江苏省南通市海安县2014-2015学年八年级上期中考试数学试题及答案
2014上苏教版8年级数学期中测试及答案

2014上苏教版8年级数学期中测试及答案组题人:斌老师日期:2013/11/4 姓名:18年级上学期数学讲义 10期中测试一、选择题1. (2013•铁岭 ) 如图 , 在△ ABC 和△ DEC 中 , 已知 AB=DE, 还需添加两个条件才能使△ ABC ≌ △ DEC , 不能添加的一组条件是 ( ) 列哪一个三角形全等 ? ( )角, BC ∥ DF , 则∠ B 的大小为 ( )一只羊平时拴 A 处的一棵树上 , 为了不让羊吃到菜 , 拴羊的绳长可以选用 ( )10.二、填空题11. (2012•临沂 ) 在Rt △ ABC 中, ∠ ACB=90°, BC=2cm, CD ⊥ AB , 在AC 上取一点 E , 使 EC=BC, 过点 E 作EF ⊥ AC 交 CD 的延长线于点 F , 若EF=5cm, 则AE= _________ cm .12. (2013•烟台 ) 如图, △ ABC 中, AB=AC, ∠ BAC=54°, ∠BAC 的平分线与 AB 的垂直平分线交于点 O , 将∠ C 沿 EF (E 在 BC 上 , F 在 AC 上 ) 折叠 , 点 C 与点 O 恰好重合 , 则∠ OEC 为 _________ 度 .1314. (2012•庆阳 ) 在直线 l 上依次摆放着七个正方形 (如图所示 ) . 已知斜放置的三个正方形的面积分别是 1, 2, 3, 正15. (2013•凉山州 ) 已知实数 x , y 满足|x − 4|+=0, 则以 x , y 的值为两边长的等腰三角形的周长是______ .三、解答题16. (2013•红河州 )如图 ,点 D 是△ ABC 的边 AB 上一点 ,点 E 为 AC 的中点 ,过点 C 作CF ∥ AB交 DE 延长线于点 F .求证 :AD=CF.17. (2012•镇江 ) 如图 , 在四边形 ABCD 中, AD ∥ BC , E 是 AB 的中点 , 连接 DE 并延长交 CB 的延长线于点F , 点G 在边 BC 上 , 且∠ GDF=∠ ADF . (1) 求证:△ ADE ≌ △ BFE ;(2) 连接 EG , 判断 EG 与 DF 的位置关系并说明理由 .18. (2012•肇庆 ) 如图 , 已知AC ⊥ BC , BD ⊥ AD , AC 与 BD 交于O , AC=BD. 求证 :(1) BC=AD;(2) △ OAB 是等腰三角形 .19. (2005•双柏县 )如图 ,有两棵树 ,一棵高 10米 ,另一棵高 4米 ,两树相距 8米 .一只小鸟从一棵树的树梢飞到另一棵树的树梢 , 问小鸟至少飞行多少米 ?20. (2003•烟台 ) 设 a 、 b 、 c 都是实数 , 且满足 (2-a ) 2++|c+8|=0, ax 2+bx+c=0, 求代数式 x 2+2x+1的值 .期中测试1, 解 :A 、已知 AB=DE, 再加上条件BC=EC, ∠ B=∠ E 可利用 SAS 证明△ ABC ≌ △ DEC , 故此选项不合题意 ;B 、已知 AB=DE, 再加上条件 BC=EC, AC=DC可利用 SSS 证明△A BC ≌ △ DEC , 故此选项不合题意 ;C 、已知 AB=DE, 再加上条件BC=DC, ∠ A=∠D 不能证明△ ABC ≌ △ DEC , 故此选项符合题意 ;D 、已知 AB=DE, 再加上条件∠ B=∠E , ∠ A=∠ D 可利用 ASA 证明△ ABC ≌ △ DEC , 故此选项不合题意 ; 故选 :C .2, 解 :根据图象可知△ ACD 和△ ADE 全等 ,理由是:∵ 根据图形可知 AD=AD, AE=AC, DE=DC,∴ △ ACD ≌ △ AED ,即△ ACD 和△ ADE 全等 ,故选 B .3, 解:∵ F 是高 AD 和 BE 的交点 ,∴ ∠ ADC=∠ ADB=∠ AEF=90°,∴ ∠ CAD+∠ AFE=90°, ∠ DBF+∠ BFD=90°,∵ ∠ AFE=∠ BFD ,∴ ∠ CAD=∠ FBD ,∵ ∠ ADB=90°, ∠ ABC=45°,∴ ∠ BAD=45°=∠ ABD ,∴ AD=BD,在△ DBF 和△ DAC 中∠ FBD =∠ CADDB =AD∠ FDB =∠ CDA∴ △ DBF ≌ △ DAC (ASA ) ,∴ BF=AC=8cm,故选 C .4, 解 :过 G 点作GH ∥ AD , 如图 ,∴ ∠ 2=∠ 4,∵ 矩形 ABCD 沿直线 EF 折叠 ,∴ ∠ 3+∠ 4=∠ B=90°,∵ AD ∥ BC ,∴ HG ∥ BC ,∴ ∠ 1=∠ 3=20°,∴ ∠ 4=90°-20°=70°,∴ ∠ 2=70°.故选 B .5, 解 :A 、∵ ∠ BDC=∠ BCD ,∴ BD=BC,根据已知AD ∥ BC 不能推出四边形 ABCD 是等腰梯形 , 故本选项错误 ;B 、根据∠ ABC=∠ DAB 和AD ∥ BC 不能推出四边形 ABCD 是等腰梯形 , 故本选项错误 ;C 、∵ ∠ ADB=∠ DAC ,AD ∥ BC ,∴ ∠ ADB=∠ DAC=∠ DBC=∠ ACB ,∴ OA=OD, OB=OC,∴ AC=BD,∵ AD ∥ BC ,∴ 四边形 ABCD 是等腰梯形 , 故本选项正确 ;再根据AD ∥ BC 不能推出四边形 ABCD 是等腰梯形 , 故本选项错误 . 故选 C .6, 解 :A 、∵ DE ∥ BC , ∠ ADE=48°, ∴ ∠ B=∠ ADE=48°正确 , 不符合题意 ; B 、∵ AB=AC, ∴ ∠ C=∠ B=48°, ∵ DE ∥ BC ,∴ ∠ AED=∠ C=48°, 符合题意 ;C 、∠ A=180°-∠ B-∠ C=180°-48°-48°=84°正确 , 不符合题意 ;D 、∠ B+∠ C=48°+48°=96°正确 , 不符合题意 . 故选 B .7, 解:∵ DE ⊥ AB , ∴ ∠ ADE=90°, ∵ ∠ FDE=30°,∴ ∠ ADF=90°-30°=60°, ∵ BC ∥ DF ,∴ ∠ B=∠ ADF=60°, 故选 :C .8, 解:根据题意可知五个小矩形的周长之和正好能平移到大矩形的四周,故即可得出答案: ∵ AC=10, BC=8, ∴ AB=6,图中五个小矩形的周长之和为:6+8+6+8=28. 故选 D .9, 解 :连接 OA , 交⊙ O 于 E 点 , 在Rt △ OAB 中 , OB=6, AB=8, 所以OA=10; 又 OE=OB=6, 所以 AE=OA-OE=4.因此选用的绳子应该不 >4, 故选 A .10, 解 :根据题意得 , x-2=0, y+1=0, 解得 x=2, y=-1,所以 , x-y=2-(-1) =2+1=3. 故选 A .11, 解:∵ ∠ ACB=90°, ∴ ∠ ECF+∠ BCD=90°, ∵ CD ⊥ AB ,∴ ∠ BCD+∠ B=90°, ∴ ∠ ECF=∠ B , 在△ ABC 和△ FEC 中, ∠ECF =∠B EC =BC∠ ACB =∠ FEC =90°∴ △ ABC ≌ △ FEC (ASA ) , ∴ AC=EF,∵ AE=AC-CE, BC=2cm, EF=5cm, ∴ AE=5-2=3cm. 故答案为 :3.∵ ∠ BAC=54°, AO 为∠ BAC 的平分线, ∴ ∠ BAO=1/2∠BAC=1/2×54°=27°, 又∵ AB=AC,∴ ∠ ABC=1/2(180°-∠ BAC ) =1/2(180°-54°) =63°, ∵ DO 是 AB 的垂直平分线, ∴ OA=OB,∴ ∠ ABO=∠ BAO=27°,∴ ∠ OBC=∠ ABC-∠ ABO=63°-27°=36°,∵ DO 是 AB 的垂直平分线 , AO 为∠ BAC 的平分线, ∴ 点 O 是△ ABC 的外心, ∴ OB=OC,∴ ∠ OCB=∠ OBC=36°,∵ 将∠ C 沿 EF (E 在 BC 上 , F 在 AC 上 ) 折叠 , 点 C 与点 O 恰好重合 , ∴ OE=CE,∴ ∠ COE=∠ OCB=36°,在△ OCE 中, ∠ OEC=180°-∠ COE-∠ OCB=180°-36°-36°=108°. 故答案为 :108.13, 解:∵ 点 P 在线段 AB 的垂直平分线上, PA=7, ∴ PB=PA=7, 故答案为 :7. 14, 解 :观察发现 ,∵ AB=BE, ∠ ACB=∠ BDE=90°,∴ ∠ ABC+∠ BAC=90°, ∠ ABC+∠ EBD=90°, ∴ ∠ BAC=∠ BED , ∴ △ ABC ≌ △ BDE ,S 1和 S 2之间的两个三角形可以证明全等 , 则 S 1+S2即直角三角形的两条直角边的平方和 , 根据勾股定理 , 即 S 1+S2=1, 同理 S 3+S4=3.则 S 1+S2+S3+S4=1+3=4.15, 解 :根据题意得 , x-4=0, y-8=0, 解得 x=4, y=8,① 4是腰长时 , 三角形的三边分别为 4、 4、8, ∵ 4+4=8,∴ 不能组成三角形 ,② 4是底边时 , 三角形的三边分别为 4、 8、 8, 能组成三角形 ,周长 =4+8+8=20, 所以 , 三角形的周长为 20. 故答案为 :20. 16, 证明:∵ CF ∥ AB , ∴ ∠ 1=∠ F , ∠ 2=∠ A , ∵ 点 E 为 AC 的中点, ∴ AE=EC,∠1=∠ F∠ A =∠2AE =EC∴ △ ADE ≌ △ CFE (AAS ) ,∴ AD=CF.17, (1) 证明:∵ AD ∥ BC , ∴ ∠ ADE=∠ BFE , ∵ E 为 AB 的中点, ∴ AE=BE,在△ AED 和△ BFE 中 ,∠ ADE =∠ EFB∠ AED =∠ BEFAE =BE∴ △ AED ≌ △ BFE (AAS ) ;(2) 解 :EG 与 DF 的位置关系是EG ⊥ DF ,理由为 :连接 EG ,∵ ∠ GDF=∠ ADE , ∠ ADE=∠ BFE ,∴ ∠ GDF=∠ BFE ,由(1) △ AED ≌ △ BFE 得 :DE=EF, 即 GE 为 DF 上的中线, ∴ GE 垂直平分DF .18, 证明:(1) ∵ AC ⊥ BC , BD ⊥ AD ,∴ ∠ ADB=∠ ACB=90°,在Rt △ ABC 和Rt △ BAD 中 ,∵AB =ABAC =BD∴ Rt △ ABC ≌Rt △ BAD (HL ) ,∴ BC=AD,(2) ∵ Rt △ ABC ≌ Rt △ BAD ,∴ ∠ CAB=∠ DBA ,∴ OA=OB,∴ △ OAB 是等腰三角形 .19, 解:如图,设大树高为 AB=10m, 小树高为 CD=4m,过 C 点作CE ⊥ AB 于 E ,则 EBDC 是矩形, 连接 AC ,∴ EB=4m, EC=8m, AE=AB-EB=10-4=6m, 在Rt △ AEC 中, AC=10m, 故小鸟至少飞行 10m .。
