机械原理力分析
机械原理力分析

N1 N2 N
则
又据 MO 0
得 Gh Nl
欲使摇臂不自动下 滑,必须满足
G 2Ff
联解上三式得
Ff1 fN Ff 2 Ff
h l 2f
即 h l
2tgj
S应位于E点的右边
2. 楔形面移动副摩擦
θ
θ
以滑块作为受力
体,有 Ff= f N
1
所以 , F =2Ff= 2f N
2
R21
N
Ff
Fx
tgj tg
R21
N
j
Ff 1
Fx
2
Fy
F
1) 当β> φ时,Ff<Fx , 滑块作加速运动。
2) 当 β = φ时, Ff = Fx ,滑块作匀速运动(若1原来就在
运动)或者静止不动(若1原来就不动)。
3) 当 β < φ时, Ff > Fx ,若滑块原来就在运动,则作减 速运动直至静止不动;如滑块原来就不动,则无论外力F
3. 质量代换法 a. 动代换。同时满足上述三个代 换条件的质量代换。对连杆有:
mB+mK=m2 mBb=mKk mBb2+mKk2=Js2
b. 静代换。只满足上述前两个代 换条件的质量代换。(忽略惯性力 矩的影响)
mB=m2c/(b+c) mC=m2b/(b+c)
§9-3 运动副中摩擦(Friction)力分析
假想的集中质量称为代换质量,代换质量所在的位置称
为代换点。
2. 质量代换的等效条件
n
a. 代换前后构件的质量不变;Σi=m1 i= m
n
b.
代换前后构件的质心位置不变;
Σi=m1 i
n
机械原理介绍

机械原理介绍
机械原理是研究机械运动和力学性能的学科。
它研究力和运动之间的关系,以及通过机械传动装置将能量从一处转移到另一处的方式。
机械原理主要包括以下几个方面的内容。
一、力的分析:力是机械运动的基础,机械原理研究了力的大小、方向和作用点对机械系统的影响。
通过分析力的作用,可以确定机械系统的平衡条件和运动方式。
二、力的传递和转换:机械装置通过传递和转换力来实现能量的转移。
机械原理研究了不同类型的机械传动方式,如齿轮传动、皮带传动和链传动等,以及力的转换方式,如杠杆原理、滑块机构和凸轮机构等。
三、运动的分析:机械原理研究了机械系统的运动规律和运动学特性。
通过分析运动学参数,如速度、加速度和位移,可以确定机械系统的运动方式和运动轨迹。
四、平衡和稳定性:机械原理研究了机械系统的平衡和稳定条件。
通过分析系统的受力平衡条件,可以确定系统的平衡位置和平衡状态。
五、摩擦和磨损:机械原理研究了机械系统中的摩擦和磨损问题。
摩擦会使机械系统的能量损失,而磨损则会导致机械零件的损坏。
通过研究摩擦力和磨损机制,可以减少能量损失和零
件磨损,提高机械系统的效率和寿命。
总之,机械原理是机械工程的基础学科,它提供了研究和设计机械系统的理论和方法。
通过应用机械原理,可以解决机械系统的力学问题,提高机械系统的性能和可靠性。
孙桓《机械原理》笔记和课后习题(含考研真题)详解(平面机构的力分析)【圣才出品】

第4章平面机构的力分析4.1 复习笔记一、机构力分析的任务、目的和方法1.作用在机械上的力根据力对机械运动影响的不同,可分为两大类。
(1)驱动力①定义驱动机械运动的力称为驱动力。
②特点驱动力与其作用点的速度方向相同或成锐角,其所作的功为正功,称为驱动功或输入功。
(2)阻抗力①定义阻止机械运动的力称为阻抗力。
②特点阻抗力与其作用点的速度方向相反或成钝角,其所作的功为负功,称为阻抗功。
③分类a.有效阻抗力机械在生产过程中为了改变工作物的外形、位置或状态而受到的阻力,即工作阻力。
克服这类阻力所完成的功称为有效功或输出功。
b.有害阻抗力机械在运转过程中所受到的非生产阻力。
克服这类阻力所作的功称为损失功。
2.机构力分析的任务和目的(1)确定运动副中的反力运动副反力是指运动副两元素接触处彼此作用的正压力和摩擦力的合力。
(2)确定机械上的平衡力或平衡力偶平衡力是指机械在已知外力的作用下,为了使该机构能按给定的运动规律运动,必须加于机械上的未知外力。
3.机构力分析的方法对于不同的研究对象,适用的方法不同。
(1)低速机械惯性力可以忽略不计,只需要对机械作静力分析。
(2)高速及重型机械①惯性力不可以忽略,需对机械作动态静力分析。
②设计新机械时,由于各构件尺寸、材料、质量及转动惯量未知,因此其动态静力分析方法如下:a.对机构作静力分析及静强度计算,初步确定各构件尺寸;b.对机构进行动态静力分析及强度计算,并据此对各构件尺寸作必要修正;c.重复上述分析及计算过程,直到获得可以接受的设计为止。
二、构件惯性力的确定构件惯性力的确定有一般力学法和质量代换法。
1.一般力学方法如图4-1-1(a)所示为曲柄滑块机构,借此说明不同运动形式构件所产生的惯性力。
(1)作平面复合运动的构件惯性力系有两种简化方式。
①简化为一个加在质心S i上的惯性力F I2和一个惯性力偶矩M I2,即F I2=-m2a S2,M I2=-J S2α2②简化为一个大小等于F I2,而作用线偏离质心S2一定距离l h2的总惯性力F I2′,而l h2=M I2/F I2F′I2对质心S2之矩的方向应与α2的方向相反。
机械原理机构力分析

