1-线性规划的基本性质
第2章 线性规划

目标函数下降
MAXZ=4X1-3X2 S.T. X1+2X210 X16 X24 X11 X1,X20
X2=4
B A
目标函数上升
C
X2 0
E
D
X1 X1=6
4X1-3X2=0
X1=1
对解的讨论: .唯一解 .无穷解 .无解: 可行域空集 可行域无界
X2 X1+2X2=10 X2=4
X1 0
a11 a12 a1n 约束方程组 A P1 , P2 , Pn 系数矩阵 a m1 a m 2 a mn
A为m ×n矩阵( m为约束方程个数,n为变量个数)
a11 a12 a1n A P1 , P2 , Pn a m1 a m 2 a mn
消除负的右端常数项
MAXZ=-X1-3(X3-X4) S.T. 6X1+7(X3-X4)8 X1-3(X3-X4) ≥6 X1-(X3-X4)=3 X1、X3、X4 0
约束方程还不是等式约束
人为添加变量,成为等式约束
对于“≤”约束,添加松弛变量 对于“≥”约束,添加剩余变量
6X1=5X1+3X2 S.T. 3X1+5X215
max Z 5 x1 3 x 2 3 x1 5 x 2 x 3 15 5 x1 3 x 2 x 4 10 x1 , x 2 , x 3 , x 4 0
5X1+2X210
X1,X20
2、给出基本可行解
• 6.基本可行解:满足非负条件
对于D1 ,基变量为X4、X5,X1、X2、X3为非基变量,令 X1、X2、X3=0, X4 = 8、X5 = 1 对于D2 ,基变量为X1、X2,X3、X4、X5为非基变量,令 X3、X4、X5 =0, X1 = -13/4 、X2=15/4
1.线性规划

通常是求最大值或 最小值;
2.解决问题的约束条件是一组多个决策变量的线性不
等式或等式。
【例1.2】某商场决定:营业员每周连续工作5天后连续休息2天, 轮流休息。根据统计,商场每天至少需要的营业员如表1.2所示。
表1.2 营业员需要量统计表
min f (x), s.t. x∈.
约束条件
可行解域
线性规划(Linear Programming,缩写为LP) 是运筹学的重要分支之一,在实际中应用得较广 泛,其方法也较成熟,借助计算机,使得计算更方便, 应用领域更广泛和深入。 线性规划通常研究资源的最优利用、设备最佳运 行等问题。例如,当任务或目标确定后,如何统筹兼 顾,合理安排,用最少的资源(如资金、设备、原标 材料、人工、时间等)去完成确定的任务或目标;企 业在一定的资源条件限制下,如何组织安排生产获得 最好的经济效益(如产品量最多 、利润最大)。
运筹学的主要内容
数 学 规 划 组 合 优 化 随 机 优 化
线性规划 非线性规划 整数规划 动态规划 多目标规划 双层规划 最优计数问题 网络优化 排序问题 统筹图 对策论 排队论 库存论 决策分析 可靠性分析
学 科
内
容
许多生产计划与管理问题都可以归纳为最优 化问题, 最优化模型是数学建模中应用最广泛的 模型之一,其内容包括线性规划、整数线性规划、 非线性规划、动态规划、变分法、最优控制等. 近几年来的全国大学生数学建模竞赛中,几 乎每次都有一道题要用到此方法. 此类问题的一般形式为: 目标函数
星 期 需要 人数 星 期 需要 人数
一
二 三 四
300
300 350 400
第1章 线性规划基本性质

1. X1≥0, X2 ≥0 2. 2X1 + 3X2 ≤ 100 3. 4X1 + 2X2 ≤ 120
所有约束条件的的交集为R.