2014-2015学年苏科版八年级上期中考试数学试题及答案

(第7题)A. B. C. D.A A 1A AA(说明:本试卷满分120分,考试时间:100分钟)一、选择题(本大题共有10小题,每小题3分,满分30分)1.9的平方根是……………………………………………………………………( )A .3B .-3C .±3D .32.在数0、2.0 、π3 、227、0.1010010001、7中,无理数有 ………………( ) A .1个 B .2个 C .3个 D .4个3.下列各式中,正确的是……………………………………………………………( )A .3-9=-3 B .(-3)2=9 C . ±9=±3 D .(-2)2=-2 4.下面的图形都是常见的安全标记,其中是轴对称图形的是……………………( )5.如果等腰三角形的一个角是80°,则它的顶角度数是………………………( ) A .80° B .80°或20° C .80°或50° D .20°6.有下列说法: ①有理数与数轴上的点一一对应;②直角三角形的两边长是5和12,则第三边长是13;③近似数 1.5万精确到十分位;④无理数是无限小数.其中错误..说法的个数有………………………………………………………………………( ) A .4个 B .3个 C .2个 D .1个7. 如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有……………( )A .1个B .2个C .3个D .4个8.如图,△ABD ≌△ACE ,∠AEC =110°,则∠DAE 的度数为………………( )A .30°B .40°C .50°D .60°9.如图,在△ABC 中,AB =AC ,AD =AE ,∠BAD =30°,∠EDC 的度数是……………( ) A .10° B .15° C .20° D .25°10.如图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2 B 2……按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θ2015-θ2014的值为……………………( )A .180°+α22014B .180°-α22014C .180°+α22015 D .180°-α22015(第16题) (第18题)(第17题) DBQPEA CO乙甲ACE 1BD 1EDCBANM BDCA二、填空题(本大题共有8小题,每空2分,满分22分) 11.16的算术平方根是 ,-8的立方根是 .12.地球七大洲的总面积约为149480000km 2,若要把这个数据精确到百万位,用科学记数法可表示为km 2.13.若x 与2x -6是同一个正数m 的两个不同的平方根,则x = , m = . 14. (25)2 ,32 53(用“>、=、<”号连结). 15.若实数x 、y 满足x -2+(y +3)2=0,则y x = .16.如图,已知长方形ABCD 的边长AB =20cm ,BC =16cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当△BPE 与△CQP 全等时,时间t 为 s.17.如图,在等边△ABC 中,AB =6,N 为线段AB 上的任意一点,∠BAC 的平分线交BC 于点D ,M 是AD18. 把一副三角板如图甲放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =18,CD =21,把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则线段AD 1的长度为________.三、解答题:(本大题共9小题,满分68分) 19.计算题.(每题4分,共8分)(1)计算:25-(12)-2+(5-1)0; (2)3-8+(-5)2 + ||3-11.20.求出下列x 的值.(每小题4分,共8分))(1)4x 2-49=0 ; (2) 27 (x +1)3=-6421.(本题满分6分)阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数.因此,2的小数部分不可能全部地写出来,但可以用2-1来表示2的小数部分.理由:因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答,已知:3+6=x+y,其中x是整数,且0<y<1,求x-y的值.EBCA23.(本题满分5分)已知,如图,直线AB 与直线BC 相交于点B ,点D 是直线BC 上一点,求作:点E ,使直线DE ∥AB ,且点E 到B 、D 两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)(1)求DE 的长;(2)若AC =6,BC =8,求△ADB 的面积.25.(本题满分5分)小明将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到△AEF (如图②).小明认为△AEF 是等腰三角形,你同意吗?如果同意,请你给出证明,如果不同意,请说明理由.OF EA B C DD C B A图① 图 26.(本题满分12分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 为△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA . (1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC =DM ,请判断ME 、BD 的数量关系,并给出证明.27.(本题满分12分)数学活动——“关于三角形全等的条件”1.【问题提出】学习了三角形全等的判定方法(即“SAS ”、“ASA ”、 “AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.2.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.3.【逐步探究】(1)第一种情况:当∠B 是直角时,如图①,根据______定理,可得△ABC ≌△DEF .(2)第二种情况:当∠B 是钝角时,△ABC ≌△DEF 仍成立.请你完成证明.已知:如图②,△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角,求证:△ABC ≌△DEF .证明:EA ①FEB CA②FBEDCA③BCA(3)第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.在△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,请你用尺规在图③中作出△DEF ,使△DEF 和△ABC 不全等.(不写作法,保留作图痕迹)4.【深入思考】∠B 还要满足什么条件,就可以使△ABC ≌△DEF ?(请直接写出结论.)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,若∠B _________,则△ABC ≌△DEF .二、选择题(本大题共有10小题,每小题3分,满分30分)1. C 2. B 3. C 4. A 5. B 6. B 7. C 8. B 9. B 10.D 二、填空题(本大题共有8小题,每空2分,满分22分)11.4,-2 12.1.49×108 13. 2,4 14.= ,> 15. 1816.1或4 (少一个答案扣一分) 17. 3 3 (27也算对) 18.15三、解答题:(本大题共9小题,满分68分)20.求出下列x 的值.(每小题4分,共8分)) (1)4x 2-49=0x 2=494…………………………………………………………2分x =±72…………………………………………………………4分(2) 27 (x +1)3=﹣64(x +1)3 =﹣6427………………………………………………1分(x +1)=﹣43 …………………………………………………3分x =﹣73………………………………………………………4分21.(本题满分6分)由题知:x =5, ……………………………1分y =6—2, ……………………………………………………3分x -y =5-(6-2) ………………………………………5分 x -y =7-6… ………………………………………………6分 22.(本题满分6分)由题知:a —3≥0且3—a ≥0,…………………………………1分 解得a ≥3且a ≤3,所以,a =3,………………………………………………………2分所以,b=5,………………………………………………………3分①当腰为3,底为5时,周长3+3+5=11;…………………4分②当腰为5,底为3时,周长为5+5+3=13.…………………5分∴这个等腰三角形的周长为11或13……………………………6分23.(本题满分5分)(1)以D为顶点,DC为边作一个角等于∠ABC(也可画∠ABC的内错角)……………………………………………………………………2分(2)作出BD中垂线………………………………………………4分(3)标出点E ………………………………………………………5分∴点E为所求作的点.25.(本题满分5分)答:同意………………………………………………………1分理由:由第一次折叠得∠BAD=∠CAD………………………2分由第二次折叠得EF⊥AD ……………………………3分由ASA证得三角形△AEO≌△AFO…………………4分得AE=AF………………………………………………5分(此参考答案为简要思路,方法不唯一,请酌情给分)26.(本题12分)(1)证明:∵AC=BC∴∠CBA=∠CAB又∵∠ACB=90°∴∠CBA=∠CAB=45°……………………………………1分又∵∠CAD=∠CBD=15°∴∠DBA=∠DAB=30°……………………………………2分∴∠BDE=30°+30°=60°………………………………3分又易证得△ADC≌△BDC ………………………………4分得∠ACD=∠BCD=45°由外角得∠CDE=60°………………………………………5分得∠CDE=∠BDE=60°所以DE平分∠BDC ………………………………………6分(此小题证明方法不唯一,请参照给分)(2)答:ME=BD …………………………………………7分证明:连结MC ………………………………………8分证得△MCD为等边三角形……………………………9分证得△BDC≌△EMC…………………………………11分得ME=BD ……………………………………………12分27.(本题12分)3.【逐步探究】(1)HL ………………………………………………………2分(2)证明:分别作CG⊥AB,FH⊥DE ……………………3分由∠ABC=∠DEF得∠CBG=∠FEH…………………………………………4分证明△ACG≌△DFH(AAS)……………………………6分得CG=FH得Rt△ACG≌Rt△DFH(HL)…………………………7分得△ABC≌△DEF(AAS)…………………………………8分(3)如图,……………………………10分4.【深入思考】∠B≥∠A.……………………………………12分。
