥
直流电桥桥臂只能接入电阻。它主要用于应变电桥输出可直接显示(如接励电式指示器
或光线示波器振子)而无需中间放大场合,如半导体应变计。
交流电桥桥臂可以是 R、L、C。主要用于输出需放大的场合,如金属应变计等。
(2)按工作方式分,有平衡桥式电路(零位测量法)和不平衡桥式电路(偏差测量法)。
E 4
( R1 R1
R2 R2
R3 R3
R4 R4
)
U 0K 4
(1
2
3
4)
(3.9)
2.温度补偿片
电阻片的电阻随温度的变化而变化,利用电桥的加加减特性,通过温度补偿片来消除这
一影响。所谓温度补偿片,是将电阻片贴在与构件材质相同但不参与变形的一块材料上,并
于构件处于相同的温度条件下。将补偿片正确连接在桥路中即可消除温度变化产生的影响。
平衡桥式电路带有手调或者自调整桥臂平衡的伺服反馈机构。仪表指示测量值时,电
桥处于平衡状态。常用于高精度、长时间静态应变测量,如双桥式静态应变仪。
不平衡桥式电路的输出,是与桥臂应变量成一定函数关系的不平衡电量,然后放大、显
示。仪表指示测量值时,电桥处于不平衡状态,它响应快,便于处理:常用于动态应变测量。
U SC
U0 4
K (1
2
3
4)
(3.5)
由上式表明,由应变片感受到的(ε1-ε2+ε3-ε4),通过电桥可以线性地转变为电 压的变化 UBD,只要对这个电压的变化量进行标定,就可用仪表指示出所测量的(ε1-ε2 +ε3-ε4),公式(3.5)还表明,相邻桥臂的应变相减,相对桥臂的应变相加,这一特 性称为电桥的加减特性,今后将多次用到这一特性

实验2:应变片全桥性能实验

实验2:应变片全桥性能实验

实验2 应变片全桥性能实验一、实验目的:了解应变片全桥工作特点及性能。

二、基本原理:1. 应变片的基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

2. 应变片的电阻应变效应:所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L 、半径为r 、材料的电阻率为ρ时,根据电阻的定义式得:2ρρπ==g L L R A r ..................(1-1) 当导体因某种原因产生应变时,其长度L 、截面积A 和电阻率ρ的变化为dL 、dA 、dρ相应的电阻变化为dR 。

对式(1—1)全微分得电阻变化率 dR/R 为:2ρρ=-+dR dL dr d R L r ..................(1-2) 式中:dL/L 为导体的轴向应变量εL ; dr/r 为导体的横向应变量εr 。

由材料力学知识可得:εL = - μεr ..................(1-3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1-3)代入式(1-2)得:()12ρμερ=++dR d R ..............(1-4),该式说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能。

3. 半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

电阻应变测量原理及方法

电阻应变测量原理及方法

电阻应变测量原理及方法目录电阻应变测量原理及方法 (4)1. 概述 (4)2. 电阻应变片的工作原理、构造和分类62.1电阻应变片的工作原理 (6)2.2电阻应变片的构造 (8)2.3电阻应变片的分类 (10)3. 电阻应变片的工作特性及标定 (15)3.1电阻应变片的工作特性 (15)3.2电阻应变片工作特性的标定 (23)4. 电阻应变片的选择、安装和防护 (29)4.1电阻应变片的选择 (29)4.2电阻应变片的安装 (31)4.3电阻应变片的防护 (34)5. 电阻应变片的测量电路 (34)5.1直流电桥 (35)5.2电桥的平衡 (40)5.3测量电桥的基本特性 (42)5.4测量电桥的连接与测量灵敏度.. 436. 电阻应变仪 (53)6.1静态电阻应变仪 (54)6.2测量通道的切换 (57)6.3公共补偿接线方法 (61)7. 应变-应力换算关系 (63)7.1单向应力状态 (64)7.2已知主应力方向的二向应力状态 (64)7.3未知主应力方向的二向应力状态 (65)8. 测量电桥的应用 (67)8.1拉压应变的测定 (68)8.2弯曲应变的测定 (72)8.3弯曲切应力的测定 (74)8.4扭转切应力的测定 (76)8.5内力分量的测定 (77)电阻应变测量原理及方法1. 概述电阻应变测量方法是实验应力分析方法中应用最为广泛的一种方法。

