电介质材料的介电常数及损耗的频率特性优秀课件

合集下载

电介质材料的介电常数和损耗的频率特性

电介质材料的介电常数和损耗的频率特性
电介质材料的介电常数及损耗 的频率特性
〈一〉实验目的 〈二〉实验仪器 〈三〉实验原理 〈四〉操作步骤 〈五〉数据处理
〈一〉实验目的
1.熟练掌握MODEL TH2816型宽频LCR数字电桥的使用;
2.测量几种介质材料的介电常数 和介质损耗角正切 (tan)与频率的关系,从而了解它们的 、tan 的频
原因,并分析产生误差的可能性; 4. 比较不同偏压下的ε , tg δ与频率关系曲线的异同,
并分析原因。
知识回顾 Knowledge Review
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
介电损耗值,即 tan /, 又称介质损耗因数。δ是电 介质的电位移D由于极化弛豫而落后电场E的一个相位角。 由于介质的各种极化机构在不同的频率范围有不同的响应和
不同频率下产生不同的电导率,所以介质的介电常数和介电
损耗都是随频率的变化而变化。如不考虑边缘效应,平板试
样的电容量可用下式表示:
(5)选择不同的测量频率,测出不同频率下的电容C和损 耗tg δ的值。(可设置的频率范围为:20 Hz — 150 kHz)
(6)再分别将内偏调到5V, 10V重复测量。
〈五〉数据处理
1. 由测量数据,进行转换:C→ε'; 2. 用origin软件绘图,绘出 ε'~ f和 tg δ ~ f关系曲线; 3. 对所得曲线进行分析:分析,tan与频率变化的
电介质的介电损耗一般用损耗角正切tan 表示,并定义
为: 介质损耗的功率(即有功功率)
tan
无功功率
。在直流电场下,电介质内只有
泄漏电流所产生的电导损耗;但在交变电场中,除电导损耗
外还存在着各种形式的极化所产生的损耗,即松弛极化损耗。

介电常数和介质损耗角正切-PPT课件

介电常数和介质损耗角正切-PPT课件
• 试样应水平放置在支撑板上,按图将电极装好,并施加1N的 压力,用量规检查两电极间的距离为4.0土0.1mm。先对两电极 加25v倍数的适当电压,调整可变电阻,使电极短路电流为1.0+0.1 A。在两电极供电下,以30+5s的时间间隔下将电解液液滴滴入 两电极间的试样上,直到试样发生破坏或滴下50滴为止。 • 试样发生以下两种情况之一视为破坏: (1)试样表面两电极间的导电通路电流达0.5A以上,且过流继电 器延时2s发生动作; (2)虽过流继电器未发生动作,但试样燃烧了
材料极化
四、介电常数和介质损耗角正切
基本概念:
• 介电常数:以绝缘材料为介质与以真空为介质制成同尺寸电 容器的电容量之比值。 表示在单位电场中,单位体积内积蓄的静电能量的大小。是 表征电介质极化并储存电荷的能力,是个宏观物理量。 • 介质损耗 置于交流电场中的介质,以内部发热(温度升高)形 式表现出来的能量损耗。
介电性的应用
tg 大,损耗大,材料发热。 • 电容介质 大,tg 小
作绝缘材料或电容器材料的高聚物,介电损耗越小越好
航空航天材料 小,tg 大,静电小 • 高频焊接:薄膜封口,tg 大

需要通过高频加热进行干燥,模塑或对塑料进行高频焊接时,要求 高不用PVC (极性)
影响因素
(1)试样表面状态 表面应清洁,无灰尘、脏物、指印、油脂、脱模剂或 其他影响结果的污物。表面污染极易使电极间的试样产生漏痕,因此试 验前应对试样表面进行清洁处理。 (2)试验点间距选择 如果在同一片试样上做多点试验,则应注意试验点之 间要有足够的距离。该间距的大小应选在前一次试验后飞溅出的污物所 污染的部分以外,否则使结果发生偏差。 (3)环境条件的影响 除保持温度在23±1℃条件下试验外,还应注意周 围的空气尽量不要流动。空气的流动导致液滴落点的偏离,这是试验所 不允许的。因而试验时,电极和样品系统放在一个密封罩内进行.