2014-2015学年八年级上学期期中联考数学试题(含答案)

2014-2015学年八年级上学期期中联考数学试题(含答案)(时间:100分钟,满分:100分)一、选择题(每题3分,共30分)1、下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,14 2、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3、一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 4、等腰三角形的一个角是50,则它的底角是( ) A. 50 B. 50或65 C 、80 D 、65 5、和点P (2,5-)关于x 轴对称的点是( )A (-2,5-)B (2,5-)C (2,5)D (-2,5) 6、已知直角三角形中30°角所对的直角边为2 cm ,则斜边的长为( ). A .2 cm B .4 cm C .6 cm D .8 cm7、如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( ) A.4个 B.3个C.2个 D.个8、如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠9、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)10、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行 二、填空题(每题3分,共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_________ ______。
2014-2015年江苏省南通市海安县八年级上学期期中数学试卷和答案

2014-2015学年江苏省南通市海安县八年级(上)期中数学试卷一、选择题(每题2分,共20分)1.(2分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(2分)下列运算中,计算结果正确的是()A.a2•a3=a6 B.(a2)3=a5C.(a2b)2=a2b2 D.(﹣a)6÷a=a53.(2分)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm4.(2分)在△ABC和△DEF中,AB=DE,∠A=∠D,添加下列条件后,不能判定△ABC≌△DEF的是()A.BC=EF B.∠B=∠E C.∠C=∠F D.AC=DF5.(2分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对6.(2分)如图所示,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C的大小为()A.50°B.40°C.20°D.25°7.(2分)下列说法正确的是()A .等腰三角形的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形一边不可以是另一边的二倍D .等腰三角形的两个底角相等8.(2分)已知a=8131,b=2741,c=961,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a9.(2分)多项式5x 2﹣4xy +4y 2+12x +25的最小值为( )A .4B .5C .16D .2510.(2分)如图,∠BAC 与∠CBE 的平分线相交于点P ,BE=BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,下列结论:①GA=GP ;②S △PAC :S △PAB =AC :AB ;③BP 垂直平分CE ;④FP=FC ;其中正确的判断有( )A .只有①②B .只有③④C .只有①③④D .①②③④二、填空题(每题3分,共24分)11.(3分)计算:2x 2•(﹣3x 3)= .12.(3分)已知△ABC 是轴对称图形,且三条高的交点恰好是C 点,则△ABC 的形状是 .13.(3分)已知x +y=10,xy=20,则x 2+y 2= .14.(3分)如图,已知△ABC 中,∠ABC=45°,AC=4,H 是高AD 和BE 的交点,则线段BH 的长度为 .15.(3分)已知M (1,2)关于x 轴对称的点为N ,线段MN 的中点坐标是 .16.(3分)如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有 个.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为.18.(3分)对于数a,b,c,d,规定一种运算=ad﹣bc,如=1×(﹣2)﹣0×2=﹣2,那么当=27时,则x=.三、解答题(共56分)19.(10分)计算(1)(﹣)2013•(1.5)2014(2)[x(x2y﹣xy)﹣y(x3﹣x2y)]÷5x2y.20.(4分)如图,已知两点P、Q在锐角∠AOB内,分别在OA、OB上求作点M、N,使PM+MN+NQ最短.21.(7分)若(x﹣2)0无意义,且3x﹣2y=0,求[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y的值.22.(5分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,求∠ADC的度数.23.(7分)如图,△ABC中,AB=AC,D是BC的中点,过D点的直线GF交AC 于F,交AC的平行线BG于G点.(1)求证:BG=CF;(2)请你判断AF、BG、AB之间的大小关系,并说明理由.24.(6分)自主学习,学以致用先阅读,再回答问题:如图1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE等结论.在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.解决问题:如图2,在△ABC中,AD是三角形的中线,F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.25.(8分)如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由.26.(9分)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.(1)求证:AB=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.2014-2015学年江苏省南通市海安县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题2分,共20分)1.(2分)下列图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.2.(2分)下列运算中,计算结果正确的是()A.a2•a3=a6 B.(a2)3=a5C.(a2b)2=a2b2 D.(﹣a)6÷a=a5【解答】解:A、a2•a3=a5,原式计算错误,故本选项错误;B、(a2)3=a6,原式计算错误,故本选项错误;C、(a2b)2=a4b2,原式计算错误,故本选项错误;D、(﹣a)6÷a=a5,原式计算正确,故本选项正确.故选:D.3.(2分)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm【解答】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.4.(2分)在△ABC和△DEF中,AB=DE,∠A=∠D,添加下列条件后,不能判定△ABC≌△DEF的是()A.BC=EF B.∠B=∠E C.∠C=∠F D.AC=DF【解答】解:A、添加BC=EF,满足SSA,不能判定券到呢个,故本选项正确;B、添加∠B=∠E,满足ASA,可以判定两三角形全等,故本选项错误;C、添加∠C=∠F,满足AAS,可以判定两三角形全等,故本选项错误;D、添加AC=DF,满足SAS,可以判定两三角形全等,故本选项错误;故选:A.5.(2分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.6.(2分)如图所示,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C的大小为()A.50°B.40°C.20°D.25°【解答】解:∵AB=AD,∴∠B=∠ADB,由∠BAD=80°得∠B==50°=∠ADB,∵AD=DC,∴∠C=∠ACD,∴∠C=∠ADB=25°故选:D.7.(2分)下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.等腰三角形一边不可以是另一边的二倍D.等腰三角形的两个底角相等【解答】解:A、应为等腰三角形底边上的高、中线、顶角平分线互相重合,故错误;B、顶角相等的两个等腰三角形,若对应边不等,则不全等,故错误;C、等腰三角形中腰可以是底边的2倍的,故错误;D、等腰三角形的两个底角相等是正确.故选:D.8.(2分)已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A .a >b >cB .a >c >bC .a <b <cD .b >c >a【解答】解:∵a=8131=(34)31=3124b=2741=(33)41=3123;c=961=(32)61=3122.则a >b >c .故选:A .9.(2分)多项式5x 2﹣4xy +4y 2+12x +25的最小值为( )A .4B .5C .16D .25【解答】解:∵5x 2﹣4xy +4y 2+12x +25,=x 2﹣4xy +4y 2+4x 2+12x +25,=(x ﹣2y )2+4(x +1.5)2+16,∴当(x ﹣2y )2=0,4(x +1.5)2=0时,原式最小,∴多项式5x 2﹣4xy +4y 2+12x +25的最小值为16,故选:C .10.(2分)如图,∠BAC 与∠CBE 的平分线相交于点P ,BE=BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,下列结论:①GA=GP ;②S △PAC :S △PAB =AC :AB ;③BP 垂直平分CE ;④FP=FC ;其中正确的判断有( )A .