机械原理机构力分析机械原理是机械学的基础,它主要研究机械系统中各个构件之间的相互作用和力的传递方式。
而机构是机械系统中起传递、变换和控制运动的作用的装置。
机构力分析是指通过力学原理来解析机械机构中的力以及力的传递和平衡关系。
机械原理机构力分析的目的是为了了解机械机构的运动规律和力学特性,从而为机械设计和性能优化提供理论依据。
在机械系统中,机构是由多个构件组成的,这些构件之间通过连接件连接在一起,形成一个整体。
当机构运动时,各构件之间会受到相互作用力,这些力是通过连接件传递的。
机构力分析的关键是要确定连接件的受力情况,包括连接件上的作用力大小、方向和点位等。
在机构力分析中,首先需要建立机构的运动模型,确定各个构件之间的相对位置和运动方式。
然后,通过应用牛顿第二定律等力学原理,可以得出每个构件所受到的作用力。
在实际应用中,机构力分析可以通过数值计算、有限元分析等方法来进行。
对于复杂的机构,力分析可能会更加困难。
这时可以使用力图和力闭合法来进行分析。
力图是一种通过标注和连接力的方法,直观地表示出受力情况的图形。
力闭合法是一种通过闭合力系统来分析受力情况的方法,通过构造闭合力系统和使用受力平衡条件,可以解析机构中的力学问题。
机构力分析在机械设计和优化中起着重要的作用。
通过对机构力学特性的研究,可以确定机构的运动规律、力学效率和强度等参数。
这些参数对于机械系统的结构设计和性能优化都至关重要。
例如,在设计机械传动系统时,需要对传动链条、齿轮、轴承等部件进行力学分析,以确定它们的合理尺寸和强度;在设计机械臂、摆线机构等复杂机构时,也需要进行力学分析,以确定它们的运动规律和受力情况。
在实际工程中,机械原理机构力分析常常与CAD技术相结合。
通过CAD软件的建模功能和力学分析插件,可以方便地进行机构的三维建模和力学分析。
这不仅提高了设计效率,还减少了设计中的错误和风险。
总之,机械原理机构力分析是机械学中重要的一部分。
机械原理-第3章 平面机构的运动分析和力分析

a
大小:2w1×vB2B1=2w1vB2B1sin90°=2w1vB2B1; k B 2 B1 方向:将vB2B1的方向沿w1转过90°。
vB1B2 1
2 B
(B1B2)
vB1B2 1
2 B
(B1B2)
ω1
a
k B 2 B1
ω1
a
k B 2 B1
(3)注意事项
B (B1B2)
1
2
vB1 = vB2,aB1 = aB2,
目的: 了解现有机构的运动性能,为受力 分析奠定基础。 方法:1)瞬心法(求速度和角速度); 2)矢量方程图解法; 3)解析法(上机计算)。
3.1
速度瞬心
(Instant center of velocity )
3.1.1 速度瞬心
两个互作平行平面运动的构件 定义:
上绝对速度相等、相对速度为
零的瞬时重合点称为这两个构 件的速度瞬心, 简称瞬心。瞬 心用符号Pij表示。
图(b) 2
(B1B2B3)
扩大刚体(扩大构件3),看B点。
B 1 A
b2
C
vB3 = vB2 + vB3B2
方向:⊥BD ⊥AB 大小: ? lAB w1 ∥CD ?
3
w1
D
4
p
选 v ,找 p 点 。
v
v B 3 pb3 μv ω3 (逆 ) l BD l BD
b3
(b)
例4:已知机构位臵、尺寸,w1为常数,求w2、a2。
C B
n t n t aC aC a B aCB aCB
2
1
E
方向:C→D ⊥CD B→A C→B ⊥CB 大小:lCD w32 ? lABw12 lCB w22 ?
机械原理课件之四杆机构受力分析

