3.沉淀理论
沉淀的形成与条件.

教 学 要 点
沉淀的类型 沉淀的形成 沉淀条件的选择
潍坊职业学院
1、沉淀的类型
晶形沉淀: 颗粒直径0.1~1μm,排列整齐,结构紧密,比表 面积小,吸附杂质少,易于过滤、洗涤 例:BaSO4↓(细晶形沉淀) MgNH4PO4↓(粗晶形沉淀) 非晶形沉淀(无定形沉淀): 颗粒直径﹤0.02μm,结构疏松,比表面积大,吸 附杂质多,不易过滤、洗涤 例:Fe2O3•2H2O↓ZnS Al2O3· nH2O[Al(OH)3] ,
弱碱性 H+
酸效应
CaC2O4↓细小沉淀 CaC2O4↓酸效应增大S CO2↑+ 2NH3↑
900C
水解
H2C2O4 HC2O4-+ H+ NH3均匀分布,pH值 ↑ HC2O4C2O42- + H+ [C2O42-]↑,相对过饱和度↓ Ca2+ + C2O42CaC2O4↓
缓慢析出CaC2O4↓粗大沉淀
潍坊职业学院
2、沉淀的形成
构晶离子
聚集
成核作用 均相、异相
晶核
生长过程定向排列
潍坊职业学院
2、沉淀的形成
晶核的形成
均相成核(自发成核):过饱和溶液中,构晶离 子通过相互静电作用缔和而成晶核。 异相成核:非过饱和溶液中,构晶离子借助溶液 中固体微粒形成晶核。
CaC2O4沉淀
在Ca2+ 酸性溶液中加入 H2C2O4,无CaC2O4 沉淀产生
再加入CO(NH2)2 ,90℃
CO(NH2)2 + H2O == CO2 + 2NH3 [C2O42-] 升高,缓慢析出CaC2O4 沉淀
潍坊职业学院
均匀沉淀示例 Ca2+ + (NH4)2C2O4
果胶制备的实验报告(3篇)

第1篇实验名称:果胶的提取与制备一、实验目的1. 掌握果胶的提取方法及实验操作技能;2. 了解果胶的化学性质和用途;3. 掌握果胶在食品工业中的应用。
二、实验原理果胶是一种天然高分子多糖,广泛存在于水果、蔬菜和海藻等植物中。
果胶具有良好的凝胶性、稳定性和乳化性,在食品、医药、化妆品等领域具有广泛的应用。
本实验采用酸碱法提取果胶,通过酸解、沉淀、洗涤、干燥等步骤,制备果胶。
三、实验材料与仪器1. 实验材料:- 新鲜苹果、柠檬、橙子等水果- 95%乙醇、95%乙酸、氢氧化钠等试剂- 无水乙醇、丙酮等溶剂2. 实验仪器:- 电子天平- 烧杯、烧瓶、漏斗、玻璃棒等玻璃仪器- 烘箱、搅拌器、真空泵等设备四、实验步骤1. 果胶提取:(1)称取新鲜水果500g,用组织捣碎机捣碎;(2)将捣碎的水果放入烧杯中,加入适量95%乙醇,搅拌均匀;(3)将混合液置于室温下静置过夜,使果胶充分沉淀;(4)将沉淀物用布袋过滤,收集滤液;(5)将滤液倒入烧瓶中,加入适量氢氧化钠溶液,调节pH值至8.5-9.0;(6)将烧瓶置于水浴中加热,保持温度在80-90℃,搅拌1小时;(7)将烧瓶取出,冷却至室温,加入适量95%乙酸,调节pH值至4.5-5.0;(8)将混合液倒入烧杯中,静置过夜,使果胶充分沉淀;(9)将沉淀物用布袋过滤,收集滤液;(10)将滤液倒入烧杯中,加入适量丙酮,搅拌使其充分沉淀;(11)将沉淀物用布袋过滤,收集滤液;(12)将滤液倒入烧杯中,置于烘箱中干燥,得到果胶。