该方法是用应变敏感元件——电阻应变片测量构件的表面应变,再根据应变—应力关系得到构件表面的应力状态,从而对构件进行应力分析。

电阻应变片(简称应变片)测量应变的大致过程如下:将应变片粘贴或安装在被测构件表面,然后接入测量电路(电桥或电位计式线路),图1 用电阻应变片测量应变的过程随着构件受力变形,应变片的敏感栅也随之变形,致使其电阻值发生变化,此电阻值的变化与构件表面应变成比例,测量电路输出应变片电阻变化产生的信号,经放大电路放大后,由指示仪表或记录仪器指示或记录。

自动化检测实验指导

自动化检测实验指导

自动化检测实验指导实验一应变片单臂、半桥、全桥特性比较一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。

二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

三、需用器件与单元:机头中的应变梁的应变片、测微头;显示面板中的F/V表(或电压表)、±2V~±10V步进可调直流稳压电源;调理电路面板中传感器输出单元中的箔式应变片、调理电1位数显万用表(自备)。

路单元中的电桥、差动放大器;42五、实验步骤:1位数显万用表2kΩ电阻档测量所有在应变梁自然状态(不受力)的情况下,用42应变片阻值;在应变梁受力状态(用手压、提梁的自由端)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片横向不受力阻值无变化,是温度补偿片)。

如下图1—7所示。

图1—7观察应变片阻值变化情况示意图差动放大器调零点:按下图1—8示意接线。

将F/V表(或电压表)的量程切换开关切换到2V档,合上主、副电源开关,将差动放大器的增益电位器按顺时针方向轻轻转到底后再逆向回转一点点(放大器的增益为最大,回转一点点的目的:电位器触点在根部估计会接触不良),调节差动放大器的调零电位器,使电压表显示电压为零。

差动放大器的零点调节完成,关闭主电源。

图1—8差放调零接线图3、应变片单臂电桥特性实验:⑴将±2V~±10V步进可调直流稳压电源切换到4V档,将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片应变片中任意一片为工作片)与电桥单元中R1、R2、R3组成电桥电路,电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的二输入端,将W1电位器、r电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端),如图1—9示意接线(粗细曲线为连接线)。

【精品】电阻应变片粘贴技术

【精品】电阻应变片粘贴技术

一、电阻应变片粘贴技术一、实验目的1.了解电阻应变片的结构、规格、用途等。

2.学会设计布片方案。

3.掌握选片、打磨、粘贴、接线、固定、防护等操作工艺和技术。

二、实验设备及器材1.YD-88便携式超级应变仪。

2.QJ23型电桥。

3.试件、应变片、砂布、镊子、丙酮、药棉、502胶水、玻璃纸等。

4.试件见图1-5。

三、实验原理应变片的构造很简单。

把一条很细具有高电阻率的金属丝,在制片机上排绕后,用胶水粘在两片薄纸之间,再焊上较粗的引出线,就成了早期常用的丝绕式应变片。

应变片一般由敏感栅(即金属丝)、粘结剂、基底、引线及覆盖层五部分组成。

如将应变片固定在被测构件表面上,金属丝随构件一起变形,其电阻值也随之发生变化,而且,这电阻变化与构件应变有确定的线性关系。

应变片已有多种类型,若按敏感栅所用材料来分,有丝绕式应变片、箔式应变片和半导体应变片。

前两种的敏感栅是以金属丝或箔制成,可统称为金属式应变片,工作原理是基于金属丝的电阻应变效应;半导体应变片则是一类较新品种,具有一些独特的优点。

无论何类应变片,其构成不外基底、敏感栅和引线三大部分。

引线是从敏感栅到测量导线之间的过渡部分,用以将敏感栅接入测量电路。

基底用来保持敏感栅及其与引线接头部的几何形状,在应变片安装以后,由它将构件变形传递给敏感栅,并在金属构件与敏感栅之间起绝缘作用。

目前常见的电阻片有以下几种:(1)丝绕式用电阻丝盘绕电阻片称为丝绕式电阻片(见图1-1和图1-2a),目前广泛使用的有半圆弯头平绕式,这种电阻片多用纸底和纸盖,价格低廉,适于实验室广泛使用,缺点是精度较差,横肉向效应系数较大。

