场效应晶体管特性

合集下载

双极功率晶体管与场效应晶体管的比较

双极功率晶体管与场效应晶体管的比较

双极功率晶体管与场效应晶体管的比较导言:在电子元件领域,功率晶体管被广泛应用于功率放大和开关电路中,而双极功率晶体管(Bipolar Junction Transistor,BJT)和场效应晶体管(Field-Effect Transistor,FET)是其中两种常见的类型。

本文将对这两种晶体管进行比较,包括工作原理、特性和应用等方面。

一、工作原理1. 双极功率晶体管:双极功率晶体管是一种三层晶体管,由两个PN结组成。

在工作过程中,控制电流被注入基极结,通过基极电流来控制负载电流。

当基极电流达到一定的阈值,集电极-发射极之间的电流就会增加。

它可以工作在放大模式和开关模式下。

2. 场效应晶体管:场效应晶体管是一种由栅、源和漏三个极端组成的四层结构。

其中,源极和漏极之间通过栅极电压控制电流流动。

当栅极电压改变时,导电层的宽度也会发生变化,从而影响了电流流动。

它可分为MOSFET(金属氧化物半导体场效应晶体管)和IGBT(绝缘栅双极性晶体管)两大类。

二、特性比较1. 工作频率:双极功率晶体管由于涉及较多的电子动量传递过程,因此其最高工作频率相对较低,一般在几百MHz到几十GHz之间。

而场效应晶体管由于操作时只涉及电场效应,因此可实现更高的工作频率,达到几十GHz以上。

2. 控制电流:双极功率晶体管需要基极电流来激活,并且在工作过程中需要消耗一定的功率。

而场效应晶体管的控制电流非常小,在无功耗的情况下可以实现更高的效率。

3. 输入电阻和噪音:双极功率晶体管具有相对较低的输入电阻,因此主要用于对输入电阻较高的传感器和信号源进行放大。

而场效应晶体管具有非常高的输入电阻,适用于对电阻要求较低的应用,例如放大信号源。

4. 开关特性:双极功率晶体管在开关模式下对负载电流的响应速度非常快,具有较高的开关速度。

而场效应晶体管需要时间来响应并建立沟道,其开关速度相对较慢。

三、应用领域1. 双极功率晶体管:双极功率晶体管广泛应用于音频放大器、功率放大器、调制器、开关电源等领域。

场效应晶体管

场效应晶体管

主要内容1. 场效应管的结构、符号与工作原理2. 场效应管的工作状态和特性曲线3. 场效应管的基本特性4. 场效应管的电路模型5-4场效应晶体管场效应晶体管概述场效应管,简称FET(Field Effect Transistor),主要特点:(a)输入电阻高,可达107~1015 。

(b)起导电作用的是多数(一种)载流子,又称为单极型晶体管。

(c)体积小、重量轻、耗电省。

(d)噪声低、热稳定性好、抗辐射能力强和制造工艺简单。

(e)在大规模集成电路制造中得到了广泛的应用。

场效应管按结构可分为:结型场效应管(JFET )和绝缘栅型场效应管(MOSFET );按工作原理可分为增强型和耗尽型。

场效应管的类型N 沟道P 沟道增强型耗尽型N 沟道P 沟道N 沟道P 沟道(耗尽型)FET场效应管JFET 结型MOSFET绝缘栅型(IGFET)场效应管的电路符号MOSFET 符号增强型耗尽型GS D SG D P 沟道G S DN 沟道GS D U GS =0时,没有漏极电流,U GS =0时,有漏极电流,U GS 高电平导通U GS 低电平导通需要加负的夹断电压U GS(off)才能关闭,高于夹断电压U GS(off)则导通而只在U GS >0时,能导通,低于开启电压U GS(th)截止5-4-1 场效应管结构、符号与工作原理1.场效应管基本结构图5-2-22沟道绝缘栅型场效应管的基本结构与电路符号图N 沟道绝缘栅型场效应管的基本结构与电路符号沟道绝缘栅型场效应管的基本结构与电路符号场效应管与三极管的三个电极的对应关系:栅极g--基极b 源极s--发射极e 漏极d--集电极c 夹在两个PN结中间的区域称为导电沟道(简称沟道)。