2. 果胶制备:(1)将干燥的果胶用无水乙醇溶解,配制成一定浓度的果胶溶液;(2)将果胶溶液倒入烧杯中,加入适量水,搅拌均匀;(3)将烧杯置于水浴中加热,使果胶溶液充分溶解;(4)将溶解后的果胶溶液倒入烧杯中,加入适量95%乙酸,调节pH值至3.5-4.0;(5)将烧杯取出,冷却至室温,静置过夜,使果胶充分沉淀;(6)将沉淀物用布袋过滤,收集滤液;(7)将滤液倒入烧杯中,置于烘箱中干燥,得到果胶。
水质工程学第4章沉淀与澄清3

——沉淀过程中,清水区高度不断增加
A澄清液层、B受阻沉降层、C过渡层、D压缩层
拥挤沉淀试验
——利用沉淀过程线分析: Kynch 法、 Fitch 法
——建立沉速—浓度函数关系v=f(C) (多筒试验):固体通量法、吉冈法
——作用:用于分析静置沉淀;确定水中悬 浮颗粒的沉降特性
1、自由沉淀试验 2、絮凝沉淀 3、拥挤沉淀(高浓度悬浮液的沉淀试验)
自由沉淀试验
自由沉淀一般采用单筒沉淀柱试验确定悬 浮颗粒的沉降特性。
1)试验装置 2)试验方法 3)沉淀效率η的求取
自由沉淀试验
沉淀柱有效水深H,
悬浮物原始浓度为C0。 在时间t1时从水深H处取样测得C1,则认为沉速大于 u1(H/t1)的颗粒均已通过H,残余颗粒必然具有小 于u1的沉速,则沉速小于u1的颗粒与全部颗粒的比 例x1=C1/C0。
——沉淀时间: 絮凝沉淀
因此,设计沉淀池时,除了对表面负荷率有要 求外,还对停留时间、池深、进出水构造、排泥 方式等均有要求。通常,对于静置沉淀得出的试 验结果,在用于设计时还需考虑一定的安全系数。 一般在设计时:
q=q0/1.25~1.75,T=(1.5~2.0)T0
沉淀池
概述
一、平流式沉淀池 (horizontal flow Sedimentation Tank) 二、竖流式沉淀池 (vertical flow ST) 三、斜板(管)沉淀池(tilted-plate ST) 四、澄清池(clarifier,clarification tank)
概述
沉淀池构造根据功能分为五个区:
进水区: 保证进水均匀分布在整个进水断 面上,避免短流,减少死角和紊流影响,提 高容积利用系数。 出水区: 均匀出水(目的同上),阻拦浮渣 沉淀区: 污水与颗粒分离,工作区 污泥区: 污泥贮放、浓缩、排除 缓冲区: 分隔沉淀区,保证沉下的颗粒不 因水流搅动而再次浮起进入沉淀区。
第三章沉淀法3-2

3.3 粉体的制备方法
液相法:沉淀法,醇盐分解法,溶胶-凝胶法,氨酸 法,柠檬酸盐法,喷雾热解法,水热法等 气相法:蒸发法,(磁控,激光)溅射法,等离子 体喷涂法,化学气相淀积(CVD)法,气溶胶法, 化 学喷雾热解法 固相法:固相反应法,热分解法
序:液相合成技术分类
目前工业及实验室中最常用的超细颗粒合成方法
均匀沉淀的扩散式生长
团聚形成的单分散体系
不定向团聚
均相沉淀法Sm掺杂的氧化铈(SDC)
Sm(NO3)3
Ce(NO3)3
尿 素
85oC恒温
沉淀
粉体
焙烧
干燥
洗涤
过滤
SDC粉体的TEM照片
250nm
250nm
1500C烧结的样品的SEM照片
不同制备方法下CeO2粉体的形貌
b
a共沉淀 法 b均相共 沉淀法 c水热合 成法
掺杂CeO2粉体的SEM照片 ---碳酸盐共沉淀法
不同掺杂下的CeO2样片表面SEM照 片
微波辅助的均相共沉淀法