只有①②B .只有③④C .只有①③④D .①②③④【解答】解:①∵AP 平分∠BAC∴∠CAP=∠BAP∵PG ∥AD∴∠APG=∠CAP∴∠APG=∠BAP∴GA=GP②∵AP 平分∠BAC∴P到AC,AB的距离相等∴S△PAC :S△PAB=AC:AB③∵BE=BC,BP平分∠CBE∴BP垂直平分CE(三线合一)④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上∴∠DCP=∠BCP又PG∥AD∴∠FPC=∠DCP∴FP=FC故①②③④都正确.故选:D.二、填空题(每题3分,共24分)11.(3分)计算:2x2•(﹣3x3)=﹣6x5.【解答】解:2x2•(﹣3x3)=(﹣2×3)x2•x3=﹣6x5.故答案为:﹣6x5.12.(3分)已知△ABC是轴对称图形,且三条高的交点恰好是C点,则△ABC 的形状是等腰直角三角形.【解答】解:△ABC是轴对称图形,且三条高的交点恰好是C点,则△ABC的形状是等腰直角三角形.13.(3分)已知x+y=10,xy=20,则x2+y2=60.【解答】解:∵x+y=10,xy=20,∴x2+y2=(x+y)2﹣2xy,=100﹣40,=60;故答案是:60.14.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为4.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD.∵∠1=∠3(同角的余角相等),∠1+∠2=90°,∠3+∠4=90°,∴∠2=∠4.在△ADC和△BDH中,∵,∴△ADC≌△BDH(AAS),∴BH=AC=4.故答案是:4.15.(3分)已知M(1,2)关于x轴对称的点为N,线段MN的中点坐标是(1,0).【解答】解:∵M(1,2)关于x轴对称的点为N,∴N(1,﹣2),∴线段MN的中点坐标是:(,),即(1,0).故答案是:(1,0).16.(3分)如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4或2个.【解答】解:当OA与x轴正半轴夹角不等于60°时,以O为圆心,以OA为半径画弧交x轴于点P和P′,此时三角形是等腰三角形,即有2个满足条件的点P;以A为圆心,以OA为半径画弧交x轴于点P″(O除外),此时三角形是等腰三角形,即有1个满足条件的点P;作OA的垂直平分线交x轴于一点P1,则AP=OP,此时三角形是等腰三角形,即有2个满足条件的点P;2+1+1=4,当OA与x轴正半轴夹角等于60°的时候,图中的P1,P'和P'会重合,是一个点,加上原来的负半轴的P点,总共2个点,故答案为4或2.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为6.【解答】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CND∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.18.(3分)对于数a,b,c,d,规定一种运算=ad﹣bc,如=1×(﹣2)﹣0×2=﹣2,那么当=27时,则x=﹣26.【解答】解:根据运算规则:=27可化为:(x+1)(x﹣1)﹣(x﹣1)(x+2)=27,去括号得:﹣1﹣x+2=27,移项合并同类项得:x=﹣26.故填﹣26.三、解答题(共56分)19.(10分)计算(1)(﹣)2013•(1.5)2014(2)[x(x2y﹣xy)﹣y(x3﹣x2y)]÷5x2y.【解答】解:(1)原式=﹣()2013•()2014=﹣[()()]2013•=﹣;(2)原式=(x3y﹣x2y﹣x3y+x2y2)÷5x2y.=(﹣x2y+x2y2)÷5x2y.=﹣+y.20.(4分)如图,已知两点P、Q在锐角∠AOB内,分别在OA、OB上求作点M、N,使PM+MN+NQ最短.【解答】解:如图所示.21.(7分)若(x﹣2)0无意义,且3x﹣2y=0,求[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y的值.【解答】解:∵(x﹣2)0无意义,∴x﹣2=0,∴x=2.把x=2代入3x﹣2y=0,得y=3,原式=﹣2x﹣5y当x=2,y=3时原式=﹣19.22.(5分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,求∠ADC的度数.【解答】解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=30°,∵CE是△ABC的高,∴∠AEC=90°,∴∠ACE=30°,∴∠ACD=80°,在△ACD中,∠ADC=180°﹣30°﹣80°=70°,答:∠ADC=70°.23.(7分)如图,△ABC中,AB=AC,D是BC的中点,过D点的直线GF交AC 于F,交AC的平行线BG于G点.(1)求证:BG=CF;(2)请你判断AF、BG、AB之间的大小关系,并说明理由.【解答】证明:(1)∵AC∥BG,∴∠GBD=∠C,∵D是BC的中点,∴BD=CD,在△BGD和CFD中,,∴△BGD≌△CFD(ASA),∴BG=CF;(2)AB=AF+BG,理由如下:由(1)可知:△BGD≌△CFD,∴BG=FC,∵AC=AF+FC,∴AC=AF+BG,∵AB=AC,∴AB=AF+BG.24.(6分)自主学习,学以致用先阅读,再回答问题:如图1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE等结论.在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.解决问题:如图2,在△ABC中,AD是三角形的中线,F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.【解答】证明:延长AD到G,使DF=DG,连接CG,∵AD是中线,∴BD=DC,在△BDF和△CDG中∴△BDF≌△CDG,∴BF=CG,∠BFD=∠G,∵∠AFE=∠BFD,∴∠AFE=∠G,∵BF=CG,BF=AC,∴CG=AC,∴∠G=∠CAF,∴∠AFE=∠CAF,∴AE=EF.25.(8分)如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN 的形状,并说明理由.【解答】证明:(1)∵△ABC、△DCE均是等边三角形,∴AC=BC,DC=DE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△DCB和△ECA中,,∴△DCB≌△ECA(SAS),∴BD=AE;(2)△CMN为等边三角形,理由如下:由(1)可知:△ECA≌△DCB,∴∠CAE=∠CBD,即∠CAM=∠CBN,∵AC=BC,AM=BN,在△ACM和△BCN中,,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,∵∠ACB=60°即∠BCN+∠ACN=60°,∴∠ACM+∠ACN=60°即∠MCN=60°,∴△CMN为等边三角形.26.(9分)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.(1)求证:AB=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.【解答】(1)证明:∵AF平分∠BAC,∴∠CAD=∠DAB=∠BAC,∵D与A关于E对称,∴E为AD中点,∵BC⊥AD,∴BC为AD的中垂线,∴AC=CD.在Rt△ACE和Rt△ABE中,(注:证全等也可得到AC=CD)∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB,∴∠ACE=∠ABE,∴AC=AB(注:证全等也可得到AC=AB),∴AB=CD.(2)解:∠F=∠MCD,理由如下:∵∠BAC=2∠MPC,又∵∠BAC=2∠CAD,∴∠MPC=∠CAD,∵AC=CD,∴∠CAD=∠CDA,∴∠MPC=∠CDA ,∴∠MPF=∠CDM ,∵AC=AB ,AE ⊥BC ,∴CE=BE (注:证全等也可得到CE=BE ),∴AM 为BC 的中垂线,∴CM=BM .(注:证全等也可得到CM=BM )∵EM ⊥BC ,∴EM 平分∠CMB (等腰三角形三线合一).∴∠CME=∠BME (注:证全等也可得到∠CME=∠BME .),∵∠BME=∠PMF ,∴∠PMF=∠CME ,∴∠MCD=∠F .(注:证三角形相似也可得到∠MCD=∠F )赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征: 60°60°60° 45°45°45°运用举例: 1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
江苏省南通市海安县2015届中考数学模拟试卷含答案解析

2015年江苏省南通市海安县海陵中学中考数学模拟试卷一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的,每小题3分,满分30分.1.﹣3的倒数是()A.3 B.﹣3 C.D.2.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.4.若二次根式有意义,则x的取值范围为()A.x≥B.x≤C.x≥﹣D.x≤﹣5.在平面直角坐标系内,点P(﹣2,3)关于原点的对称点Q的坐标为()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣2,﹣3)6.若分式的值为0,则x的值为()A.3 B.3或﹣3 C.﹣3 D.07.一次函数y=﹣3x﹣2的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.解关于x的不等式,正确的结论是()A.无解 B.解为全体实数 C.当a>0时无解D.当a<0时无解9.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为()A.B.C.D.210.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A.6πB.5πC.4πD.3π二、填空题:不需写出解答过程,请把最后结果填在题中横线上,每小题3分,满分24分.11.我国的陆地面积居世界第三位,约为9 597 000平方千米,用科学记数法表示为平方千米.(保留三个有效数字)12.分解因式:ax2﹣a=.13.