计数进制可变的计数器设计
任意进制计数器的设计

任意进制计数器的设计【摘要】计数器集成芯片一般有4位二进制、8位二进制或十进制计数器,而在实际应用中,往往需要设计一个任意n进制计数器,本文给出它的设计方法和案例。
【关键词】计数器;清零一、利用反馈清零法获得计数器1 集成计数器清零方式异步清零方式:与计数脉冲cp无关,只要异步清零端出现清零信号,计数器立即被清零。
此类计数器有同步十进制加法计数器ct74ls160、同步4位二进制加法计数器ct74ls161、同步十进制加/减计数器ct74ls192、同步4位二进制加/减计数器ct74ls193等。
同步清零方式:与计数脉冲cp有关,同步清零端获得清零信号后,计数器并不立刻被清零,只是为清零创造条件,还需要再输入一个计数脉冲cp,计数器才被清零。
属于此类计数器有同步十进制加法计数器ct74ls162、同步4位二进制加法计数器ct74ls163、同步十进制加/减计数器ct74ls190、同步4位二进制加/减计数器ct74ls191等。
2 反馈清零法对于异步清零方式:应在输入第n个计数脉冲cp后,利用计数器状态sn进行译码产生清零信号加到异步清零端上,立刻使计数器清零,即实现了n计数器。
在计数器的有效循环中不包括状态sn,所以状态sn只在极短的瞬间出现称为过渡状态。
对于同步清零方式:应在输入第n-1个计数脉冲cp后,利用计数器状态sn-1进行译码产生清零信号,在输入第n个计数脉冲cp 时,计数器才被清零,回到初始零状态,从而实现n计数器。
可见同步清零没有过渡状态。
利用计数器的清零功能构成n计数器时,并行数据输入端可接任意数据,其方法如下:①写出n计数器状态的二进制代码。
异步清零方式利用状态sn,同步清零方式利用状态sn-1。
②写出反馈清零函数。
③画逻辑图。
例1 试用ct74ls160的异步清零功能构成六进制计数器。
解:①写出sn的二进制代码。
sn=s6=0110②写出反馈清零函数。
③画逻辑图。
如图1所示。
计数器的设计

计数器的设计
计数器是一种电子数字电路,用于记录某个事件或进程的次数。
设计计数器的步骤如下:
1.确定计数器的位数:计数器的位数决定了它能够计数的最大值。
例如,一个
8位二进制计数器可以计数0到255之间的所有整数。
根据实际需求,选择适当的位数。
2.设计计数器的时钟输入电路:计数器的时钟输入决定了它何时进行计数。
通
常使用晶体振荡器或者其他时钟源来提供计数器的时钟信号。
3.选择计数器的计数模式:计数器可以分为同步计数器和异步计数器。
同步计
数器的各个位同时进行计数,而异步计数器的各个位独立进行计数。
根据具体需求选择合适的计数模式。
4.选择计数器的计数方式:计数器可以被设计为向上计数或向下计数。
向上计
数表示计数器的值递增,而向下计数表示计数器的值递减。
根据具体需求选择合适的计数方式。
5.设计计数器的清零电路:计数器需要在一些特定的时刻进行清零操作,以便
重新开始计数。
为此,需要设计清零电路,使计数器的值归零。
6.设计计数器的输出电路:计数器的输出电路将其计数器的值转换成数字形式
或者其他需要的形式,例如LED显示屏、七段数码管等。
7.选取适当的计数器芯片:根据具体需求选择合适的计数器芯片,例如74LS161、
74LS163等,这些芯片可以快速地实现基于上述设计步骤的计数器电路。
需要注意的是,在设计计数器时,应当根据实际情况进行仿真测试,确保其正常工作并满足设计要求。
课程设计任意进制计数器