均相沉淀法 优点:克服了共沉淀法的不足,在溶液中以原子或 分子尺寸混合,以尿素为沉淀剂控制反应温度和浓 度,可对粉体的形貌进行控制,得到形貌各异、颗 粒均匀的氧化物粉体。 缺点:反应时间长,能耗大;产量小。 改变加热方式,引入微波加热
3沉淀分离法

2
大量
Pd
2
痕量(被测)
CaCO3 沉淀
Ca CO3
2
2
CaCO3
Pd2+离子附着在CaCO3沉淀的表面,形成共沉淀。
① 无机共沉淀剂
● 氢氧化物沉淀: 如,Fe(OH)3,Al(OH)3,MnO(OH)2等,主要利用 表面吸附作用使痕量金属离子共沉淀。 ● 硫化物沉淀: 如,PbS、HgS等,共沉淀是除吸附、吸留作用 外还有后沉淀作用。 ● 某些晶形沉淀: 如,BaSO4,SrSO4,SrCO3等,可与生成相似晶 格的离子形成混晶(如BaSO4-RaSO4、BaSO4PbSO4等)而共沉淀。
提高氢氧化物沉淀分离的方法
(1) 采用“小体积”沉淀法——小体积、大浓度且
有大量对测定没有干扰的盐存在下进行沉淀。如:
在大量NaCl存在下,NaOH分离Al3+与Fe3+。 (2)加入掩蔽剂提高分离选择性。 (3) 控制pH值选择合适的沉淀剂 不同金属形成氢氧化物的pH值及介质不同。 (4)采用均匀沉淀法或在较热、浓溶液中沉淀并且热 溶液洗涤消除共沉淀。
(3)逐渐除去溶剂
• 如果将试液与有机沉淀剂在某种水溶液混合,然后慢慢蒸 发除去溶剂,即可在适当的缓冲条件下进行均相沉淀。 • 例如,用8-羟基喹啉沉淀Al3+时,可在Al3+ 试液中加入醋酸
胺缓冲溶液、8-羟基喹啉的丙酮溶液,在70-80℃加热3h,
使丙酮挥发,15min 后即有8-羟基喹啉铝的晶形沉淀析出, 此沉淀易于过滤、洗涤。
均相沉淀的优点: 这样的沉淀不但吸附的杂质少,沉淀较纯净, 而且不必陈化,过滤、洗涤液较方便。 均相沉淀的途径
(1)试剂水解 (2)在溶液中直接产生出沉淀剂 (3)逐渐除去溶剂 (4)破坏可溶性的络合物
第3章_沉淀

• 脱盐: 透析:透析袋(半透膜)
超滤
钟青萍讲授
24
4
第二节 有机溶剂沉淀
Organic solvent precipitation
• 概念:在含有溶质的水溶液中加入一定量亲水的 有机溶剂,降低溶质的溶解度,使其沉淀析出。
23
蛋白质的盐析沉淀纯化应用举例
目标蛋白
人干扰素 白细胞介素 2 单克隆抗体
来源
细胞培养液 细胞培养液 细胞培养液
硫酸铵饱和度
一次沉淀 二次沉淀
30(上清) 35(上清) 50(沉淀)
80(沉淀) 85(沉淀)
收率
99 73.5 100
纯化倍数
1.7 7.0 >8
• 盐析沉淀后,需进行脱盐处理,再进行后续操 作(Because of many salts being remained in the
钟青萍讲授
10
盐析原理
低盐溶度下,发生盐溶,是因为: • 无机盐离子在蛋白质表面上吸附,使颗粒
带相同电荷而互相排斥。 • 无机盐离子增加了蛋白质的亲水性,改善
了与水膜的结合,增加了蛋白质分子与水 分子的相互作用力,使溶解度增大。
钟青萍讲授
11
盐溶
钟青萍讲授
12
2
盐析过程
盐析
• 随着中性盐的加入,蛋白质分散体系出现盐析 现象
proteins precipitate out.