(2)短接式这种电阻片的制作比较容易,在一排拉直的电阻丝之间,在预定的标距上用较粗的导线相间地造成短路,这种电阻片有用纸底的,也有用胶底的(见图1-2b)。

短路接式电阻片的优点是几何形状比容易于保证,而且横向效应系数近于零。

图1-2(3)箔式电阻片它是在合金箔(康铜箔或镍铬箔)的一面涂胶形成胶底,然后在箔面上用照相腐蚀成形法制成的(见图1-2c),所以几何形状和尺寸非常精密,而且由于电阻丝部分是平而薄的矩形截面,所以粘贴牢固,丝的散热性能好,横向效应系数也较低,和丝绕式应变片相比,箔式片有下列优点:a.随着光刻技术的发展,箔式片能保证尺寸准确、线条均匀,故灵敏系数分散性小。

实验一应变片单臂电桥性能实验

实验一应变片单臂电桥性能实验

实验一应变片单臂电桥性能实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。

二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

1、应变片的电阻应变效应 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。

对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:K=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

测试技术部分习题参考答案教程文件

测试技术部分习题参考答案教程文件

绪论1 .举例说明什么是测试?答:(1) 测试例子:为了确定一端固定的悬臂梁的固有频率,我们可以采用锤击法对梁进行激振,再利用压电传感器、电荷放大器、波形记录器记录信号波形,由衰减的振荡波形便可以计算出悬臂梁的固有频率。

(2)结论:由本例可知:测试是指确定被测对象悬臂梁的属性—固有频率的全部操作,是通过一定的技术手段—激振、拾振、记录、数据处理等,获取悬臂梁固有频率的信息的过程。

2. 测试技术的任务是什么?答:测试技术的任务主要有:通过模型试验或现场实测,提高产品质量;通过测试,进行设备强度校验,提高产量和质量;监测环境振动和噪声,找振源,以便采取减振、防噪措施;通过测试,发现新的定律、公式等;通过测试和数据采集,实现对设备的状态监测、质量控制和故障诊断。

3. 以方框图的形式说明测试系统的组成,简述主要部分的作用。

(1)测试系统方框图如下:(2)各部分的作用如下:传感器是将被测信息转换成某种电信号的器件;信号的调理是把来自传感器的信号转换成适合传输和处理的形式;信号处理环节可对来自信号调理环节的信号,进行各种运算、滤波和分析;信号显示、记录环节将来自信号处理环节的信号显示或存贮。

模数(A/D)转换和数模(D/A)转换是进行模拟信号与数字信号相互转换,以便用计算机处理。

4.测试技术的发展动向是什么?传感器向新型、微型、智能型方向发展;测试仪器向高精度、多功能、小型化、在线监测、性能标准化和低价格发展;参数测量与数据处理向计算机为核心发展;第一章1求周期方波的傅立叶级数(复指数函数形式),画出|c n|-和-图。

解:(1)方波的时域描述为:(2) 从而:2 .求正弦信号的绝对均值和均方根值。

解(1)(2)3.求符号函数和单位阶跃函数的频谱。

解:(1)因为不满足绝对可积条件,因此,可以把符合函数看作为双边指数衰减函数:其傅里叶变换为:(2)阶跃函数:4. 求被截断的余弦函数的傅里叶变换。

解:(1)被截断的余弦函数可以看成为:余弦函数与矩形窗的点积,即:(2)根据卷积定理,其傅里叶变换为:5.设有一时间函数f(t)及其频谱如图所示。

习题参考答案2-电阻应变式

习题参考答案2-电阻应变式

二、电阻应变式传感器(二)习 题2-1.一试件受力后的应变为3102-⨯;丝绕应变计的灵敏系数为2,初始阻值120Ω,温度系数C61050-⨯-,线膨胀系数为C 61014-⨯;试件的线膨胀系数为C 61012-⨯。

试求:温度升高20℃时,应变计输出的相对误差。

答:()t S t Ra t K t Rββ∆=∆+-⋅∆ =()C C C C20101410122201050666⨯⨯-⨯⨯+⨯⨯---- =31008.1-⨯-2-2. 在悬臂梁的上下方各贴一片电阻为120Ω的金属应变片R 1和R 2。

若应变片的灵敏系数k =2,电源电压U =2V ,当悬臂梁顶端受到向下的力F 时,电阻R 1和R 2的变化值ΔR 1 =ΔR 2 =Ω,试求电桥的输出电压。

答:A1R2120124R R U U R R ⎛⎫∆∆∆=- ⎪⎝⎭20.480.4844120120mV ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦解析:参见PPT P23~24,关于电阻应变计的测量电路。

理解电桥的测量原理和计算方法。

2-3.图为一直流应变电桥,图中U =4V ,1234120R R R R ====Ω,试求:① 1R 为金属应变片,其余为外接电阻,当1R 的增量为1 1.2R ∆=Ω时,电桥输出电压U O 。