课程设计任意进制计数器一、教学目标本课程旨在让学生了解和掌握任意进制计数器的工作原理和应用方法。
通过本课程的学习,学生应达到以下目标:1.了解不同进制数系统的定义和转换方法。
2.掌握任意进制计数器的基本结构和原理。
3.熟悉常见进制计数器的使用方法和操作技巧。
4.能够进行不同进制数之间的转换。
5.能够设计和制作简单的任意进制计数器。
6.能够运用任意进制计数器解决实际问题。
情感态度价值观目标:1.培养学生的逻辑思维和问题解决能力。
2.培养学生对数学和科学的兴趣和好奇心。
3.培养学生的团队合作和创新精神。
二、教学内容本课程的教学内容主要包括以下几个部分:1.进制数系统的介绍和转换方法。
2.任意进制计数器的基本原理和结构。
3.常见进制计数器的使用方法和操作技巧。
4.任意进制计数器在实际问题中的应用案例。
5.第一节课:进制数系统的介绍和转换方法。
6.第二节课:任意进制计数器的基本原理和结构。
7.第三节课:常见进制计数器的使用方法和操作技巧。
8.第四节课:任意进制计数器在实际问题中的应用案例。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法:1.讲授法:教师通过讲解和示例来传授知识,引导学生理解和掌握进制数系统和任意进制计数器的基本概念。
2.讨论法:学生分组进行讨论和实验,共同探索和解决问题,培养学生的团队合作和问题解决能力。
3.实验法:学生动手制作和操作任意进制计数器,通过实践来加深对进制计数器原理和使用的理解。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:提供相关的教材和参考书籍,供学生预习和复习。
2.多媒体资料:通过PPT、视频等多媒体资料,帮助学生形象地理解进制数系统和任意进制计数器的工作原理。
3.实验设备:准备一些简单的进制计数器设备,供学生在实验环节进行实际操作和探索。
以上是根据课程目标、教学内容、教学方法和教学资源设计的示范课程。
希望这个设计能够为您的教学提供一些参考和启发。
什么是计数器如何设计一个二进制计数器

什么是计数器如何设计一个二进制计数器计数器是一种电子设备,用于记录和显示特定事件或数据的次数。
它可以根据输入信号的变化来实现计数,常见的应用包括时钟、定时器、频率计等。
二进制计数器是一种特殊类型的计数器,它的计数方式采用二进制编码。
每当触发信号发生变化时,计数器的值会根据预设的计数规则进行自动递增或递减。
二进制计数器常用于电子数字电路中,以表示和控制各种复杂的数字逻辑。
设计一个二进制计数器需要考虑以下几个方面:1. 计数位数:确定计数器的位数决定了其能够表示的最大数字范围。
一般而言,n位二进制计数器可以表示0到2^n-1之间的数字。
2. 计数方向:确定计数器递增或递减的方向。
递增计数器按照二进制编码规则,顺序增加;递减计数器则按照相反的顺序递减。
3. 触发条件:确定计数器何时开始计数。
可以根据时钟信号、外部触发信号和逻辑运算等条件来触发计数器的计数。
4. 计数模式:确定计数器的工作模式,包括连续计数和循环计数。
连续计数模式下,计数器会一直递增或递减,直到达到最大或最小值;循环计数模式下,计数器会在达到最大或最小值后返回到初始值重新计数。
5. 输出接口:设计计数器的输出接口,以便将计数器的结果用于其他逻辑电路。
常见的接口形式包括二进制数码、BCD码、七段显示等。
根据上述要求,设计一个简单的4位二进制递增计数器,以实现从0到15的计数:首先,确定计数器的位数为4位,即可以表示0到15的数字。
其次,计数方向设置为递增模式,按照二进制编码规则从0000到1111。
然后,通过时钟信号触发计数器的计数。
可以将时钟信号作为计数器的输入,每当时钟信号发生一个上升沿或下降沿,计数器的值就会加1或减1。
最后,将计数器的结果输出到一个四位二进制数码管,以显示当前计数器的值。
通过以上设计,一个简单的4位二进制递增计数器便实现了。
它可以用于时钟、定时器、频率计等各种应用场景,并且可以根据需要进行扩展和优化,以满足更为复杂的计数需求。
总结任意进制计数器的设计方法

总结任意进制计数器的设计方法一、引言计数器是数字电路中常见的组合逻辑电路,其作用是在一定范围内对输入的信号进行计数。
而进制计数器则是在特定进制下进行计数的计数器,如二进制计数器、十进制计数器等。
本文将总结任意进制计数器的设计方法。
二、基本概念1. 进位:当某一位达到最大值时,需要向高位进位。
2. 借位:当某一位减法结果为负时,需要向高位借位。
3. 余数:在除法中,被除数除以除数所得到的余数即为该数字的个位数字。
4. 商:在除法中,被除数除以除数所得到的商即为该数字的十位以及更高位数字。
三、二进制计数器设计方法1. 同步二进制计数器同步二进制计数器又称为并行加法器或者锁存式加法器。
其实现原理是将多个全加器连接起来,并且每一个全加器都接收同样的时钟信号。
当时钟信号发生变化时,所有全加器同时进行运算。
2. 异步二进制计数器异步二进制计算机又称为Ripple Counters或者Clock-Triggered Flip-Flops。
其实现原理是通过多个D触发器连接起来,每个D触发器都接收上一个触发器的输出信号。
当时钟信号发生变化时,第一个D触发器会先被触发,然后它的输出信号会传递到下一个D触发器中。
四、十进制计数器设计方法1. 二进制编码计数器二进制编码计数器是一种使用二进制代码表示数字的计数器。
其实现原理是通过将BCD码转换成二进制来实现计数。
2. BCD码计数器BCD码计数器是一种使用BCD码表示数字的计数器。
其实现原理是通过多个BCD加法器连接起来,每个加法器都接收同样的时钟信号。
当时钟信号发生变化时,所有加法器同时进行运算。
五、任意进制计数器设计方法1. 基于同步电路设计方法任意进制计算机可以通过同步电路来实现。
其实现原理是将多个全加器连接起来,并且每一个全加器都接收同样的时钟信号。
当时钟信号发生变化时,所有全加器同时进行运算。
2. 基于异步电路设计方法任意进制计算机也可以通过异步电路来实现。
其实现原理是通过多个D触发器连接起来,每个D触发器都接收上一个触发器的输出信号。
n进制计数器的设计与制作实验报告