钟青萍讲授
8
盐析原理
• 首先需要了解生物大分子在水溶液中的 存在状态:
普通化学3-3沉淀溶解平衡
三、沉淀的转化
在沉淀溶液中,加入另一种适当的沉淀剂,可使↓转化为 另一种沉淀物。 转化后的沉淀物Kθs越小于原沉淀的Kθs,则↓越易转化, 转化也越完全。 例:
CaSO4 (s) + CO32-(aq) Kθs (CaSO4)=7.10×10-5
CaCO3 (s) + SO42-(aq) Kθs (CaCO3) =4.96×10-9
∴使Fe(OH)3完全↓而Mg(OH)2不↓的pH范围: 4.0~9.1
例5:某溶液中分别含有0.010 molL-1 AgNO3、 Pb(NO3)2和 Ba(NO3)2 三种物质,向该溶液中逐滴加 入K2CrO4 溶液时,沉淀的先后顺序是 ( B ) 已知: Ks ( Ag2CrO4 ) = 1.1 10-12 Ks ( PbCrO4) = 1.8 10-14 Ks ( BaCrO4 ) = 1.2 10-10 A. Ag2CrO4 , PbCrO4 , BaCrO4 B. PbCrO4, Ag2CrO4 , BaCrO4 C. PbCrO4 ,BaCrO4, Ag2CrO4
x=1.0×10-11 mol· -1, L pH=3.0 设Fe(OH)3完全沉淀的c(OH-)=y,此时c(Fe3+)=10-6mol· -1: L Kθs = [c(Fe3+)]·c(OH-)]3 =10-6×y3 [ y=1.0×10-10 mol· -1, pH=4.0 L
设Mg(OH)2开始沉淀时c(OH-)=z, 此时c(Mg2+)=0.1mol· -1: L Kθs = [c(Mg2+)]·c(OH-)]2 =0.1×z2 [ z = 1.3×10-5 mol· -1, pH=9.1 L
K s (CaSO4 ) K 1.43 104 K s (CaCO3 )
第3章沉淀技术-文档资料
Separation Methods in Biochemistry
赵世光 生物化学工程系·生物技术教研室
第三章 沉淀技术
Anhui University of Technology and Science
第三章 沉淀技术
Teaching and Rese
arch Section ·
3. 无定型沉淀:颗粒最小,其直径大约在0.02 μm以下 。沉淀内部离子排列杂乱无章,并且包含有大量水 分子,因而结构疏松,体积庞大,难以沉降。
Anhui University of Technology and Science
第三章 沉淀技术
Teaching and Rese
arch Section ·
不利因素:疏水性,包括暴露的疏水基团
、疏水蛋白所占的%等。如纤维蛋白原
。 Anhui University of Technology and Science
第三章 沉淀技术
Teaching and Rese
arch Section ·
Department of
Biochemical
Engineering
Department of
Biochemical
Engineering
4
3.1.3 沉淀技术的应用特点
• 沉淀法是最古老的分离和纯化生物物质的方法,目前仍广泛应用 在工业上和实验室中。
• 由于其浓缩作用常大于纯化作用,因而沉淀法通常作为初步分离 的一种方法,用于从去除了菌体或细胞碎片的发酵液中沉淀出生 物物质,然后再利用色层分离等方法进一步提高其纯度。
Anhui University of Technology and Science
给水工程课后思考题答案(完整)
十四章:1、水中杂质按尺寸大小可分成几类?了解各类杂质主要来源、特点及一般去除方法。
答:水中杂质按尺寸大小可分成三类:1)悬浮物和胶体杂质:悬浮物尺寸较大,易于在水中下沉或上浮。
但胶体颗粒尺寸很小,在水中长期静置也难下沉,水中所存在的胶体通常有粘土、某些细菌及病毒、腐殖质及蛋白质等。
有机高分子物质通常也属于胶体一类。
天然水中的胶体一般带有负电荷,有时也含有少量正电荷的金属氢氧化物胶体。
粒径大于0.1mm的泥砂去除较易,通常在水中很快下沉。
而粒径较小的悬浮物和胶体物质,须投加混凝剂方可去除。