② 1R 、2R 都是应变片,且批号相同,感应应变的极性和大小都相同,其余为外接电阻,电桥输出电压U O 。

③ 题②中,如果2R 与1R 的感受应变的极性相反,F A且12 1.2R R ∆=∆=Ω,电桥输出电压U O 。

答:①31241123414 1.210444120O R R R R R U U U mV R R R R R ⎛⎫∆∆∆∆∆∆=-+-==⨯= ⎪⎝⎭ 或者更精确地()()()()()()1132411234120 1.212012012049.95120 1.2120120120O R R R R R U U mV R R R R R +∆-+-⨯=⋅=⨯=+∆+++++或者()411311011241113111111R R R R R R U U UR R R R R R R R ∆∆==⎛⎫⎛⎫⎛⎫∆∆++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=② 312412123412044O R R R R R R U U U V R R R R R R ⎛⎫⎛⎫∆∆∆∆∆∆∆=-+-=-= ⎪ ⎪⎝⎭⎝⎭或者3110112234R R R U U R R R R R R ⎛⎫∆+=- ⎪∆+++∆+⎝⎭=0V③3124121234124 1.2 1.220444120120O R R R R R R U U U mVR R R R R R ⎛⎫⎛⎫∆∆∆∆∆∆⎛⎫⎛⎫∆=-+-=-=--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭或者 3110112234R R R U U R R R R R R ⎛⎫∆+=-⎪∆++-∆+⎝⎭=解析:参见PPT P23~27,关于电阻应变计的测量电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量电桥的特性及应用一、测量电桥的基本特性和温度补偿在结构强度的实验分析中,构件表面的应变测量主要是使用应变电测法,即将电阻应变计粘贴在构件表面,并正确地接入测量电路,从而得到构件表面的应变。

应变电测法的基本测量电路是电桥。

测量电桥是由应变计作为桥臂,作用是将应变计的电阻变化转化为电压或电流信号。

在测量时,将应变计粘贴在各种被测试件上,组成电桥,并利用电桥的特性提高读数应变的数值,或从复杂的受力构件中测出某一内力分量(如轴力、弯矩等)。

1. 测量电桥的基本特性设电桥的四个桥臂接上应变计,电阻分别为1234R R R R R ====(见图一),如果桥臂电阻改变1234R R R R ∆∆∆∆、、、,则输出电压为: 0312412344i u R R R R u R R R R ⎛⎫∆∆∆∆=--+ ⎪⎝⎭(1)式中:0u 为电桥的桥压,i u 为电桥的输出电压。

若四个桥臂上的应变计的灵敏系数均为K ,即ii R K Rε∆=,则输出电压: ()012344i uu K εεεε=--+ (2)式中:1234εεεε、、、分别为应变计1234R R R R 、、、所感受的应变值。

应变仪的输出应变为:123404id u u Kεεεεε==--+ (3) 由式(3)可见,电桥有下列特性:(1)两相邻桥臂上应变计的应变相减。

即应变同号时,输出应变为两邻桥臂应变之图一 电桥差;异号时为两相邻桥臂应变之和。

(2) 两相对桥臂上应变计的应变相加。

即应变同号时,输出应变为两相对桥臂应变之和;异号时为两相对桥臂应变之差。

应变仪的输出应变实际上就是读数应变,所以合理地、巧妙地利用电桥特性,可以增大读数应变,并且可测出复杂受力杆件中的内力分量。

2. 温度的影响与补偿在测量时,被测构件和所粘贴的应变计的工作环境是具有一定温度的。

当温度发生变化时,应变计将产生热输出t ε。

显然,热输出t ε不包含结构因受载而产生的应变,即使结构处在不承载且无约束状态,t ε仍然存在。

因此,当结构承受载荷时,这个应变就会与由载荷作用而产生的应变叠加在一起的输出,使测量到的输出应变中包含了因环境温度变化而引起的应变t ε,因而必然对测量结果产生影响。

温度引起的应变t ε的大小可以与构件的实际应变相当,例如,当采用镍铬丝的电阻应变计粘贴在钢构件上进行应变测量时,如果温度升高 1℃,t ε即可达 70με 。

因此,在应变计电测中,必须消除应变t ε,以排除温度的影响,这是一个十分重要的问题。

测量应变计既传递被测构件的机械应变,又传递环境温度变化引起的应变。

根据式(3),如果将两个应变计接入电桥的相邻桥臂,或将四个应变计分别接入电桥的四个桥臂,只要每一个应变计的t ε相等,即要求应变计相同,被测构件材料相同,所处温度场相同,则电桥输出中就消除了t ε的影响。