n进制计数器的设计与制作实验报告一、实验目的本实验的目的是设计并制作一个n进制计数器,通过实践掌握数字电路设计和实现的方法和技巧,加深对数字电路原理的理解。
二、实验原理1. n进制计数器n进制计数器是一种能够进行n进制计数的电路,其中n为正整数。
在二进制计数器中,n=2。
在n进制计数器中,每当计数到n-1时,输出信号会发生一次溢出,并从0开始重新计数。
2. 计数器的类型根据计数方式不同,常见的计数器类型有同步计数器和异步计数器。
同步计数器需要所有触发器同时改变状态才能进行下一次计数;异步计数器则只需要一个触发器改变状态即可进行下一次计数。
3. 触发器触发器是数字电路中常用的存储元件,可以存储一个比特位(0或1)。
常见的触发器有SR触发器、D触发器、JK触发器等。
三、实验设备与材料1. 74LS74 D型正沿触发双稳态触发器2. 74LS90 4位十进制/BCD分频/技术性升降沿触发式二分频循环式计数器3. 7404 六反相器芯片4. 面包板5. 连接线四、实验步骤1. 按照电路原理图连接电路,将74LS90计数器的Q0-Q3输出接到7404反相器的输入端。
2. 将7404反相器的输出端连接到74LS74触发器的D端,同时将74LS74触发器的时钟端连接到74LS90计数器的CLK端。
3. 将最高位(Q3)的输出接到LED灯,用于观察计数情况。
4. 将面包板上电源线和地线连接好,开启电源。
五、实验结果经过实验,可以看到LED灯随着计数值不断变化。
当计数值达到7时,LED灯会熄灭并重新从0开始计数。
六、实验分析与结论本实验成功设计并制作出了一个n进制计数器。
通过实践掌握了数字电路设计和实现的方法和技巧,并加深了对数字电路原理的理解。
七、存在问题与改进方案1. 实验中使用的是四位十进制/BCD分频/技术性升降沿触发式二分频循环式计数器,如果需要进行其他进制的计数,则需要更换不同类型的计数器芯片。
2. 实验中使用的是74LS系列芯片,如果需要进行高速计数,则需要更换更快的芯片。
任意进制计数器的设计实验报告

任意进制计数器的设计实验报告介绍本实验报告旨在讨论任意进制计数器的设计问题,包括进制转换、计数器的实现原理、电路设计等方面的内容。
进制转换进制的定义进制是用来表示数字的一种方法,常见的进制包括十进制、二进制、八进制和十六进制等。
在计算机科学中,二进制最为常用,由于计算机的基本元素是电子开关,而电子开关只有两种状态,因此非常适合使用二进制表示。
进制转换的方法进制转换是指在不同进制之间进行数字表示的转换。
常见的进制转换方法包括: 1. 十进制转二进制:将十进制的数值除以2,余数即为二进制数的最低位,继续除以2,直到商为0,将余数按顺序排列即可得到二进制数。
2. 二进制转十进制:将每一位上的数值乘以2的对应次幂,然后相加即可得到十进制数。
3. 十进制转八进制:将十进制数逐步除以8,余数即为八进制数的最低位,继续除以8,直到商为0,将余数按顺序排列即可得到八进制数。
4. 八进制转十进制:将每一位上的数值乘以8的对应次幂,然后相加即可得到十进制数。
进制转换的重要性进制转换在计算机科学中具有重要意义。
首先,计算机底层使用二进制进行操作,因此在计算机程序中进行进制转换是一种基本操作。
其次,进制转换有助于理解计算机中数字的表示方式以及数据的存储与运算原理。
此外,在某些场景下,合理地选择进制可以提高计算效率和减小存储空间等。
计数器的实现原理计数器是一种用来计数的电子装置,其通过在不同状态之间切换来记录计数结果。
计数器可以根据需求设计为同步计数器或异步计数器。
同步计数器同步计数器是一种通过时钟信号来驱动计数的计数器。
在同步计数器中,每个触发器的时钟信号来自于前一个触发器的输出,通过级联连接起来。
当时钟信号变化时,所有触发器同时更新计数值,因此同步计数器具有高度的同步性。
异步计数器异步计数器是一种通过电平信号来驱动计数的计数器。
在异步计数器中,每个触发器的时钟信号来自于前一个触发器的输出和输入。
当时钟信号变化时,触发器会根据当前的输入和输出状态来决定是否更新计数值,因此异步计数器具有较低的同步性。
任意进制计数器的设计