介电损耗与介电常数

介电损耗与介电常数

介电损耗与介电常数引言:介电损耗和介电常数是电介质中两个重要的物理性质。

介电损耗是电介质在交变电场中由于分子摩擦和极化导致的能量损耗现象,而介电常数则是描述电介质在电场中极化程度的物理量。

本文将详细介绍介电损耗和介电常数的概念、影响因素以及应用。

一、介电损耗的概念与影响因素介电损耗是指电介质在交变电场中由于分子摩擦和极化现象导致的能量损失。

当电介质处于交变电场中时,电场会使电介质内的分子发生摩擦运动和极化现象,从而将电能转化为热能。

这种能量损耗被称为介电损耗。

介电损耗的大小与多种因素密切相关。

首先,介电损耗与电介质的性质有关。

不同的电介质由于其分子结构和化学成分的不同,其摩擦和极化现象也会有所差异,因此其介电损耗的大小也会有所不同。

其次,介电损耗还与电场频率有关。

当电场频率较低时,电介质内分子的摩擦运动和极化程度较小,因此介电损耗较小;而当频率较高时,分子的摩擦运动和极化现象加剧,导致介电损耗增大。

此外,温度也是影响介电损耗的重要因素。

随着温度的升高,分子的热运动增强,从而增加了摩擦运动和极化现象,导致介电损耗增大。

二、介电常数的概念与影响因素介电常数是描述电介质在电场中极化程度的物理量。

当电介质处于电场中时,电场会使电介质内的分子发生极化现象,从而在电介质中引入一个电偶极矩。

介电常数就是描述电介质中电场强度与电偶极矩之间关系的物理量。

介电常数的大小与多种因素有关。

首先,介电常数与电介质的性质密切相关。

不同的电介质由于其分子结构和化学成分的不同,其分子极化程度也会有所不同,从而导致介电常数的大小也会有所差异。

其次,介电常数还与电场频率有关。

当电场频率较低时,电介质内分子极化现象较弱,导致介电常数较小;而当频率较高时,分子极化现象加剧,导致介电常数增大。

此外,温度也会影响介电常数的数值。

随着温度的升高,分子的热运动增强,从而影响了分子的极化程度,进而影响了介电常数的数值。

三、介电损耗与介电常数的应用介电损耗和介电常数在众多领域中都有广泛的应用。

介电常数和介质损

介电常数和介质损

不允许的。因而试验时,电极和样品系统放在一个密封罩内进行.
介电常数和介质损耗角正切
介电常数和介质损耗角正切
在电场作用下,能产生极化的一切物质又被称之为电介质。电介 质在电子工业中用来做集成电路的基板、电容器等。如果将一块 电介质放入一平行电场中,则可发现在介质表面感应出了电荷, 即正极板附近的电介质感应出了负电荷,负极板附近的介质表面 感应出正电荷。这种电介质在电场作用下产生感生电荷的现象, 称之为电介质的极化。 感应电荷产生的原因在于介质内部质点 (原子、分子、离子)在电场作用下正负电荷重心的分离,变成了偶 极子。不同的偶极子有不同的电偶极矩,电偶极矩的方向与外电 场方向一致。
高分子材料的ε由主链结构中的键的性能和排列所决定。
• 分子结构极性越强, ε和tg越大. 非极性材料的极化程度小,ε和tg都较小.
• 极性取代基团影响更大,其数目越多, ε和tg越大
介电性的应用
tg 大,损耗大,材料发热。 • 电容介质 大,tg 小
作绝缘材料或电容器材料的高聚物,介电损耗越小越好
• 试样发生以下两种情况之一视为破坏: (1)试样表面两电极间的导电通路电流达0.5A以上,且过流继电 器延时2s发生动作; (2)虽过流继电器未发生动作,但试样燃烧了
影响因素
(1)试样表面状态 表面应清洁,无灰尘、脏物、指印、油脂、脱模剂或
其他影响结果的污物。表面污染极易使电极间的试样产生漏痕,因此试
验前应对试样表面进行清洁处理。
(2)试验点间距选择 如果在同一片试样上做多点试验,则应注意试验点之
间要有足够的距离。该间距的大小应选在前一次试验后飞溅出的污物所
污染的部分以外,否则使结果发生偏差。
(3)环境条件的影响
除保持温度在23±1℃条件下试验外,还应注意周