2)溶解杂质,分为有机物和无机物两类。
它们与水所构成的均相体系,外观透明,属于真溶液。
但有的无机溶解物可使水产生色、臭、味。
无机溶解杂质主要的某些工业用水的去除对象,但有毒、有害无机溶解物也是生活饮用水的去除对象。
有机溶解物主要来源于水源污染,也有天然存在的。
2、概略叙述我国天然地表水源和地下水源的特点。
(8’)答:1)、我国水文地质条件比较复杂。
各地区地下水中含盐量相差很大,但大部分地下水的含盐在200~500mg/L之间。
一般情况下,多雨地区含盐量较低;干旱地区含盐量较高。
地下水硬度高于地表水,我国地下水总硬度通常在60~300mg/L(以CaO计)之间,少数地区有时高达300~700mg/L。
我国含铁地下水分布较广,比较集中的地区是松花江流域和长江中、下游地区。
黄河流域、珠江流域等地也都有含铁地下水。
含铁量通常为10 mg/L以下,个别可高达30mg/L。
地下水中的锰与铁共存,但含铁量比铁不。
我国地下水含有锰量一般不超过2 mg/L ~3 mg/L。
个别高达30 mg/L。
2)、我国是世界上高浊度水河众多的国家之一。
西北及华北地区流经黄土高原的黄河水系、海河水系及长江中、上游等,河水含砂量很大,华北地区和东北和西南地区大部分河流,浊度较低。
江河水的含盐量和硬度较低。
总的来说,我国大部分河流,河水含流量和硬度一般均无碍于生活饮用。
沉淀实验的实验报告
一、实验目的1. 理解沉淀反应的基本原理,掌握沉淀反应的实验操作方法。
2. 学习利用沉淀反应进行物质的分离、提纯和鉴定。
3. 培养实验操作技能和数据分析能力。
二、实验原理沉淀反应是指溶液中离子或分子结合成难溶物质的过程。
在实验中,通过添加适当的沉淀剂,使溶液中的目标物质生成沉淀,从而实现分离、提纯和鉴定。
沉淀反应的原理主要基于溶解度积(Ksp)的概念。
溶解度积是指在一定温度下,难溶电解质在溶液中达到饱和时,其离子浓度的乘积。
当溶液中离子的浓度乘积大于溶解度积时,难溶电解质将开始沉淀;当溶液中离子的浓度乘积小于溶解度积时,沉淀将溶解。
三、实验材料与仪器1. 实验材料:- 氯化钠溶液- 硫酸铜溶液- 氢氧化钠溶液- 硫酸铝溶液- 硫酸铁溶液- 硝酸银溶液- 硝酸铅溶液- 氯化银溶液- 氢氧化铁溶液- 硫酸钡溶液- 硫酸钙溶液- 氯化钙溶液2. 实验仪器:- 烧杯- 玻璃棒- 移液管- 滴定管- 滤纸- 铁架台- 漏斗- 研钵- 研杵四、实验步骤1. 沉淀反应实验一:硫酸铜与氢氧化钠反应- 在烧杯中加入5mL氯化钠溶液,滴加少量硫酸铜溶液,观察溶液颜色变化。
- 滴加氢氧化钠溶液,观察沉淀的形成。
- 用滤纸过滤沉淀,观察沉淀的颜色和形态。
2. 沉淀反应实验二:硫酸铝与硫酸铁反应- 在烧杯中加入5mL硫酸铝溶液,滴加少量硫酸铁溶液,观察溶液颜色变化。
- 滴加氢氧化钠溶液,观察沉淀的形成。
- 用滤纸过滤沉淀,观察沉淀的颜色和形态。
3. 沉淀反应实验三:硝酸银与氯化钠反应- 在烧杯中加入5mL硝酸银溶液,滴加少量氯化钠溶液,观察溶液颜色变化。
- 滴加硝酸铅溶液,观察沉淀的形成。
- 用滤纸过滤沉淀,观察沉淀的颜色和形态。
4. 沉淀反应实验四:硫酸钡与硫酸钙反应- 在烧杯中加入5mL硫酸钡溶液,滴加少量硫酸钙溶液,观察溶液颜色变化。
- 滴加氯化钙溶液,观察沉淀的形成。
- 用滤纸过滤沉淀,观察沉淀的颜色和形态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u 与μ成反比,μ随水温上升而下降;即沉速受水 温影响,水温上升,沉速增大。
S
18
四、沉淀池工作原理 为了便于说明沉淀池的工作原理以及 分析水中悬浮颗粒在沉淀池内运动规律, Hazen和Camp提出了理想沉淀池的概念。 理想沉淀池划分为4个区域,即进口区域、 沉淀区域、出口区域及污泥区域。
19
沉淀试验数据
沉淀时间 t,min Pi=ci/c0 表观去 除率 E=1-Pi u=H/t, cm/min η 0 1 15 0.96 30 0.81 45 0.62 60 0.46 90 0.23 180 0.06
31