=0时是否存在导电沟道是增强型和耗尽型的基本区别。

22例5-10在Multisim 中用IV 分析仪测试理想绝缘栅型场效应管如图5-4-3所示,改变V GS ,观察电压V DS 与i D 之间的关系。

有机场效应晶体管

有机场效应晶体管

有机场效应晶体管
有机场效应晶体管(OECT)又称为有机金属-半导体叠层结构场效应晶
体管,它是一种新型的晶体管,利用其独特的金属-半导体叠层结构来
实现高性能的特性。

它由两个极性不同的半导体片和一个金属片构成,这三层物质的叠加使得它可以有效的运行电子信号。

有机场效应晶体管具有良好的抗干扰能力,可以有效抑制外部电磁波
对晶体管工作效果造成的干扰,大大降低噪声对电路输出信号的影响。

此外,它还具有低工作电压、低漏出电流、可调节增益带宽等优点,
这样它就可以用于微处理器、计算机系统和无线设备等多种复杂电路
的应用场合。

有机场效应晶体管的另外一个显著优势是,它耗电量低,与普通的晶
体管相比耗电量可以降低9成以上,这也是它被广泛应用的原因之一。

同时,它的封装方式也采用了更小的尺寸,可以显著减少电路板的大小,有利于减少电路外部的电磁波泄漏,也可以节省更多的空间。

总而言之,有机场效应晶体管具有高强度抗干扰、低耗电量、小封装
等特性,它有着广泛的应用前景,是推动新型电子电路的一个重要组
成部分。

它的实用性和易于使用的优势将使它能够更好的满足我们生
活中的用电需求,为未来的智能电子装置带来更多的可能性。

功率场效应晶体管(MOSFET)基本知识.

功率场效应晶体管(MOSFET)基本知识.

功率场效应晶体管(MOSFET)基本知识功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。

由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。

但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。

一、电力场效应管的结构和工作原理电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。

在电力电子装置中,主要应用N沟道增强型。

电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。

小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。

电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。

按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。

电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。

N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。

电气符号,如图1(b)所示。

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。

当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。

如果在栅极和源极之间加一正向电压UGS,并且使UGS大于或等于管子的开启电压UT,则管子开通,在漏、源极间流过电流ID。

UGS超过UT越大,导电能力越强,漏极电流越大。

二、电力场效应管的静态特性和主要参数Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。

1、静态特性(1)输出特性输出特性即是漏极的伏安特性。

特性曲线,如图2(b)所示。

功率场效应晶体管(MOSFET)的工作原理、特性及主要参数

功率场效应晶体管(MOSFET)的工作原理、特性及主要参数

功率场效应晶体管(MOSFET)的工作原理、特性及主要参数功率场效应晶体管(Power Metal Oxide Semiconductor Field Effect Transistor,MOSFET)。

其特点是:属于电压型全控器件、栅极静态内阻极高(109Ω)、驱动功率很小、工作频率高、热稳定性好、无二次击穿、安全工作区宽等;但MOSFET的电流容量小、耐压低、功率不易做得过大,常用于中、小功率开关电路中。

MOSFET的结构和工作原理1.MOSFET的结构MOSFET和小功率MOS管导电机理相同,但在结构上有较大的区别。

小功率MOS管是一次扩散形成的器件,其栅极G、源极S和漏极D在芯片的同一侧。

而MOSFET主要采用立式结构,其3个外引电极与小功率MOS管相同,为栅极G、源极S和漏极D,但不在芯片的同一侧。

MOSFET的导电沟道分为N沟道和P沟道,栅偏压为零时漏源极之间就存在导电沟道的称为耗尽型,栅偏压大于零(N沟道)才存在导电沟道的称为增强型。

MOSFET的电气符号如图1所示,图1(a)表示N沟道MOSFET,电子流出源极;图1(b)表示P沟道MOSFET,空穴流出源极。

从结构上看,MOSFET还含有一个由S极下的P区和D极下的N区形成的寄生二极管,该寄生二极管的阳极和阴极就是MOSFET的S极和D极,它是与MOSFET不可分割的整体,使MOSFET无反向阻断能力。

图1中所示的虚线部分为寄生二极管。

图1 MOSFET的电气符号2.MOSFET的工作原理(1)当栅源电压uGS=0时,栅极下的P型区表面呈现空穴堆积状态,不可能出现反型层,无法沟通漏源极。

此时,即使在漏源极之间施加电压,MOS管也不会导通。

MOSFET结构示意图如图2(a)所示。

图2 MOSFET结构示意图(2)当栅源电压uGS>0且不够充分时,栅极下面的P型区表面呈现耗尽状态,还是无法沟通漏源极,此时MOS管仍保持关断状态,如图2(b)所示。