A B R
10 60
现在,问题变为在R内找一点, O 使目标函数值最大.如何找?…
C
20 30 40 50
X1
§1.2 线性规划的图解法
X2
(三)目标函数的图形表示 Z = 6X1 + 4X2 将上式改写: X2 =-3X1/2 + Z/4 令Z为参量,使其取不同 的值,则得到以-3/2为斜率的 一族平行等值线. 如令: 60, 则经过点(10,0)和(0,15); Z=0, 则经过原点; Z=120,则经过点(20,0)和(0,30);
0.8X1 + X2≥1.6 X1 X2 ≤2 ≤1.4
X1 ≥0, X2 ≥0
§1.1 线性规划的一般模型
所谓线性规划问题: 就是求一组变量 ( x1 , x2 , , xn ) 的值,它们 在满足一组线性等式或不等式的限制条件下,使某 一线性函数的值达到极大或极小。而线性规划就是 研究并解决这类问题的一门理论和方法。 请问在企业中有哪些问题属于线性规划问题?
§1.2 线性规划的图解法
maxZ = 6X1 + 4X2 2X1 + 3X2 ≤ 100 --① 4X1 + 2X2 ≤ 120 --② X1≥0, X2 ≥0 (一)建立坐标系 (二)约束条件的图形表示
X2
60 50 40 30 20 10
两个概念:
1.可行解:满足约束条件的点. 2.可行域:全部可行解的集合, 即区域OABCO,用R表示.
X1 ≥0, X2 ≥0
§1.1 线性规划的一般模型
Chap 1 线性规划基本性质

标准化3
min z = x1 +2 (x2′-x 2〃 ) +3 x3′ x1 +2 (x2′-x 2〃 ) + x3′ ≤ 5 2x1 +3 (x2′-x 2〃 ) + x3′ ≥ 6 x1 + (x2′-x 2〃 ) + x3 ′ ≤ 2 x1, x2′, x 2〃, x3′ ≥0
24
第三节 线性规划的标准型
14
第二节 线性规划的图解法
三 、解的可能性
• 唯一最优解:只有一个最优点。 • 多重最优解:无穷多个最优解。若在两个顶点同时 得到最优解,则它们连线上的每一点都是最优解。
例1的数学模型变为 max z = 3x1 +4 x2 x1 ≤8 2x2 ≤12 s.t. 3x1 +4 x2 ≤36 x1 ≥0, x2 ≥0
例如 max z = 3x1 +2 x2 -2x1 + x2 ≤2 s.t. x1 -3 x2 ≤3 x1 ≥0, x2 ≥0
-1
3 2
z =12 z =6 x1 -3 x2 =3 x1
1
1 -1
16
2
3
第二节 线性规划的图解法
三 、解的可能性(续)
• 无可行解:若约束条件相互矛盾,则可行域为空集
22
第三节 线性规划的标准型
• 例
min z = x1 +2 x2 -3 x3 x1 +2 x2 - x3 ≤5 2x1 +3 x2 - x3 ≥6 s.t. -x - x + x ≥ -2 1 2 3 x1 ≥0, x3 ≤0 min z = x1 +2 x2 +3 x3′ x1 +2 x2 + x3′ ≤ 5 2x1 +3 x2 + x3′ ≥ 6 -x1 - x2 - x3′ ≥ -2 x1 ≥0, x3′ ≥ 0
运筹学课程讲义

运筹学课程讲义第一部分线性规划第一章线性规划的基本性质1.1 线性规划的数学模型一、线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。
桌子售价50 元/个,椅子售价30 元/个。
生产桌子和椅子需木工和油漆工两种工种。
生产一个桌子需要木工4 小时,油漆工2小时。
生产一个椅子需要木工3 小时,油漆工1 小时。
该厂每月可用木工工时为120 小时,油漆工工时为50 小时。
问该厂如何组织生产才能使每月的销售收入最大?max z 50x1 30x24x1 3x2 1202x1 x2 50x1,x2 0 例:某工厂生产某一种型号的机床。
每台机床上需要 2.9m、2.1m、1.5m的轴,分别为1根、2根和1根。
这些轴需用同一种圆钢制作,圆钢的长度为74m。