寄存器
数码寄存器 四位数码寄存器
移位寄存器 四位左移寄存器
双向移位寄存器
寄存器应用举例
利用数据寄存器(锁存器) 实现单片机对多个继电器 的控制:利用寄存器把单 片机瞬间输出的控制信号 “记忆”下来,以便单片 机与其他电路打交道。
例1:试用一片 二进制计数器 74LS293构成 一个十二进制计 数器。
例2:试用十进制计数器74LS90构成二十三 进制计数器。
反馈归零 法的有关 问题
过渡状态的问题 归零可靠性问题
反馈置数法
例3:使用74LS161构成一个计数状态为二进制数0000~1101的计数器。 注意:74LS161为一个4位可预置的同步计数器;A~D为预置数据输入端,9端为数据
置入控制端(低电平有效,且在CP有效沿作用下能将数据置入—同步置数);1端为清 零端,低电平有效(异步置零);2端为时钟输入端,上升沿有效;进位信号CO(高电平 有效)出现在QDQCQBQA=1111且ET=1时;EP=1、ET=1且清零端和置数控制端均 无效时,计数器才处于计数状态;清零端的优先级最高。
PART 01
同步时序逻辑电路的分析方法 异步时序逻辑电路的分析方法
逻辑功能、自启动功能
任意进制计数器的设计方法
反馈归零法
利用计数器的直接置零端功能,截取计数过程中的某一个中间状态来控 制清零端,使计数器从该状态返回到零而重新开始计数,这样就弃掉了 后面的一些状态,把模较大的计数器改成了模较小的计数器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电子技术基础自主实验
班级:1201106
学号:1120110618
姓名: 陈振鑫
姓名班级学号
实验日期节次教师签字成绩
实验名称:计数进制可变的计数器设计
一、实验目的
利用74LS138(3线-8线译码器),74LS253(4选1数据选择器),74LS161(同步十进制加法计数器)三个芯片组合,利用清零法组成模数可以改变的加法计数器。
二、实验设备名称,型号
1.实验电路箱
2.直流稳压电源
3.74LS138、74LS253 、74LS161等芯片
4.导线若干
5.数字万用表
74ls138 74ls161
74ls253
三、实验电路图
四、设计思路及方案
设计思路:将计数器的输出作为译码器的输入端,译码数通过数据选择器,输出低点平,利用同步十进制加法计数器74LS161的清零端将计数器清零。
设计方案:电路图如图上图所示,74LS161计数器输出端QdQcQbQa分别与74LS138的输入端B0B1B2和输入使能端E2(高电平有效)相连,译码器的输出端Y0Y1Y6Y7与四选一数据
选择器输入端相连,输出端与计数器清零端相连。
当E3=1,B2B1B0从000到111变化时Y1~Y7分别被选中,当MN分别取00~11时,便可实现改变计数器当进制。
五、实验步骤
1.检查导线通断后按电路图连好电路,QdQcQbQa端接数码显示管,CP端接手动计数脉冲,MN端设为00,检查无误后接通电源;
2.接通电源连续发动计数脉冲至CP端,观察数码显示,使计数器进入主计数循环;
3.按表测量并记录数据;
4.分别设MN=01,10,11,重复上述步骤;
5.分析实验结果。
六、仿真结果
六、实验数据
1.MN=0
2.MN=01
3.MN=10
4.MN=11
七、实验结论
八、实验心得体会
九、参考书籍
1.数字电子技术基础;
2.电子技术基础实验教程。
原始数据记录1.MN=00
2.MN=01
3.MN=10
4.MN=11。