通过解方程,求解出各个连杆的受力大小和方向。
四杆机构受力分析的案例研究
案例1
案例2
分析一台工业机械中的四杆机构, 确定各个连杆的受力情况。
在一个机器人手臂中应用四杆机 构,研究其受力和应力分析。
案例3
通过受力分析,优化四杆机构的 设计,提高其工作效率。
结论和总结
四杆机构受力分析是机械工程领域的重要研究方向之一。它不仅可以帮助我 们了解四杆机构的工作原理,还可以指导我们设计更优秀的机械系统。
四杆机构的组成和基本结构
连杆
四杆机构由四根连杆组成,包括两个边连杆和两个角连杆。
铰链
连杆通过铰链连接,使得四杆机构能够实现运动。
驱动装置
驱动装置为四杆机构提供动力,使其能够完成特定任务。
四杆机构的运动分析
1
自由度
四杆机构的自由度取决于连杆的个数和铰链的类型。
2
运动类型
四杆机构可以实现旋转、平动和复杂的运动。
3
工作轨迹
通过对四杆机构的运动分析,可以得到工作轨迹的方程。
四杆机构受力分析的基本原理
四杆机构受力分析的基本原理是根据静力学的原理,通过分析力的平衡条件 来确定各个连杆的受力情况。
四杆机构受力分析的方法和步骤1 建立坐标系确定来自适的坐标系,便于受力分析的计算。
2 列写平衡方程
根据力的平衡条件,列写各个连杆的受力方程。
机械原理课件之四杆机构 受力分析
这篇课件将详细介绍四杆机构的受力分析。从概述四杆机构的基本原理开始, 到运动分析和受力分析的具体方法,最后通过案例研究加深理解。让我们一 起来探索吧!
四杆机构的概述
四杆机构是一种常见的机械连杆机构,由四根连杆组成。它具有简单的结构 和广泛的应用领域,是研究机械原理的重要组成部分。
机械原理-第02章 平面连杆机构及其设计 - 平面连杆机构的力分析

件惯性力对机械性能的影响。
G′
2020年4月23日星期四
5
§2-5 平面连杆机构的力分析
WHUT
3、机构力分析的方法
静力分析和动态静力分析。
由于最初设计时,各构件的结构尺寸、形状、材料、质量及 转动惯量未知,因而惯性力(矩)无法确定。此时,一般先 对机构作静强度计算,初步确定各构件尺寸,然后再对构件 进行动态静力分析及强度计算,并以此为依据对各构件作必 要的修正。一般不考虑摩擦力的影响。
(2) 绕定轴转动的构件
a. 回转轴线通过构件质心
S
Pi = 0 Mi = -Js ε ( ε = 0 或 ε ≠0 ) b. 回转轴线不通过质心
Pi = -mas Mi = - Jsε
其中:h=Mi/Pi
2020年4月23日星期四
WHUT
Pi' Pi
h S
Mεi
8
§2-5 平面连杆机构的力分析
(3) 作平面复合运动的构件
2020年4月23日星期四
21
WHUT
(2) 判定构件间的相对转向
F
R12
R12
ω21
v
1
2
R23ω23
3Q
ω14
4
R41
R32R32
R43
(3) 判定作用力在摩擦圆上切点位置
Q R23
R21
F
R43 R41
(4) 依据力平衡条件求解
对构件3:Q + R23 + R43 = 0 对构件1:R21 + R41+ F = 0
2020年4月23日星期四
3
§2-5 平面连杆机构的力分析
2、机构力分析的任务和目的
机械原理平面机构力分析与机械的效率

根据力的平衡条件
P R Q 0 P Qtg( )
二、移动副中的摩擦(续)
2)求保持滑块1沿斜面2等速下滑所需的水平力 P’
(反行程)
根据力的平衡条件 P' R Q 0
P Qtg( )
注意
▪ 当滑块1下滑时,Q为驱动力,P’为阻抗力,其作用为
阻止滑块1 加速下滑。
一、研究摩擦的目的(续 ) 2. 摩擦的有用的方面:
有不少机器,是利用摩擦来工作的。如带传动、摩擦 离合器和制动器等。
二、移动副中的摩擦-2
1. 移动副中摩擦力的确定
F21=f N21 ❖当外载一定时,运动副两元素间法向反力 的大小与运动副两元素的几何形状有关:
1)两构件沿单一平面接触
N21= -Q
:
✓可以用总惯性力PI’来代替PI和MI ,PI’ = PI,作用线由
质心S 偏移 lh
lh
MI PI
二、质量代换法
1. 质量代换法 按一定条件,把构件的质量假想地用集中于某几个选
定的点上的集中质量来代替的方法。 2. 代换点和代换质量 ❖代换点:上述的选定点。 ❖代换质量:集中于代换点上的假想质量。
❖ 螺旋副可以化为斜面机构进行力分析。
三、螺旋副中的摩擦(续)
2)拧紧和放松力矩 ❖拧紧:螺母在力矩M作用下 逆着Q力等速向上运动,相 当于在滑块2上加一水平力P,使滑块2 沿着斜面等速向上 滑动。
P Qtg( ) M P d 2 d 2 Qtg( )
22
❖ 放松:螺母顺着Q力的方向 等速向下运动,相当于滑块 2 沿着斜面等速向下滑。
dF= fdN= f p ds
dM f dF fdN fpds
M f