场效应晶体管

场效应晶体管

场效应晶体管一、场效应晶体管概述场效应晶体管(FET)简称场效应管,它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、温度系数低、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。

场效应管工作时只有一种极性的载流子参与导电,所以场效应管又称为单极型晶体管。

场效应管分结型、绝缘栅型两大类。

结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(IGFET)则因栅极与其它电极完全绝缘而得名。

目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。

按沟道半导体材料的不同,结型和绝缘栅型各分N沟道和P沟道两种。

若按导电方式来划分,场效应管又可分成耗尽型与增强型。

结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。

二、场效应晶体管与半导体晶体管的异同1、外形相同场效应晶体管与半导体晶体管(双极晶体管)的封装外形基本相同,也有B型、F型、G型、TO-3型金属封装外形和S-1型、S-2型、S-4型、TO-92型、CPT型、TO-126型、TO-126FP 型、TO-202型、TO-220型、TO-247型、TO-3P型等塑料封装外形。

2、结构及工作原理不同场效应晶体管属于电压型控制器件,它是依靠控制电场效应来改变导电沟道多数载流子(空穴或电子)的漂移运动而工作的,即用微小的输入变化电压V G来控制较大的沟道输出电流I D,其放大特性(跨导)G M=I D/V G;半导体晶体管属于电流通渠道型控制器件,它是依靠注入到基极区的非平衡少数载流子(电子与空穴)的扩散运动而工作的,即用微小的输入变化电流I b控制较大的输出变化电流I c,其放大倍数β=I c/I b。

场效应晶体管的结构工作原理和输出特性

场效应晶体管的结构工作原理和输出特性

场效应晶体管的结构工作原理和输出特性场效应晶体管(Field Effect Transistor,缩写为FET)是一种用于放大和开关电路的电子元件。

它具有高输入阻抗、低输出阻抗和较高的增益,使其在电子设备和通信系统中得以广泛应用。

本文将详细介绍场效应晶体管的结构、工作原理和输出特性。

一、场效应晶体管的结构1. MOSFET:MOSFET是栅极金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor)的简称。

它由一个由绝缘层隔开的金属栅极、半导体材料(通常为硅)和源/漏极组成。

栅极与绝缘层之间的绝缘层可以是氧化硅(SiO2)或氮化硅(Si3N4)。

MOSFET根据绝缘层材料和极性的不同,可分为N沟道(NMOS)和P沟道(PMOS)两种类型。

2. JFET:JFET是结型场效应晶体管(Junction Field-Effect Transistor)的简称。

它由一个P型或N型半导体形成的结和源/漏极组成。

P型JFET的源极和漏极为P型半导体,N型JFET的源极和漏极则为N型半导体。

JFET有两种常见的结构类型:沟道型和增强型,分别以n-沟道和p-沟道为特征。

二、场效应晶体管的工作原理1.MOSFET工作原理:(1) NMOS:当栅极电压为正,使NMOS栅极与源极之间的管道有效导通,称为“开通”(On)状态。

栅极电势改变PN结的反向电场,使电子进入N沟道并导致漏极电流增加。

当栅极电压为零或负值时,NMOS处于截止(Off)状态,电子无法流动,漏极电流接近于零。

(2)PMOS:当栅极电压为负值,使PMOS栅极与源极之间的管道导通,称为“开通”状态。

栅极电势改变PN结的反向电场,使空穴进入P沟道并导致漏极电流增加。

当栅极电压为零或正值时,PMOS处于截止状态,空穴无法流动,漏极电流接近于零。

2.JFET工作原理:(1)沟道型JFET:沟道型JFET的栅极电势改变了PN结的反向电场,调节了P沟道中的电子浓度。

场效应晶体管工作状态-概述说明以及解释

场效应晶体管工作状态-概述说明以及解释

场效应晶体管工作状态-概述说明以及解释1.引言1.1 概述概述部分的内容为:场效应晶体管(Field Effect Transistor,缩写为FET)是一种重要的半导体器件,广泛应用于电子设备中。