解:(1)计算各沉淀时间相应的沉速u, 表观去除率E (2)以Pi为纵坐标,u为横纵标作图得沉淀曲线: P-u曲线 (3)图解计算各沉速下的总去率,u0=3.0为例,小 于此沉速的颗粒与全部颗粒之比P0=0.67, 积分项等于各矩形面积之和。
上澄水 自由沉淀带
水深
絮凝干涉沉淀带
B
成层沉淀带
C
时间t
压缩沉淀D
沉淀过程示意图
10
三、自由沉淀及分析 颗粒为球形
分 析 的 假 定
沉淀过程中颗粒的大小、形状、重量 等不变
颗粒只在重力作用下沉淀,不受器壁和 其他颗粒影响。
静水中悬浮颗粒开始沉淀时,因受重力作用 产生加速运动,经过很短的时间后,颗粒的 重力与水对其产生的阻力平衡时,颗粒即成 等速下沉。
作如下假设 (1) 沉淀区过水断面上各点的水流速度均 相同,水平流速为ν; (2) 悬浮颗粒在沉淀区等速下沉,下沉速 度为u; (3) 在沉淀区的进口区域,水流中的悬浮 颗粒均匀分布在整个过水断面上; (4) 颗粒一经沉到池底,即认为已被去除。
20
当某一颗粒进入沉淀池后
一方面随着水流在水平 方向流动,其水平流速 v等于水流速度;
1 P0 (1 P0 ) udP u0 0
则:η=(1-0.67)+1.07/3=0.687 以此计算出各时总沉淀效率η。
32
(4)以总效率η为纵坐标,以沉淀时间t为横纵 标作图的效率-时间曲线
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 15 30 45 60 t(min)
13
du m F1 F2 F3 dt
(1)颗粒的重力:
F1
d
6
3
S g
其中:ρS为颗粒密度,kg/m3; d为颗粒直径,m; g为重力加速度。 (2)颗粒的浮力:
F2
d
6
3
L g
14
其中:ρL为液体密度,kg/m3;
(3)颗粒沉淀过程中受到的摩擦阻力:
u F3 A L 2
6
2、絮凝沉淀
这是一种絮凝性固体颗粒 在稀悬浮液中的沉淀。 虽然悬浮固体浓度也不高 (50-500mg/L),但颗粒在沉 降过程中接触碰撞时能互相聚 集为较大的絮体,因而颗粒粒 径和沉降速度随沉降时间的延 续而增大。
实例:颗粒在初 沉池内的后期 沉降,生化处 理中污泥在二 沉池中间段的 沉淀,及水处 理的混凝沉淀。
在典型的污水处理厂中,有以下4种用法:
(1) 用于废水的预处理——沉砂池 (2) 用于污水进入生物处理构筑物前的初步处理 (初沉池) (3) 用于生物处理后的固液分离(二次沉淀池) (4) 用于污泥处理阶段的污泥浓缩
4
二、沉淀类型
根据水中悬浮颗粒的性质、凝聚性能及浓度,沉 淀通常可以分为四种不同的类型:
29
实际中,常按以下经验公式确定设计表 面负荷q和沉降时间t:
1 1 q ~ u 0 1.25 1.75 t 1.5 ~ 2.0t 0
式中:u0、t0——分别为由沉降曲线上 查得的理论沉降速度和沉降时间。
30
例题
某自由沉淀试验数据如下表所示,沉淀高度 H=120cm。试绘制沉淀曲线P-u曲线,并计算不同 沉淀时间条件下的悬浮颗粒的总去除率η,并绘制 η-t、η-u曲线。
11
悬浮颗粒在水中的受力:
重力F1、浮力F2、下沉中的摩擦阻力F3
F1
重力大于浮力和摩擦力时, 下沉;
ρ
s
ρ
L
重力等于浮力和摩擦力时, 相对静止; 重力小于浮力和摩擦力时, 上浮。
12
F2,F3
悬 浮 颗 粒 在 水 中 的 受 力 分 析
用牛顿第二定律表达颗粒的自由沉淀过程:
式中: m—颗粒质量,kg; u—颗粒沉速,m/s; t—沉淀时间,s; F1—颗粒的重力 F2—颗粒的浮力 F3—颗粒沉淀过程中受到的摩擦阻力。
1 P0 (1 P0 ) udP u0 0
25
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.67 1.33 2 u,cm/min 2.67 4 8
η
不同沉淀速度的总去除率
26
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 15 30 45 60 t(min)
22
自 由 沉 淀 实 验
设在一水深H的沉淀柱内进行自由沉淀实 验,实验开始,沉淀时间为0,此时沉淀柱 内悬浮物分布是均匀的,即每个断面上颗粒 的数量与粒径的组成是相同的,悬浮物浓度 为C0(mg/L),此时去除率E=0。