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是.14.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为.15.如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为.16.如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为.17.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B 按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为.18.已知抛物线经过点A(4,0).设点C(1,﹣3),请在抛物线的对称轴上确定一点D,使得|AD﹣CD|的值最大,则D点的坐标为.三、解答题:本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步骤.19.(1)计算:|;(2)先化简,再求值:,其中x=5﹣4.20.上海世博园开放后,前往参观的人非常多.5月中旬的一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.(1)这里采用的调查方式是;(2)求表中a、b、c的值,并请补全频数分布直方图;(3)在调查人数里,等候时间少于40min的有人;(4)此次调查中,中位数所在的时间段是~min.21.如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x 轴,垂足为点C,且△AOC的面积为2.(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求△AOB的面积.22.如图,一艘海轮位于灯塔C的北偏东30°方向,距离灯塔80海里的A处,海轮沿正南方向匀速航行一段时间后,到达位于灯塔C的东南方向上的B处.(1)求灯塔C到航线AB的距离;(2)若海轮的速度为20海里/时,求海轮从A处到B处所用的时间(结果精确到0.1小时)(参考数据:,)23.如图,一转盘被等分成三个扇形,上面分别标有﹣1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形>.(1)若小静转动转盘一次,求得到负数的概率;(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率.24.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?25.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=,求⊙O的直径.26.A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车速度.27.如图,在平面直角坐标系中,点A、C分别在x轴、y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=.点E、F分别是线段AD、AC上的动点(点E不与A、D点重合),且∠CEF=∠ACB.(1)求AC的长与点D的坐标.(2)说明△AEF与△DCE相似.(3)当△EFC为等腰三角形时,求点E的坐标.28.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.2015年江苏省南通市海安县海陵中学中考数学模拟试卷参考答案与试题解析一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的,每小题3分,满分30分.1.﹣3的倒数是()A.3 B.﹣3 C.D.【考点】倒数.【专题】常规题型.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:D.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E 的度数.【解答】解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选B.【点评】本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.若二次根式有意义,则x的取值范围为()A.x≥B.x≤C.x≥﹣D.x≤﹣【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,1+2x≥0,解得x≥﹣.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.在平面直角坐标系内,点P(﹣2,3)关于原点的对称点Q的坐标为()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).【解答】解:根据中心对称的性质,得点P(﹣2,3)关于原点对称点P′的坐标是(2,﹣3).故选:A.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.6.若分式的值为0,则x的值为()A.3 B.3或﹣3 C.﹣3 D.0【考点】分式的值为零的条件.【专题】计算题.【分析】分式值为0,则要求分子为0,分母不为0,解出x.【解答】解:∵x2﹣9=0,∴x=±3,当x=3时,x2﹣4x+3=0,∴x=3不满足条件.当x=﹣3时,x2﹣4x+3≠0,∴当x=﹣3时分式的值是0.故选C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.7.一次函数y=﹣3x﹣2的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】根据一次函数的性质容易得出结论.【解答】解:∵解析式y=﹣3x﹣2中,﹣3<0,﹣2<0,∴图象过二、三、四象限.故选A.【点评】在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.8.解关于x的不等式,正确的结论是()A.无解 B.解为全体实数 C.当a>0时无解D.当a<0时无解【考点】不等式的解集.【专题】计算题.【分析】根据两不等根据两不等式,大大取大,小小取小,大小中间找的规律进行讨论即可.【解答】解:根据题意可得:①当a≥0时,无解.②当a<0时解为a<x<﹣a.所以,当a≥0时,无解或当a<0时解为a<x<﹣a.故选C.【点评】本题考查不等式的解集,解答此题要根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为()A.B.C.D.2【考点】线段垂直平分线的性质.【专题】计算题;压轴题.【分析】利用线段的垂直平分线的性质和三角形相似进行计算.【解答】解:∵∠ACB=90°,BC=3,AC=4,根据勾股定理得:AB=5,而AB的垂直平分线DE交BC的延长线于点E,∴∠BDE=90°,∠B=∠B,∴△ACB∽△EDB,∴BC:BD=AB:(BC+CE),又BC=3,AC=4,AB=5,∴3:2.5=5:(3+CE),从而得到CE=.故选:B.【点评】本题主要考查直角三角形性质、线段垂直平分线的性质及相似三角形性质的应用及方程的数学思想.10.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A.6πB.5πC.4πD.3π【考点】扇形面积的计算.【专题】压轴题.【分析】从图中可以看出阴影部分的面积=扇形面积+半圆面积﹣半圆面积,即等于扇形面积,依扇形的面积公式计算即可.【解答】解:阴影部分面积==6π.故选:A.【点评】本题主要考查了扇形的面积公式.即S=.二、填空题:不需写出解答过程,请把最后结果填在题中横线上,每小题3分,满分24分.11.我国的陆地面积居世界第三位,约为9 597 000平方千米,用科学记数法表示为9.60×106平方千米.(保留三个有效数字)【考点】科学记数法与有效数字.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.题中9 597 000有7位整数,n=7﹣1=6.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:9597000≈9.60×106.【点评】此题主要考查科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.分解因式:ax2﹣a=a(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式a,再利用平方差公式进行二次分解.【解答】解:ax2﹣a,=a(x2﹣1),=a(x+1)(x﹣1).【点评】主要考查提公因式法分解因式和利用平方差公式分解因式,分解因式要彻底,直到不能再分解为止.13.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是a<1且a≠0.【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:根据题意列出不等式组,解之得a<1且a≠0.故答案为:a<1且a≠0.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.14.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为±6.【考点】待定系数法求二次函数解析式.【分析】抛物线y=ax2+bx+c的顶点坐标为(,),因为抛物线y=x2﹣bx+9的顶点在x轴上,所以顶点的纵坐标为零,列方程求解.【解答】解:∵抛物线y=x2﹣bx+9的顶点在x轴上,∴顶点的纵坐标为零,即y===0,解得b=±6.【点评】此题考查了学生的综合应用能力,解题的关键是掌握顶点的表示方法和x轴上的点的特点.15.如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为.【考点】勾股定理;菱形的性质.【专题】计算题.【分析】根据轴对称的性质,首先准确找到点P的位置.根据菱形的性质,知:点A和C关于BD 对称.则连接CE交BD于点P,P即为所求作的点.PE+PA的最小值即为CE的长.【解答】解:∵∠ABC=60°,AB=AC∴△ABC是等边三角形∴CE⊥AB∴CE===2故答案为,2【点评】此题的难点在于能够正确找到点P的位置.注意综合运用等边三角形的判定、等腰三角形的三线合一、勾股定理、菱形的四边相等进行求解.16.如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为20.【考点】垂径定理;等边三角形的判定与性质.【专题】计算题;压轴题.