如果要生产100台机床,问应如何安排下料,才能用料最省?二、数学模型的标准型1. 繁写形式2. 缩写形式3. 向量形式4. 矩阵形式若原模型中变量 x j 有上下界,如何化为非负变量?三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量 x k 是自由变量,如何化为非负变量?1. 2 图解法该法简单直观,平面作图适于求解二维问题。
使用该法求解线性规划问题时,不必把原模型化为标准型。
一、 图解法步骤1. 由全部约束条件作图求出可行域2. 作出一条目标函数的等值线3. 平移目标函数等值线,作图求解最优点,再算出最优值 max z 5x 1 6x 2 7x 3x 1 5x 23x 3 15 5x 1 6x 210x 3 20 x 1 x 2 x 3 5x 1 0,x 2 0,x 3无约束令 x 1' x 1,x 3 x 3' x 3'',x 3' ,x 3'' 0, Z 1Z ' 1 1 min z ' 5x 1' 6x 2 7x 3' 7x 3'' 0x 5 Mx 6 1 x 1' 5x 2 1 11 3x 3' 3x 3'' x 4 x 6 15 1 5x 1' 6x 2 10x 3' 10x 3'' x 5 20 1 x ' x 1 ' II '' 54.Mx 7 x 1, x 2 , x 3, x 3, x 4 , x 5 ,x 6, x 7 0从图解法看线性规划问题解的几种情况1. 有唯一最优解2. 有无穷多组最优解3. 无可行解4. 无有限最优解(无界解)min z 6x1 4x?2x〔X2 13 最优解(1,0),最优值33x14x2 22x1, x20直观结论:1)线性规划问题的可行域为凸集,特殊情况下为无界域(但有有限个顶点)或空集;2)线性规划问题若有最优解,一定可以在其可行域的顶点上得到。
线性规划的数学模型和基本性质

月份 所需仓库面积 合同租借期限 合同期内的租费
1 15 1个月 2800
2 10 2个月 4500
3 20 3个月 6000
4 12 4个月 7300
2.线性规划数学模型
用数学语言描述
例1
项目
I
设备A(h)
0
设备B(h)
6
调试工序(h) 1
利润(元)
2
II
每天可用能力
5
15
2
24
1
5
1
解:用变量x1和x2分别表示美佳公司制造家电I和II的数量。
肯尼斯-J-阿罗(KENNETH J. ARROW),美国人,因与约翰-希克 斯(JOHN R. HICKS)共同深入研究了经济均衡理论和福利理论获得 1972年诺贝尔经济学奖。
牟顿-米勒(MERTON M. MILLER),1923-2000, 美国人,由于他在 金融经济学方面做出了开创性工作,于1990年获得诺贝尔经济奖。
1.线性规划介绍
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高? 某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?
2.线性规划数学模型
练习1 生产计划问题
A B 备用资源
煤12
30
劳动日 3 2
60
仓库 0 2
24
利润 40 50
第4章线性规划

f ( X ) 5 x1 4 x 2 4 x1 x 2 60 x1 x 2 24 x1 0 x2 0
(1) ( 2) ( 3) ( 4) ( 5)
例题21: • 首先由(4),(5)二式(x1≥ 0、x2 ≥ 0)知, 其解
在第一象限所在的范围,所以在画图时将第二、
产品Ⅰ 产品Ⅱ 资源总量
设 备(台时)
原料A(公斤) 原料B(公斤)
1
4 0
2
0 4
8
16 12
利 润(百元)
2
3
线性规划范例
• 例B. 任务分配问题
表2
产品
1 23
2 21
3 19
4 17
某公司拟生产4种产品, 可分配给下属的3个工厂 生产,由于工厂的地理位 置和设备不同,每个工厂 生产每种产品的成本不相 同,加工能力也不相同。 有关数据分别由表2和表3 给出。公司应如何给下属 各工厂分配任务,才能在 保证完成每种产品的任务 的条件下,使得公司所花 费的成本最少?