自由沉淀图解
23
设沉速u1<u0的颗粒占全部颗粒的dP(%),其中
h dP (%) 的颗粒将会从水中沉到池底而去除。 H
21
v qv / A' qv / H b
从沉淀区顶部x点进入的颗粒中,必存 在着某一粒径的颗粒,其沉速为u0,到达沉 淀区末端时刚好能沉至池底。 当颗粒沉速ui≥u0时,无论这种颗粒处于 进口端的什么位置,它都可以沉到池底被去 除。大颗粒.ppt 当颗粒沉速ui<u0时,从沉淀区顶端进入 的颗粒不能沉淀到池底,会随水流排出,而 当其位于水面下的某一位置进入沉淀区时, 它可以沉到底部而被去除。小颗粒.ppt
在同一沉淀时间t,下式成立:
h u1 t;H u0 t
故:
h / H u1 / u0
h u1 dP dP H u0
24
对于沉速为u(u<u0)的全部悬浮颗粒,可 被沉淀于池底的总量为:
P0
0
1 P0 u / u 0 dP udP u0 0
而沉淀池能去除的颗粒包括u≥u0以及 u<u0 的两部分,故沉淀池对悬浮物的总去除率为:
3.1 沉淀的基础理论
1
本节内容
一、概述 二、沉淀类型 三、自由沉淀及分析 四、沉淀池工作原理
2
一、概述
1、沉淀的概念 是利用水中悬浮颗粒和水的密度差,在重 力作用下产生下沉作用,以达到固液分离的一 种过程。
3
2、应用场合
按照废水的性质与所要求的处理程度的不同,沉淀处理 工艺可以是整个水处理过程中的一个工序,亦可以作为唯一 的处理方法。
自由沉淀
絮凝沉淀 区域沉淀 压缩沉淀
5
1、自由沉淀
自由沉淀也称为离散沉降,是一种非絮凝性 或弱絮凝性固体颗粒在稀悬浮液中的沉淀。 由于悬浮固体浓度低,而且颗粒之间不发生 聚集,因此在沉降过程中颗粒的形状、粒径和 密度都保持不变,互不干扰地各自独立完成匀速 沉降过程。
实例:固体颗粒在沉砂池及沉淀池内的初期 沉降
70 60
总去除率E(%)
50 40 30 20 10 0 0 2 4 6 8 10 12 14 颗粒沉降速度u0 (m/h) 自由沉降总去除率与颗粒的沉降速度的关系
35
2
式中:λ—阻力系数,当颗粒周围绕流处于 层流状态时, λ=24/Re;Re为颗粒绕流雷偌 数,与颗粒的直径、沉速、液体的粘度等有 关, ud
Re
A—自由沉淀颗粒在垂直面上的投影面积,
L
1 2 A d 4
15
颗粒下沉开始时,沉速为0,逐渐加速, 阻力F3也随之增加,很快三种力达到平衡,颗 粒等速下沉,du/dt=0,代入公式:
7ቤተ መጻሕፍቲ ባይዱ
3、区域沉淀
也称成层沉淀、拥挤沉淀。
这是一种固体颗粒(特别是强絮凝性颗粒)在较 高浓度(500mg/L以上)悬浮液中的沉降。 由于悬浮固体浓度较高,颗粒彼此靠的很近,吸附 力将促使所有颗粒聚集为一个整体,但各自保持不变 的相对位置共同下沉。此时,水与颗粒群体之间形成 一个清晰的泥水界面,沉降过程就是这个界面随沉降 历时下移的过程。
η
总去除率 表观去除率
90
180
不同沉淀时间的总去除率
33
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.67 1.33 2 u,cm/min 2.67 4 8
η
不同沉淀速度的总去除率
34
思考题
•
下图是沉降实验所得总去除率与颗粒沉淀速度u0 的关系,有人认为从图中可以看出,颗粒的沉淀速度 越大去除率越低。另外的人认为沉淀速度越大说明颗 粒粒径越大,而颗粒越大越易除去,为什么此时去除 率越低呢?你如何解释?
另一方面,颗粒在重力 作用下沿垂直方向下沉, 其沉速即是颗粒的自由 沉降速度u。
颗粒运动的轨迹为其水平分速v和沉速u的矢量和,在 沉淀过程中,是一组倾斜的直线,其坡度为i=u/v。
式中:v-颗粒的水平分速; qv-进水流量; A′-沉淀区过水断面面积,H×b H -沉淀区的水深; b -沉淀区宽度。
实例:生化处理中污泥在二沉池下部的 沉降和在浓缩池内的初期沉降。
8
4、压缩沉淀
当悬浮液中的悬浮固体浓度很高时,颗粒 之间便互相接触,彼此上下支承。在上下颗粒 的重力作用下,下层颗粒间隙中的水被挤出, 颗粒相对位置不断靠近,颗粒群体被压缩。 实例:生化污泥在二沉池污泥斗和浓缩池 内的浓缩过程。