【分析】延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.【解答】解:延长AO交BC于D,作OE⊥BC于E;∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=12;∴OD=4,又∵∠ADB=60°,∴DE=OD=2;∴BE=10;∴BC=2BE=20;故答案为20.【点评】此题主要考查了等边三角形的判定和性质以及垂径定理的应用.17.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为(,).【考点】坐标与图形变化-旋转;等腰三角形的性质.【分析】过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,),故答案为:(,).【点评】本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.18.已知抛物线经过点A(4,0).设点C(1,﹣3),请在抛物线的对称轴上确定一点D,使得|AD﹣CD|的值最大,则D点的坐标为(2,﹣6).【考点】二次函数综合题.【分析】首先利用待定系数法求得抛物线的解析式,然后可求得抛物线的对称轴方程x=2,又由作点C关于x=2的对称点C′,直线AC′与x=2的交点即为D,求得直线AC′的解析式,即可求得答案.【解答】解:∵抛物线经过点A(4,0),∴×42+4b=0,∴b=﹣2,∴抛物线的解析式为:y=x2﹣2x=(x﹣2)2﹣2,∴抛物线的对称轴为:直线x=2,∵点C(1,﹣3),∴作点C关于x=2的对称点C′(3,﹣3),直线AC′与x=2的交点即为D,因为任意取一点D(AC与对称轴的交点除外)都可以构成一个△ADC.而在三角形中,两边之差小于第三边,即|AD﹣CD|<AC′.所以最大值就是在D是AC′延长线上的点的时候取到|AD﹣C′D|=AC′.把A,C′两点坐标代入,得到过AC′的直线的解析式即可;设直线AC′的解析式为y=kx+b,∴,解得:,∴直线AC′的解析式为y=3x﹣12,当x=2时,y=﹣6,∴D点的坐标为(2,﹣6).故答案为:(2,﹣6).【点评】此题考查了待定系数法求二次函数的解析式,二次函数的对称轴,以及距离差最小问题.此题综合性很强,解题的关键是数形结合思想的应用.三、解答题:本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步骤.19.(1)计算:|;(2)先化简,再求值:,其中x=5﹣4.【考点】分式的化简求值;实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;分式.【分析】(1)原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=2﹣4×+1+4=5;(2)原式=•=•=x+4,当x=5﹣4时,原式=5﹣4+4=5.【点评】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.20.上海世博园开放后,前往参观的人非常多.5月中旬的一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.(1)这里采用的调查方式是抽样调查;(2)求表中a、b、c的值,并请补全频数分布直方图;(3)在调查人数里,等候时间少于40min的有32人;(4)此次调查中,中位数所在的时间段是20~30min.【考点】频数(率)分布直方图;频数(率)分布表;中位数.【专题】图表型.【分析】(1)由于前往参观的人非常多,5月中旬的一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,由此即可判断调查方式;(2)首先根据已知的一组数据可以求出接受调查的总人数c,然后乘以频率即可求出b,利用所有频率之和为1即可求出a,然后就可以补全频率分布直方图;(3)根据表格知道被调查人数里,等候时间少于40min的有第一、二、三小组,利用表格数据即可求出等候时间少于40min的人数;(4)由于知道总人数为40人,根据中位数的定义就可以知道中位数落在哪个小组;【解答】解:(1)填抽样调查或抽查;(2)∵a=1﹣0.200﹣0.250﹣0.125﹣0.075=0.350;b=8÷0.200×0.125=5;c=8÷0.200=40;频数分布直方图如图所示.(3)依题意得在调查人数里,等候时间少于40min的有8+14+10=32人;故填32.(4)∵总人数为40人,∴中位数所在的时间段是20~30.故填20,30.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查了中位数、频率和频数的定义.21.如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x 轴,垂足为点C,且△AOC的面积为2.(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求△AOB的面积.【考点】反比例函数综合题.【专题】计算题;数形结合.【分析】(1)由S△AOC=xy=2,设反比例函数的解析式y=,则k=xy=4;(2)由于反比例函数的性质是:在x<0时,y随x的增大而减小,﹣a>﹣2a,则y1<y2;﹣S△BOE (3)连接AB,过点B作BE⊥x轴,交x轴于E点,通过分割面积法S△AOB=S△AOC+S梯形ACEB求得.【解答】解:(1)∵S△AOC=2,∴k=2S△AOC=4;∴y=;(2)∵k>0,∴函数y在各自象限内随x的增大而减小;∵a>0,∴﹣2a<﹣a;∴y1<y2;(3)连接AB,过点B作BE⊥x轴,S△AOC=S△BOE=2,∴A(a,),B(2a,);S=,梯形∴S△AOB=S△AOC+S﹣S△BOE=3.梯形ACEB【点评】此题重点检查函数性质的应用和图形的分割转化思想.同学们要熟练掌握这类题型.22.如图,一艘海轮位于灯塔C的北偏东30°方向,距离灯塔80海里的A处,海轮沿正南方向匀速航行一段时间后,到达位于灯塔C的东南方向上的B处.(1)求灯塔C到航线AB的距离;(2)若海轮的速度为20海里/时,求海轮从A处到B处所用的时间(结果精确到0.1小时)(参考数据:,)【考点】解直角三角形的应用-方向角问题.【分析】(1)过C作AB的垂线,设垂足为D,得到∠CAD=30°,在Rt△ACD中,利用含30°的直角三角形的三边关系可求出CD、AD的长;(2)在Rt△BCD中,由∠BCD=45°,根据CD的长,即可求得BD的长;根据AB=AD+BD即可求出AB的长.根据时间=路程÷速度可求出海轮从A到B所用的时间.【解答】解:(1)过C作CD⊥AB于D.∴∠A=30°,∠BCD=45°,在Rt△ACD中,AC=80,∠A=30°,∴CD=40,∴tan30°=,∴AD=CD=40.∴灯塔C到AB的距离为40海里;(2)Rt△BCD中,∠BCD=45°,∴BD=CD=40(海里).∴AB=AD+BD=40+40≈109.2(海里).∴海轮所用的时间为:109.2÷20≈5.5(小时).答:灯塔C到航线AB的距离为40海里;海轮从A处到B处所用的时间约为5.5小时.【点评】本题考查了解直角三角形的应用:方向角问题,具体就是在某点作出东南西北,即可转化角度,也得到垂直的直线;还考查了含30度的直角三角形三边的关系以及等腰直角三角形的性质.23.如图,一转盘被等分成三个扇形,上面分别标有﹣1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形>.(1)若小静转动转盘一次,求得到负数的概率;(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)由转盘被等分成三个扇形,上面分别标有﹣1,1,2,利用概率公式即可求得小静转动转盘一次,得到负数的概率;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.【解答】解:(1)∵转盘被等分成三个扇形,上面分别标有﹣1,1,2,∴小静转动转盘一次,得到负数的概率为:;(2)列表得:∴一共有9种等可能的结果,两人得到的数相同的有3种情况,∴两人“不谋而合”的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A 、B 两种原料,生产甲产品需要A 种原料4吨/件,B 种原料2吨/件,生产乙产品需要A 种原料3吨/件,B 种原料1吨/件,每个季节该厂能获得A 种原料120吨,B 种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?【考点】二元一次方程组的应用.【分析】(1)可设生产甲种产品x件,生产乙种产品y件,根据等量关系:①生产甲种产品需要的A种原料的吨数+生产乙种产品需要的A种原料的吨数=A种原料120吨,②生产甲种产品需要的B种原料的吨数+生产乙种产品需要的B种原料的吨数=B种原料50吨;依此列出方程求解即可;(2)可设乙种产品生产z件,则生产甲种产品(z+25)件,根据等量关系:甲种产品的产值+乙种产品的产值=总产值1375千元,列出方程求解即可.【解答】解:(1)设生产甲种产品x件,生产乙种产品y件,依题意有,解得,15×50+30×20=750+600=1350(千元),1350千元=135万元.答:生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)设乙种产品生产z件,则生产甲种产品(z+25)件,依题意有(1+10%)×50(z+25)+(1﹣10%)×30z=1375,解得z=0,z+25=25,120﹣25×4=120﹣100=20(吨),50﹣25×2=50﹣50=0(吨).答:安排生产甲种产品25件,使总产值是1375千元,A种原料还剩下20吨.【点评】考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.25.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=,求⊙O的直径.【考点】圆周角定理;圆心角、弧、弦的关系;锐角三角函数的定义.【专题】几何综合题;压轴题.【分析】(1)要证明CB∥PD,可以求得∠1=∠P,根据=可以确定∠C=∠P,又知∠1=∠C,即可得∠1=∠P;(2)根据题意可知∠P=∠CAB,则sin∠CAB=,即=,所以可以求得圆的直径.【解答】(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)解:连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴=,∴∠P=∠CAB,又∵sin∠P=,∴sin∠CAB=,即=,又知,BC=3,∴AB=5,∴直径为5.【点评】本题考查的是垂径定理和平行线、圆周角性质,解题时细心是解答好本题的关键.26.A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车速度.【考点】一次函数的应用.【专题】应用题.【分析】(1)先根据图象和题意知道,甲是分段函数,所以分别设0≤x≤6时,y=k1x;6<x≤14时,y=kx+b,根据图象上的点的坐标,利用待定系数法可求解.。