例 : x2 0 y 0, y x2
对于无限制变量的处理:同时引进两个非负变量, 然后用它们的差代替无限制变量。
例 : x2无限制 x2 y1 y2 y1 , y2 0
例题20: 将下述线性规划问题化为标准形
m i n s .t . f ( X ) x1 2 x 2 3 x 3 2 x1 x 2 x 3 9 3 x1 x 2 2 x 3 4 3 x1 2 x 2 3 x 3 6 x1 0, x 2 0, x 3无限制
含量限制 原 A B C 加工费(元/kg) 料 纱线1 ≥60% 无 ≤20% 1.5 纱线2 ≥15% ≥10% ≤60% 1.2 纱线3 无 无 50% 0.9 (元/kg) 6 4.5 3 (kg/月) 2000 2500 1200 原料成本 原料限量
线性规划与最优解知识点总结

线性规划与最优解知识点总结线性规划是运筹学中一种重要的数学优化方法,用于求解一个目标函数在一组约束条件下的最优解。
线性规划在实际问题中有广泛的应用,如生产调度、资源分配、投资决策等。
在本篇文章中,我们将对线性规划与最优解的关键知识点进行总结。
一、线性规划基本概念1. 目标函数:线性规划的目标是通过选择合适的决策变量,使得目标函数达到最小值或最大值。
目标函数通常是一组线性方程。
2. 约束条件:线性规划的决策变量必须满足一组约束条件,这些条件通常是一组线性不等式或等式。
约束条件反映了问题的限制条件。
3. 决策变量:决策变量是线性规划中的未知数,通过对它们的取值进行优化,可以实现目标函数的最优解。
二、线性规划的解法1. 图解法:对于二维及三维的线性规划问题,可以通过绘制约束条件的图形来找到最优解。
最优解通常位于约束条件的交点处。
2. 单纯形法:单纯形法是一种常用的线性规划算法,通过迭代计算,找到目标函数的最优解。
该方法适用于多维的线性规划问题。
三、线性规划的最优解性质1. 最优解的存在性:在满足一定条件下,线性规划问题一定存在最优解。
但是,最优解可能不存在的情况也是存在的,这通常与约束条件的矛盾性有关。
2. 最优解的唯一性:线性规划问题的最优解可能是唯一的,也可能存在多个最优解。
是否存在多个最优解取决于目标函数和约束条件的性质。
四、常见的线性规划问题1. 最大化问题:通过选择合适的决策变量,使得目标函数达到最大值。
这种问题常见于投资决策、利润最大化等领域。
2. 最小化问题:通过选择合适的决策变量,使得目标函数达到最小值。
这种问题常见于成本最小化、资源分配等领域。
3. 平衡问题:在满足一组约束条件的前提下,通过优化决策变量的取值,使得各个变量之间达到平衡。
这种问题常见于供应链管理、产能平衡等领域。
五、线性规划的应用举例1. 生产调度问题:如何合理安排生产任务,使得生产效率最大化。
2. 资源分配问题:如何合理分配资源,使得资源利用率最高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
域 F中有一组不全为 0的数 ai (i 1,2, , m) 使 a1P1 a2P2 L amPm 0
成立,则称这组向量在 F上线性相关,否则称 这组向量在 F上线性无关。
37
基本概念与基本定理
2. 秩:
设A是m n矩阵。若A的n个列向量中有r个线
日销量
产品
B1=3
A1=5
4
A2=7
1
A3=8
7
B2=4
11 9 4
B3=5 B4=8
3
10
2
8
10
5
6
线性规划的数学模型
设从生产点i到销售点j的调运数量为 xij 吨,
则目标函mi数n z为: 4x11 11x12 3xm13inz10x41x41111x12 3x13 10x14
min z x42x111911xx2212 23xx1233108xx1244x721x391 x224x232x23 8x24 7x31 4x32
39
基本概念与基本定理
线性规划的基本概念:
1. 可行解:满足上述约束条件(1.3.1)和 (1.3.2)的解。
2. 最优解:满足上述约束条件(1.3.3)的
可行解。 AX b
(1.3.1)
X 0
(1.3.2)
min z CX (1.3.3)
40