它是一种可以控制电流流动的三个电极的器件,包括栅极、漏极和源极。

与普通的双极型晶体管相比,场效应晶体管具有更高的输入电阻、较低的噪声和较高的频率响应,使得它在放大、开关和模拟电路中具有很大的优势。

场效应晶体管的工作原理是基于栅极电场的控制作用。

通过在栅极施加一定的电压来控制漏极和源极之间的电流,从而实现对电路的控制。

场效应晶体管的工作状态可以通过栅极电压和漏极电流来表示,主要包括截止、放大和饱和三个状态。

在截止状态下,栅极电压较低,漏极电流较小,晶体管处于关闭状态,电路中几乎没有电流流动。

在放大状态下,栅极电压适当增加,漏极电流逐渐增大,晶体管开始放大信号。

在饱和状态下,栅极电压继续增加,漏极电流达到最大值,晶体管处于稳定放大状态。

场效应晶体管的特性参数包括漏极电流、互导、最大功率、负反馈等。

这些参数反映了器件的工作性能和特点,对于电子设备的设计和应用具有重要的指导意义。

总而言之,场效应晶体管作为一种重要的半导体器件,在电子设备中发挥着重要的作用。

它的工作原理和工作状态对于理解和应用该器件至关重要。

深入了解场效应晶体管的工作状态和特性参数,对于合理设计电子电路、提高电路性能具有重要意义。

1.2 文章结构文章结构部分的内容应包含对整个文章的结构进行简要介绍和概述。

需要说明文章的主要分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构和目的。

在概述中,可以简要介绍场效应晶体管的重要性和广泛应用,以及为什么有必要探讨其工作状态。

接着,说明文章的结构,即引言、正文和结论三个主要部分。

最后,明确文章的目的,即为了深入理解场效应晶体管的工作状态及其特性参数。

正文部分是文章的核心,主要包括场效应晶体管的基本原理、工作状态以及特性参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

场效应管(FET)是利用控制输入回路的电场效应来控制输出回路电流的一种半导体器件,并以此命名。

由于它仅靠半导体中的多数载流子导电,又称单极型晶体管。

工作原理场效应管工作原理用一句话说,就是“漏极-源极间流经沟道的漏极电流,用以栅极与沟道间的pn结形成的反偏的栅极电压控制漏极电流ID”。

更正确地说,漏极电流ID流经通路的宽度,即沟道截面积,它是由pn结反偏的变化,产生耗尽层扩展变化控制的缘故。

在VGS=0的非饱和区域,表示的过渡层的扩展因为不很大,根据漏极-源极间所加VDS的电场,源极区域的某些电子被漏极拉去,即从漏极向源极有电流漏极电流ID流动。

从门极向漏极扩展的过度层将沟道的一部分构成堵塞型,漏极电流ID饱和。

将这种状态称为夹断。

这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。

在过渡层由于没有电子、空穴的自由移动,在理想状态下几乎具有绝缘特性,通常电流也难流动。

但是此时漏极-源极间的电场,实际上是两个过渡层接触漏极与门极下部附近,由于漂移电场拉去的高速电子通过过渡层。

因漂移电场的强度几乎不变产生ID的饱和现象。

其次,VGS向负的方向变化,让VGS=VGS(off),此时过渡层大致成为覆盖全区域的状态。

而且VDS的电场大部分加到过渡层上,将电子拉向漂移方向的电场,只有靠近源极的很短部分,这更使电流不能流通。

分类场效应管分为结型场效应管(JFET)和绝缘栅场效应管(MOS管)两大类。

按沟道材料型和绝缘栅型各分N沟道和P沟道两种;按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。

场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。

场效应管与双极性晶体管的比较,场效应管具有如下特点。

1. 场效应管是电压控制器件,栅极基本不取电流,它通过VGS(栅源电压)来控制ID(漏
极电流);而晶体管是电流控制器件,基极必须取一定的电流。

因此,在信号源额定电流极小的情况,应选用场效应管。

2. 场效应管是多子导电,而晶体管的两种载流子均参与导电。

由于少子的浓度对温度、
辐射等外界条件很敏感,因此,它的温度稳定性较好;对于环境变化较大的场合,采用场效应管比较合适。

3. 场效应管的源极和漏极在结构上是对称的,可以互换使用,耗尽型MOS
管的栅——源电压可正可负。

因此,使用场效应管比晶体管灵活。

4 . 场效应管除了和晶体管一样可作为放大器件及可控开关外,还可作压控可变线性电阻使用
特点与双极型晶体管相比,(1)场效应管的控制输入端电流极小,因此它的输入电阻很大。

(2)场效应管的抗辐射能力强;
(3)由于不存在杂乱运动的电子扩散引起的散粒噪声,所以噪声低。

相关文档
最新文档