2015学年苏科版八年级上期中考试数学试卷及答案

2015学年苏科版八年级上期中考试练习试卷及答案(考试时间100分钟,试卷总分100分)一、选择题(本大题共8小题,每小题2分,共16分) 1.下列图形中,不是..轴对称图形的是( )2.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .6,8,10C .2,3,4D .1,1,23.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长为( ) A .16 B .20 C .16或20 D .18 4.9的平方根是( )A .3B .±3C .9D .±95.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定....△ABC ≌△ADC 的是( )A .∠B =∠D =90° B .CB =CDC .∠BAC =∠DACD .∠BCA =∠DCA 6.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A .SSSB .ASAC . SASD .AAS7.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .则下列结论:①∠C =2∠A ;②BD 平分∠ABC ;③ BC =AD ; ④CD =OD .正确的有( )A .1个B .2个C .3个D .4个8.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为 E , S △ABC =8,DE =2,AB =5,则AC 长是( ) A .6 B .5C .4D .3二、填空题(本大题共10小题,每小题2分,共20分) 9.=__________. 10_______ 12. A .BD .C .ACBD(第5题图)AEBC (第8题11.若等腰三角形的一个角是80°,则其底角为_ .12.如图,长方形OABC 中,OC =2,OA =1.以原点O 为圆心,对角线OB 长为半径画弧交数轴于点D ,则数轴上点D 表示的数是 .13.如图,△ABC ≌△DEF ,请根据图中提供的信息,写出x = .14.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△C OB .你补充的条件是_____________ .(填写一个即可)15.如图,AD 是△ABC 的中线,∠ADC =60°,BC =4,把△ABC 沿直线AD 折叠后,点C 落在C ’的位置上,那么BC ’的长为 .16.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD =6,DE =5,则CD 的长等于 .17.把一张长方形纸片按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3cm ,BC =5cm ,则重叠部分△DEF 的面积是 ___ cm 2.18.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,在直线AC 上找一点P ,使△ABP是等腰三角形,则∠APB 的度数为__________.三、解答题(本大题共6小题,每小题6分,共36分) 19.求下列各式中的x :(1) 2510x = (2)()3464x +=-20.计算:(1)(-3)2; (2(π-3)0-1AD OCBCBA(第12题A BCFEA ′ (B ')D21.已知:如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF ,∠ACB =∠DFE .证明:AB ∥ED .22.已知:如图,AB =AC ,BE =CE ,点D 在AE 的延长线上.求证:BD =CD .23.如图,锐角三角形ABC 的两条高BD 、CE 相交于点O ,且OB =OC .(1)证明:AB =AC ;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.DEECBAOEC DBA24.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,求梯子顶端A下落了多少米?四、操作与探究(本大题共3小题,第25题8分,其余各题10分,共28分)25.如图,已知直线l1∥l2∥l3,且l1,l2之间的距离为1,l2,l3之间的距离为2 ,点A、C分别在直线l2,l1上,(1)利用直尺和圆规作出以AC为底的等腰△ABC,使得点B落在直线l3上(保留作图痕迹,不写作法);(2)若(1)中得到的△ABC为等腰直角三角形,求AC的长.26.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A —C —B 向点B 运动,设运动时间为t 秒(t >0),(1)在AC 上是否存在点P ,使得P A =PB ?若存在,求出t 的值;若不存在,说明理由;(2)若点P 恰好在△ABC 的角平分线上,请直接..写出t 的值.27.如图(1),凸四边形ABCD ,如果点P 满足∠APD =∠APB =α.且∠BPC =∠CPD=β,则称点P 为四边形ABCD 的一个半等角点.(1)在图(2)正方形ABCD 内画一个半等角点P ,且满足α≠β;(2)在图(3)四边形ABCD 中画出一个半等角点P ,保留画图痕迹(不需写出画法); (3)若四边形ABCD 有两个半等角点P 1、P 2(如图(4)),证明线段P 1P 2上任一点也是它的半等角点.2015-2016学年度第一学期期中练习卷八年级数学参考答案评分标准二、填空题(本大题共10小题,每小题2分,共20分)9.-4.10.﹥.11.50°或80°.12..13.20.14.AB≒CD 等. 15.2. 16.8. 17.5.1 . 18.15°或30°或75°或120°三、解答题(本大题共6小题,每小题6分,共36分)x=……1分(2)解:∵x+4是-64的立方根…1分19.(1)解:22∴x是2的平方根…2分∴x+4=-4 …2分∴x=……3分即x=-8 ……3分-++…2分20.(1)解:原式=9-9+3 …2分(2)解:原式=11(1=3 ……3分=1……3分21.证明:∵FB=CE∴FB+FC=CE+FC即BC=EF…………………………1分在△ABC和△DEF中BC=EF∠ACB=∠DFEAC=DF∴△ABC≌△DEF………………5分∴MD=ME………………………6分22.证明:连接BC∵AB=AC∴点A在BC的垂直平分线上…………1分同理:点E也在BC的垂直平分线上………2分∴直线AE是BC的垂直平分线………4分∵点D在直线AE上∴BD=CD………6分23.(1)证明:∵OB=OC∴∠OBC=∠OCB…………1分∵BD 、CE 是△ABC 的高 ∴∠ABC =90°-∠OCB ∠ACB =90°-∠OBC∴∠ABC =∠ACB ……2分∴AB =AC ………………3分(2)解:点O 在∠BAC 的平分线上 ……4分在△BOE 和△COD 中∠BOE =∠COD∠BEO =∠CDO =90°BO =CO∴△BOE ≌△COD ………………5分∴EO =DO又∵BD ⊥AC ,CE ⊥AB∴点O 在∠BAC 的平分线上 ………………6分24.解:根据题意:AB =DE =2.5;BC =0.7;CD =2 在Rt △ABC 中 :222AC BC AB += 即 2220.7 2.5AC +=∴AC =2.4 …………2分在Rt △DCE 中 :222CE CD DE +=即 2222 2.5CE +=∴CE =1.5 …………4分∴AE =AC -CE =2.4-1.5=0.9 …………5分 答:梯子顶端A 下滑了0.9米. …………6分25.解:(1)如图所示(要有痕迹). …………2分 (2)如图,过点A 、C 作AD ⊥3l 、CF ⊥3l ,垂足分别为D 、F ∵△ABC 是等腰直角三角形∴∠ABC =90°;AB =BC …………3分 ∵AD ⊥3l 、CF ⊥3l∴∠ADB =∠CFB =90°∵∠DAB +∠ABD =90°;∠ABD +∠CBF =90°∴∠DAB =∠CBF 在△ABD 和△BCF 中 ∠DAB =∠CBF ∠ADB =∠CFBAB =BC∴△ABD ≌△BCF ………………5分 ∴AD =BF =2;CF =BD =3 …………6分∴在Rt △BCF 根据勾股定理:BC∴在Rt △ABC 根据勾股定理:AC ………8分 26.(1)解:AC 存在这样的点P .在Rt △ABC 根据勾股定理:AC =4 ∵PA =PB =2t ∴PC =4 - 2t在Rt △PBC 根据勾股定理:()()2224232t t -+= ………3分解得: 2516t =………4分 (2)分类讨论:①当点P 在点C 、点B 时2t =、 3.5t =…………6分 ②当点P 在∠B 、∠A 的角平分线上时54t =、83t = …………………10分27.(1)所画的点P 在AC 上且不是AC 的中点和AC 的端点; ……2分 (2)画点B 关于AC 的对称点B ’,延长DB ’交AC 于点P ,点P 为所求……4分 (3)连P1A 、P 1D 、P 1B 、P 1C 和P 2D 、P 2B ,根据题意,∠AP 1D =∠AP 1B ,∠DP 1C =∠BP 1C , ∴∠AP 1B +∠BP 1C =180°.∴P 1在AC 上,同理,P 2也在AC 上. …………6分 在△DP 1P 2和△BP 1P 2中,∠DP 2P 1=∠BP 2P 1, ∠DP 1P 2=∠BP 1P 2, P 1P 2=P 1P 2∴△DP 1P 2≌△BP 1P 2. …………8分 ∴DP 1=BP 1,DP 2=BP 2, ∴B 、D 关于AC 对称.设P是P1P2上任一点,连接PD、PB,由对称性,得∠DPA=∠BPA,∠DPC=∠BPC,∴点P是四边形的半等角点.…………10分。
江苏省海安县八校联考八年级(上)期中数学试卷

21.(4 分)若(x2+px﹣ )(x2﹣3x+q)的积中不含 x 项与 x3 项,求 p、q 的值;
22.(5 分)将 4 个数 a,b,c,d 排成 2 行、2 列,两边各加一条竖直线记成 ,定义 =ad﹣bc,
上述记号就叫做 2 阶行列式.若
=8,求 x 的值.