这就是桥路补偿法,或称为温度补偿片法。

桥路补偿法可分为两种,下面作简单介绍。

补偿块补偿法此方法是准备一个其材料与被测构件相同,但不受外力的补偿块,并将它置于构件被测点附近,使补偿片与工作片处于同一温度场中,如图二所示。

在构件被测点处粘贴电阻应变计1R ,称工作应变计(简称工作片),接入电桥的 AB 桥臂,另外在补偿块上粘贴一个与工作应变计规格相同的电阻应变计2R 称温度补偿应变计(简图二称补偿片),接入电桥的BC 桥臂,在电桥的 AD 和CD 桥臂上接入固定电阻R ,组成等臂电桥,如图二所示。

这样,根据电桥的基本特性(3)式,在测量结果中便消除了温度的影响。

工作片补偿法在同一被测试件上粘贴几个工作应变计,将它们适当地接入电桥中(比如相邻桥臂)。

当试件受力且测点环境温度变化时,每个应变计的应变中都包含外力和温度变化引起的应变,根据电桥基本特性(3)式,在应变仪的读数应变中能消除温度变化所引起的应变,从而得到所需测量的应变这种方法叫工作片补偿法。

在该方法中,工作应变计既参加工作,又起到了温度补偿的作用。

如果在同一试件上能找到温度相同的几个贴片位置,而且它们的应变关系又已知,就可采用工作片补偿法进行温度补偿。

具体应用参见下一节。

在高温条件下,若用桥路补偿法已无法消除温度影响,则一般采用温度自补偿电阻应变计。

这种应变计是用电阻温度系数为正值和负值的两种电阻丝串联或控制电阻温度而制成的应变计,当环境温度变化时,电阻增量相互抵消,使得减少以至不产生温度应变。

二、电阻应变计在电桥中的接线方法应变计在测量电桥中有各种接法。

实际测量时,根据电桥基本特性和不同的使用情况,采用不同的接线方法,以达到以下目的:1.实现温度补偿;2.从复杂的变形中测出所需要的某一应变分量;3.扩大应变仪的读数,减少读数误差,提高测量精度。

为了达到上述目的,需要充分利用电桥的基本特性,精心设计应变计在电桥中的接法。

根据不同的使用情况,各桥臂的电阻可以部分或全部是应变计。

应变计在电桥中,常采用以下几种接线方法:半桥接线法若在测量电桥的桥臂 AB 和 BC 上接电阻应变计,而另外两臂 AD 和 CD 接电阻应变仪的内部固定电阻 R ,则称为半桥接线法(或半桥线路)。

对于等臂电桥1234R R R R ===,实际测量时,有以下两种情况:(1)半桥测量半桥测量接法如图三,电桥的两个桥臂 AB 和 BC 上均接工作应变计1R 和2R 。

另外两臂 AD 和 CD 接固定电阻R ,由于固定电阻因温度和工作环境的变化而产生的电阻变化相同,即34R R ∆=∆,因而,34εε=。

根据(3)式,应变仪的读数为:12d εεε=- (4)(2)单臂测量单臂测量接法如图四,1R 为工作应变计,2R 为温度补偿应变计,3R 和4R 为电阻应变仪的内部固定电阻R 。

工作应变计感受构件变形引起的应变为ε,感受温度引起的应变为t ε,温度补偿应变计感受温度引起的应变也为t ε。

根据式(4),可得应变仪的读数应变为:d εε= (5)全桥接线法在测量电桥的四个桥臂上全部接电阻应变计,称为全桥接线法(或全桥线路)。

对于等臂电桥,实际测量时,有以下两种情况:(1)全桥测量测量电桥的四个桥臂上都接工作应变计,如图五所示。

工作应变计感受应变分别为1234εεεε、、、。

根据式(3),应变仪的读数应变为:1234d εεεεε=--+ (6) (2)对臂测量电桥相对两臂接工作应变计,另相对两臂接温度补偿应变计。

设工作应变计感受构件变形引起的应变分别为1ε和4ε,感受温度引起的应变t ε,温度补偿应变计感受温度引起的应变也为t ε。

即141234,,,,t t t t εεεεεεεεεε=+===+根据式(6),应变仪的读数应变为:14d εεε=+ (7)串联和并联式接线法在应变测量过程中,可将应变计串联或并联起来接入测量桥臂,图六(a)为串联半桥线路,图六(b)则为并联半桥线路,也可以接成串、并联全桥线路。