基本概念与基本定理
3. 基:已知A是约束条件的m n 系数矩阵, 其秩为m。若B是A中 mm非奇异子矩阵 (即可逆矩阵,有 B 0 ),则称B是线性 规划问题的一个基,B是由A中m个线性 无关的系数列向量组成的。
2. 若原模型中约束条件为不等式,如何化为 等式:
(1) 若原约束不等式左端>=右端,则: 左端-剩余变量=右端(剩余变量>=0)
(2) 若原约束不等式左端<=右端,则: 左端+松弛变量=右端(松弛变量>=0)
32
线性规划的标准型
3. 若原模型中变量 xk是自由变量,如何化为非负变量: 令 xk xk xk(xk 0, xk 0) 4. 若原模型中变量 x j有上下界,如何化为非负变量: 若 x j u j,即 x j u j 0 ,令 xj x j u j ,有xj 0,用 (xj u j ) 代替 x j即可。 若x j t j ,即 t j x j 0 ,令xj t j x j ,有 xj 0 ,用 (t j xj) 代替 x j即可。
设备
A B C 利润(元/吨)
每吨产品的加工台时
甲
ቤተ መጻሕፍቲ ባይዱ
乙
3
4
5
4
9
8
32
30
总有限台时
36 40 76 求max
4
线性规划的数学模型
设计划期内甲、乙两种产品的产量分别为 x1 吨、x2吨.
目标函数: max z 32x1 30x2
3x1 4x2 36 约束条件: 5x1 4x2 40
2( x3 x4 (x3 x4 )
) x6 2 x7 5
x1 0,x2为自由变量 xi 0;i 1,3,4,5,6,7
化为标准型
35
第一章
1. 线性规划的数学模型 2. 图解法 3. 线性规划的标准型 4. 基本概念与基本定理
36
基本概念与基本定理
复习概念:
1. 线性相关:
唯一解
一般围成有限区域,最优值 只在一个顶点达到
方程特点
无穷多解
在围成的区域边界上,至少 目标和某一约束 有两个顶点处达到最优值 方程成比例
无可行解 围不成区域
有矛盾方程
无界解
围成无界区域 , 且无有限 最优值
缺少一必要条件 的方程
20
图解法
三、两点结论
1. 线性规划问题的可行域为凸集,特殊 性况下为无界解(但有有限个顶点) 或空集。
x13 x23 x33 5
x14 x24 x34 8
xij 0(i 1, 2, 3; j 1, 2, 3, 4)
7
线性规划的数学模型
线性规划问题的特点
1) 前面数学模型的特征:
目标函数是未知量的线性函数,约束条件是未 知量的线性等式或线性不等式。 未知量的取值范围是非负的。
2) 线性规划问题定义:
27
线性规划的标准型
(2) 缩写形式:
n
min z c j x j j 1 n
aij xj bi (i 1, 2,L , m)
j 1
xj 0( j 1, 2,..., n)
28
线性规划的标准型
(3) 向量形式:
min z CX
n
Pj x j b
j 1
X 0
29
线性规划的标准型
(4) 矩阵形式:
min z CX
AX
b
X 0
30
线性规划的标准型
任一模型如何化为标准型
1. 若原问题要求目标函数实现最大化,如何将 其化为最小化问题:
max (CX ) -[min(-CX )]
max(f(x)) y
1
0
1
min(-f(x))
f(x) x
-f(x)
31
线性规划的标准型
性无关(r n),而所有个数量大于 r的列向量组
都线性相关,则称数 r 为矩阵 A的列秩。类似 可定义矩阵 A的行秩。矩阵 A的列秩与行秩一 定相等,它也称为矩阵 A的秩。
38
基本概念与基本定理
一、线性规划问题的基与解
线性问题的标准型: AX b X 0 min z CX
(1.3.1) (1.3.2) (1.3.3)
第一部分
线性规划
1
第一章
线性规划的基本性质
2
第一章
1. 线性规划的数学模型 2. 图解法 3. 线性规划的标准型 4. 基本概念与基本定理
3
线性规划的数学模型
例1:某厂生产甲、乙两种产品。每吨甲、乙产品在不 同设备上加工所需的台时、它们销售后所能获得的利 润以及这三种加工设备在计划期内能提供的有限台时 数均列于下表。试问:如何安排生产计划,可使该厂 所得利润最大?