电介质材料PPT课件

电介质材料PPT课件

由于一切电介质材料均由分子、原子或离子组成的。
而它们又都是由原子核及核外电子云组成。当外加电场
时,电子云相对于原子核发生位移,因为产生感应电矩。
最简单的模型是图(a)所示的氢原子的电子极化。无外
电场时,正、负电荷重心重合;当施加电场后,电子云
与核产生相对位移。电子极化的频率响应极快,外加电
场后经
即能1产0生14 极1化01。5s
1、探针法
金刚石探针沿膜表面移动, 触针 而探针在垂直方向上的位移通
过电信号可以被放大1 0 1 6 倍并
被记录下来。从膜的边缘可以 直接通过探针针尖所检测的阶 梯高度确定膜的厚度。
薄膜 基片
优点:简单,测量直观; 缺点:(1)容易划伤较软的薄膜并引起测量误差;
(2)对于表面粗糙的薄膜,并测量误差较大。
第一章 简 介
电介质材料是指电阻率大于1010cm 的材料,是相对于金属材料和半导体材料 而区分的。
金属材料 :共有化电子 半导体材料:载流子 电介质材料:束缚电荷
一、电介质材料的分类及应用
电介质材料的分类
绝缘材料:电阻率很高,能承受很强的电场,不 易被击穿。主要是高分子电介质和无碱玻璃。
电容器材料:主要是陶瓷材料,包括两种,一种 是具有严格温度系数的高频稳定型陶瓷,一种是 介电系数特别大的铁电陶瓷。
(2)离子极化 由异号离子组成的晶体,如Nacl,在外电场作
用下,正、负离子均发生位移,见图(b),以一 维排列的正、负离子原来间隔均等,加了外电场后, 正、负离子的相对距离发生变化,产生了偶极矩。 离子极化的频率响应速度比电子极化略慢,约 为 1012 1。013s
(3)偶极极化 有些电介质分子是由极性较强的离子键构成的,

介电常数和介质损耗角正切PPT教案

介电常数和介质损耗角正切PPT教案

影响因素
(1)湿度 材料的极性越强受湿度的影响越
明显。主要原因是高湿的作用,使水分子扩散到高分 子的分子间,使其极性增加;同时,潮湿的空气作用 于塑料表面,几乎是在几分钟内就使介质表面形成一 个水膜层,它具有离子性质,增加表面电导. 因此,材料
和 的介电常数 介质损耗角正切tgδ都随之增加.
试样的状态调节和测试都应在标准环境.
(2)试验点间距选择 如果在同一片试样上做多点试验,则应注意试验点 之间要有足够的距离。该间距的大小应选在前一次试验后飞溅出的污 物所污染的部分以外,否则使结果发生偏差。
(3)环境条件的影响 除保持温度在23±1℃条件下试验外,还应注意 周围的空气尽量不要流动。空气的流动导致液滴落点的偏离,这是试 验所不允许的。因而试验时,电极和样品系统放在一个密封罩内进行.
第6页/共15页
(2) 温度
第7页/共15页
影响因素
(3)测试电压
板状试样:电压2KV影响不大,过高则增加附加损耗. 薄膜:电压低于500V.过大使tgδ明显增加. (4) 测试用接触电极 高频下,电极的附加损耗变大,因而电极材料本身的电阻一定要小.
第8页/共15页
高 聚 物 的 介 电性能
高聚物
26-28
30 24 15-25 22 15-19
18-6 17-22 25-40 16-20 20
2.2-2.4(1016Hz)
2.0-2.6(1016Hz) 2.5(1016Hz) 3.2-3.6(1016Hz) 4.1 4.0 3.4 3.7 3.0 2.0-2.2 2.9-3.1 2.2
第9页/共15页
耐漏电起痕指数(PTI) 材料表面能经受住50滴电解液而没有形成 漏电痕迹的耐电压值,以伏(v)为单位。

材料物理04 电介质物理PPT课件

材料物理04 电介质物理PPT课件
4.2 电介质的极化
二、极化类型
弹性位移极化 (瞬时极化)
电子位移极化(Electronic Polarizability)
Response is fast, Response is fast, τ is small
离子位移极化(Ionic Polarizability)
Response is slower
电极间介质在一定外加电压作用下,其中不 大的电导最初引起较小的电流。电流的焦耳热使 样品温度升高。但电介质的电导会随温度迅速变 大而使电流及焦耳热增加。若样品及周围环境的 散热条件不好,则上述过程循环往复,互相促进, 最后使样品内部的温度不断升高而引起损坏。在 电介质的薄弱处热击穿产生线状击穿沟道。击穿 电压与温度有指数关系,与样品厚度成正比;但 对于薄的样品,击穿电压比例于厚度的平方根。 热击穿还与介质电导的非线性有关,当电场增加 时电阻下降,热击穿一般出现于较高环境温度。 在低温下出现的是另一种类型的电击穿。
电介质在电场作用下,由于漏电流、电损耗或孔隙 局部气体电离放电产生放热,材料温度逐步升高,随着 时间延续,积热增多,当达到一定温度时,材料即行开 裂、玻璃化或熔化,绝缘性能被破坏而导致击穿的现象。 这是介质材料常见的破坏原因之一。热击穿与介质的导 致系数、强度、内部缺陷、掺杂物(杂质)、气孔、形 状及散热条件等多种因素有关。 固体电介质的击穿有电 击穿、热击穿、电化学击穿、放电击穿等形式。绝缘结 构发生击穿,往往是电、热、放电、电化学等多种形式 同时存在,很难截然分开。一般来说,在采用tanδ值 大、耐热性差的电介质的低压电气设备,在工作温度高、 散热条件差时,热击穿较为多见。而在高压电气设备中, 放电击穿的概率就大些。脉冲电压下的击穿一般属于电 击穿。当电压作用时间达数十小时乃至数年时,大多数 属于电化学击穿。