图三 半桥测量 图四 单臂测量图五 全桥接线法 图六 串联和并联式接线法(a) (b)(1)串联接法设在AB 桥臂中串联了n 个阻值为R 的应变计(见图六(a)),则总阻值为nR ,当每个应变计的电阻改变分别为'''12nR R R ∆∆⋅⋅⋅∆、、时,则: ()''''''1211121111n n R R R R K R K nR nεεεε⎛⎫⎛⎫∆+∆+⋅⋅⋅∆∆===++⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭ (8)由上式可知:a) 串联接线后桥臂的应变为各个应变计应变值的算术平均值。

这一特点在实际测量中具有实用价值。

b) 当每一桥臂中串联的各个应变计的应变相同时,即''''12n εεεε==⋅⋅⋅=时,则:'1εε= (9)它表明,当桥臂中串联的各个应变计的应变相同时,桥臂的应变就等于串联的单个应变计的应变值。

c) 串联后的桥臂电阻增大,在限定电流下,可提高供桥电压,相应地使读数应变增大。

(2)并联接线法如果在AB 桥臂上并联n 个阻值为R 的应变计(见图六(b)),各应变计的电阻该变量分别为'''12,n R R R ∆∆⋅⋅⋅∆、、则桥臂电阻和桥臂电阻的改变量为:1RR n=和1'''121111nR R R R ∆=++⋅⋅⋅+∆∆∆桥臂应变则为''''1231111111111n R R R R RK R K nR ε⎛⎫⎪+++⋅⋅⋅ ⎪∆∆∆∆ ⎪==⎪⎛⎫∆ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭(10) 由上式可知:a)当 同 一 桥 臂 中 并 联 的 所 有 应 变 计 的 电 阻 改 变 量 都 相 同 时 , 即''''12n R R R R ∆=∆=⋅⋅⋅=∆=∆,各个应变计的应变也均相同,设为'ε,则桥臂的应变为:''11R K R εε⎛⎫∆== ⎪⎝⎭(11)b)可见,当桥臂中并联的各个应变计的应变相同时,桥臂的应变就等于并联的单个应变计的应变值。

并联后的桥臂电阻减小,在通过应变计的电流不超过最大工作电流的条件下,电桥的输出电流可以相应地提高n 倍,这对于直接用电流表或记录仪器是有利的。

从以上分析可见,采用不同的布片方案的接桥方式,所得的读数应变是不同的,或者说被测试件的应变与应变仪的读数应变间的关系是不同。

因此,在实际应用时,应根据具体情况和要求灵活应用。

一般原则是在满足一定测量要求下,布片方案和接线方式尽可能简单并且能够得到较高的读数应变为宜。

三、测量电桥中的应用在实际测量时,根据测量的目的和要求在构件上选择测点的位置。

测点处粘贴的应变计,感受的是构件表面在测点处的拉应变或压应变。

在很多情况下,这个应变可能是由多种内力因素造成的。

在结构分析和强度计算中,常常需要在多种内力因素引起的应变中确定某一种内力因素产生的应变,而把其余的应变排除。

但是,应变计本身不会分辨它示值中的各应变成分,所以在应变测量中,我们必须根据测量目的,分析构件中的应力应变分布,合理选择贴片位置、方位以及贴片数量,利用电桥的特性,合理地把应变计接入电桥,以便在测量结果中排除不需要的成分,保留所需要的成分,并消除误差源的影响(如载荷、作用点、方向偏差的影响等),补偿温度效应,以尽可能高的灵敏度测出所需的被测量。

1.半桥接线法的应用 拉压应变的测量测定图七所示受拉构件的拉伸应变。

下面列举两种方案:图七 受拉构件的应变测量单臂测量在构件表面沿轴向粘贴工作片1R ,另在补偿块上粘贴温度补偿应变计2R (见图七),这是应变1ε中除有载F 引起的拉伸应变F ε外,还有温度变化引起的应变t ε,即1F t εεε=+而2ε中只有温度变化引起的应变t ε,即2t εε=按图七 (c)接成半桥线路进行半桥测量,应变仪的读数应变由式(4)得()12d F t t F εεεεεεε=-=+-=可以看出,这样布片和接线,可测出载荷作用下F 引起的拉伸应变,并且用补偿块补偿法消除了温度的影响。

相关文档
最新文档