x1 -x2 +x4 -x5 -x7 =2
x1 , x2 , x4 , … , x7 0
34
线性规划的标准型
max z x1 x2
min z x1 ( x3 x4 )
2
x1
x2
2
s.t.x1 2x2 2
x1 x2 5
2x1 ( x3 x4 ) x5 2
s.t
.
x1 x1
3
2X1+4X2=16
2
Q(4,2)
Z增
1
(1.2.2)
12 3 4
8 x1
16
图解法
3. 无可行解
上例增加一个约束条件:x2 5
x2
4 R(0,4) (1.2.1)
3
2X1+3X2=6
2 Z增
1
12 3
Q(4,2)
(1.2.2) 4
8 x1
17
图解法
4. 无有限最优解(无界解) 如果全部约束条件构成的可行域是无界
2. 线性规划问题若有最优解,一定可以 在其可行域的顶点上得到。
21
第一章
1. 线性规划的数学模型 2. 图解法 3. 线性规划的标准型 4. 基本概念与基本定理
22
线性规划的标准型
数学模型的标准型
1. 标准型: 实际问题的线性规划模型是多种多样的,在众 多的样式中,我们规定一种叫作标准型。
2. 标准型特征:
4. 基向量:基B中的一列即为一个基向量。 基B中共有m 个基向量。
41
基本概念与基本定理
5.非基向量:基B之外的一列即为一个非 基向量。A中共有(n-m)非基向量(假 设n>m)。
6.基变量:与基向量Pi相应的变量 xi叫基变 量,基变量共有m 个。
7.非基变量:与非基向量 Pj相应的变量x j叫 非基变量,非基变量共有(n-m)个。
12
图解法
x2 4 R(0,4)
(1.2.1) 3
2X1+3X2=6
2 Z增
1
0 123
Q(4,2)
(1.2.2) 4
max z 2x1 3x2 x1 2x2 8 4x1 16 x1 0 x2 0
8 x1
13
图解法 结论:
max z 2x1 3x2 x1 2x2 8 4x1 16 x1 0 x2 0
42
基本概念与基本定理
8.基本解:令所有非基变量为0,求出的满 足上述约束条件(1.3.1)的解叫基本解.
9.基本可行解:满足上述约束条件(1.3.2)的 基本解叫基本可行解。不满足上述约束 条件(1.3.2)的基本解叫不可行解。
这种以未知量的线性函数为特征的一类最优 化问题即是线性规划问题。
8
第一章
1. 线性规划的数学模型 2. 图解法 3. 线性规划的标准型 4. 基本概念与基本定理
9
图解法
图解法简单直观,平面上作图适于求 解二维问题。在用图解法求解线性规划 问题时,不必把数学模型化为标准型。
10
图解法
一、图解法步骤
的,则有可能出现无有限最优解的情况。
max z x1 x2 x1 2x2 4 x1 x2 2 x1 0 x2 0
(1.2.5) (1.2.6) (1.2.7) (1.2.8)
18
图解法
x2
(1.2.6) 3
max z x1 x2 x1 2x2 4 x1 x2 2 x1 0 x2 0