电介质材料的介电常数及损耗的频率特性

电介质材料的介电常数及损耗的频率特性
本实验旨在探究固体电介质材料的介电常数与介电损耗的频率特性。通过使用MODEL TH2816型宽频LCR数字电桥,我们精确测量了几种不同介质材料在交变电场作用下的介电常数和介质损耗角正切与频率的变化关系。实验结果显示,介电常数和介电损耗均随频率的变化而变化,这主要归因于介质内部极化机构的响应,介电常数和介电损耗与频率的关系曲线存在差异,这表明偏压对介质的介电性能具有显著影响。通过对实验数据的详细分析,我们深入了解了固体电介质材料的介电特性,为相关领域的应用提供了有价值的参考。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d
(1)
式中 s —— 电极的面积,米2;d —— 介质的厚度,米;εr— — 介质材料的相对介电常数。
将ε0的值代入(1)式,得到:
C100rs (pF) 3.6d
由此得
r
3.6 dC
10
r
14.4 dC 100D2
— 其所用单位d ——米, C pF , D ——米。
率特性。
〈二〉实验仪器
TH2816型宽频LCR数字电桥、样品
〈三〉实验原理
介电常数,又称电容率,是电位移D与电场强度E之比 = D/E ,其单位为F/m ,真空的介电常数 F/m ,而相对介电 常数为同一尺寸的电容器中充入电介质时的电容和不充入电 介质时真空下的电容之比。介电常数小的电介质,其分子为 非极性或弱极性结构,介电常数大的电介质,其分子为极性 或强极性结构。在交变电场作用下,电介质的介电常数为复 数,复介电常数的实部与上述介电常数的意义是一致的,而 虚部表示损耗。介质的介电损耗是指由于导电或交变电场中 极化弛豫过程在电介质中引起的功率损耗。这一功率损耗是 通过热耗散把电场的电能消耗掉的结果。
电介质材料的介电常数及损耗 的频率特性优秀课件
〈一〉实验目的 〈二〉实验仪器 〈三〉实验原理 〈四〉操作步骤 〈五〉数据处理
〈一〉实验目的
1.熟练掌握MODEL TH2816型宽频LCR数字电桥的使用;
2.测量几种介质材料的介电常数 和介质损耗角正切 (tan)与频率的关系,从而了解它们的 、tan 的频
电介质的介电损耗一般用损耗角正切tan 表示,并定义
为:tan介 质 损 耗 的 无 功 功 率 功 ( 率 即 有 功 功 率 )。在直流电场下,电介质内只有 泄漏电流所产生的电导损耗;但在交变电场中,除电导损耗
外还存在着各种形式的极化所产生的损耗,即松弛极化损耗。
此时,复介电常数 i的虚 部与实部的比值,即为
(3)将被测圆形陶瓷片接在测试夹具上,并将样品由测试 架引出的两极接入LCR数字电桥。
(4)选择合适的等效方式:按“等效”键即可选择串、并 联或自动等效方式(即将被测器件看作是串联或并联的 等效方式),当选择“自动”时,仪器将自动选择。
(5)选择不同的测量频率,测出不同频率下的电容C和损 耗tg δ的值。(可设置的频率范围为:20 Hz — 150 kHz)
介电损耗值,即 tan/,又称介质损耗因数。δ是电
介质的电位移D由于极化弛豫而落后电场E的一个相位角。
由于介质的各种极化机构在不同的频率范围有不同的响应和
不同频率下产生不同的电导率,所以介质的介电常数和介电
损耗都是随频率的变化而变化。如不考虑边缘效应,平板试
样的电容量可用下式表示:
C 0rs (F)
(6)再分别将内偏调到5V, 10V重复测量。
〈四〉操作步骤
(1)接通电源,电桥开始自检。自检结束后,面板显示: 显示A:C(电容) 显示B:D(即损耗tan) 显示C: F(显示:1.00kHz) 速度:慢(40ms A/D积分时间) 读数:直读 等效: 串联 偏置:OFF 方式:连续 量程:自动 打印:OFF
(2)使用按键[显示A]、[显示B]在LCR上选择测试参数;如 果需要测量的是电容C和损耗tan,则不需要另外选择。 等待仪器稳定20 分钟后,对仪器进行清 “0”;
相关文档
最新文档