23.(5 分)如图,A、C、F、B 在同一直线上,AC=BF,AE=BD,且 AE∥BD.求证:EF∥CD.
.
第 2页(共 21页)
16.(3 分)如图,已知△ABC 的周长是 21,OB,OC 分别平分∠ABC 和∠ACB,OD⊥BC 于 D,且 OD
=4,△ABC 的面积是
.
17.(3 分)如图,AB=12,CA⊥AB 于 A,DB⊥AB 于 B,且 AC=4m,P 点从 B 向 A 运动,每分钟走 1m,
.
13.(3 分)若 am=3,an=2,则 am﹣2n 的值为
.
14.(3 分)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若 PC=4,则 PD 的长为
.
15.(3 分)如图,在等腰在△ABC 中,AB=27,AB 的垂直平分线交 AB 于点 D,交 AC 于点 E,若在△
BCE 的周长为 50,则底边 BC 的长为
Q 点从 B 向 D 运动,每分钟走 2m,P、Q 两点同时出发,运动
分钟后△CAP 与△PQB 全等.
18.(3 分)如图,边长为 4 的等边三角形 ABC 中,E 是对称轴 AD 上的一个动点,连接 EC,将线段 EC
绕点 C 逆时针旋转 60°得到 FC,连接 DF,则在点 E 运动过程中,DF 的最小值是
A.90°
江苏省南通市八一中学2014-2015学年八年级上学期期中测试数学试卷(无答案)

1、2331()2a b -等于 ( ) A 、6918a b B 、2918a b - C 、6918a b - D 、5618a b 2、计算3(2)x x ÷的结果正确的是 ( )A 、28xB 、26xC 、38xD 、36x3、△ABC 中,AB=BC=6,∠B=60°,则AC 等于 ( )A 、4B 、6C 、6D 、104、分解因式2a ab -的结果是 ( )A 、(1)(1)a b b +-B 、2(1)a b +C 、2(1)a b -D 、(1)(1)b b +-5、计算2(4)(32)m m -+的结果是 ( )A 、32128m m -+B 、32128m m -C 、32128m m --D 、32128m m +6、若一个等腰三角形的两边长分别是5和6,则这个三角形的周长是( )A 、15B 、16C 、17D 、16或177、下列多项式中能用平方差公式分解因式的是 ( )A 、22()a b +-B 、2520m mn -C 、22x y --D 、29x -+8、如图∠BOP=∠AOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 等于 ( )A 、4B 、3C 、2D 、19、在平面直角坐标系xoy 中,已知点P (2,2),点Q 在y 轴上,△POQ 是等腰三角形,则满足条件的点Q 共有 ( )A 、5个B 、4个C 、3个D 、2个10、如图,过边长为1的等边△ABC 的边AB 上一点P 作PE ⊥AC 于点E ,Q 为BC 延长线上一点,当PA=CQ 时,连接PQ ,交AC 于点D ,则DE 的长为( )A 、13B 、12C 、23D 、不能确定二、填空(2’×14=28’)11、计算2(2)(3)x x --= ; 53435(15)a b c a b ÷-=12、分解因式:22x x -= ;29x -=13、计算:227822- = ;22221111(1)(1)(1)(1)2345----= 14、若2m a =,3n a =,则m n a += ;2m n a -=15、如图在△ABC 中,AB 的垂直平分线交BC 于D ,AD=5,BC=11,则DC=16、已知点M (0,-1)关于x 轴对称点为点N ,线段MN 的中点的坐标为17、若29x kx ++是完全平方式,则k = 18、已知点P (,)a b 的坐标满足2(2)10a b ++-=,则点P 关于y 轴对称为点P ’在第 象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 80°BDC第6题南通市海安县2014-2015学年上学期期中考试八年级数学试卷(总分_100_分,测试时间_100_分钟)一 选择题(每题2分,共20分)1.下列图形中,不是轴对称图形的是( )A .B .C .D . 2.下列运算中,计算结果正确的是 ( ) A .236a a a ⋅= B.235()a a = C.2222()a b a b = D. 56)(a a a =÷-3.等腰三角形的周长为13 cm ,其中一边长为3cm ,则该等腰三角形的底边为( ) A .7cm B .3cm C .7cm 或3cm D .8cm4.在△AB C 和△DEF 中,AB=DE ,∠A=∠D ,添加下列条件后,不能判定 △AB C ≌△DEF 的是 ( )A .BC=EFB .∠B=∠EC .∠C=∠FD .AC=DF5.在△ABC 中 ,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB=6cm , 则△DEB 的周长是 ( )A.6cmB.4cmC.10cmD.以上都不对6.如图所示,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C 的度数为( )A .25°B .30°C .35°D .40° 7.下列说法正确的是: ( )A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.等腰三角形一边不可以是另一边的二倍第5题D.等腰三角形的两个底角相等8.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是( ) A .a >b >c B .a >c >b C .a <b <c D .b >c >a 9.多项式251244522+++-x y xy x 的最小值为( )A .4B .5C .16D .2510.如图,∠BAC 与∠CBE 的平分线相交于点P ,BE=BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,下列结论:①GA=GP ;②::PACPABSSAC AB =;③BP 垂直平分CE ;④FP=FC ;其中正确的判断有( ) A.只有①② B.只有③④ C.只有①③④ D.①②③④ 二 填空题(每题3分,共24分) 11.计算:=-∙)3(232x x .12.已知△ABC 是轴对称图形,且三条高的交点恰好是C 点,则△ABC 的形状是 .13.已知10=+y x ,20=xy ,则=+22y x .14.如图,在△ABC 中,∠ABC=45°,AC=4,H 是高AD 和BE 的交点,则线段BH 的长度为 . 15.已知M (1,2)关于x 轴对称的点为N ,线段MN 的中点坐标是 .16.如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有 个.17.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且 ∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接M N ,则△A M N的周长为.第14题第16题第17题OB第20题18.对于实数a ,b ,c ,d ,规定一种运算a bc d=a d -b c 如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x= . 三、解答题(共56分)19.计算(4分+6分,共10分)(1)20142013)5.1()32(∙- (2) []y x y x x y xy y x x 22325)()(÷---20.(4分)如图,已知两点P 、Q 在锐角∠AOB 内, 分别在OA 、OB 上求点M 、N ,使PM +MN +NQ 最短.21.(7分)若0)2(-x 无意义,且023=-y x 求 [(x+2y)(x-2y)-(x+4y)2]÷4y 的值.22.(5分)如图,已知:AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC=60°,∠BCE=50°,求∠ADC 的度数.23.(7分) 如图,△ABC 中,AB=AC,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点. ⑴求证:BG=CF ⑵请你判断AF 、BG 、AB 之间的大小关系,并说明理由.G24.(6分)先阅读,再回答问题:如图24-1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE等结论.在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.解决问题:如图24-2,在△ABC中,AD是三角形的中线,F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.25.(8分)如图,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证BD=AE(2)若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由.26.(9分)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.(1)求证:AB=CD(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.FMPE DCBA第26题初二数学期中测试卷答案一、选择题1、A2、D3、B4、A5、A6、A7、D8、A9、C 10、D 二、填空题11、56x - 12、等腰直角三角形 13、60 14、 4 15、(1,0) 16、4 17、6 18、22 三、解答题19、(1)23- (2)Y 5151+-20、如图,················ 3分∴M 、N 即为所求. ················ 4分 21、解:∵0)2(-x 无意义 ∴02=-x ∴2=x ……………………………1分 把2=x 代入023=-y x 得3=y ………………………………2分 原式=y x 52-- ……………………………………………………6分 当2=x ,3=y 时原式=-19 ………………………………………7分 22、解:∵AD 是△ABC 的角平分线,∠BAC=60°∴∠DAC=30°……………………………………………………1分 ∵CE 是△ABC 的高,∴∠AEC=90°……………………………………………………2分 ∴∠ACE=30° …………………………………………………3分 ∴∠ACD=80° …………………………………………………4分 在△ACD 中,∠ADC=110° ……………………………………5分 答:∠ADC=110°23、证明:(1)∵AC ∥BG ∴∠GBD=∠C ………………………………1分∵D 是BC 的中点 ∴ BD=CD ……………………………2分在△BGD 和CFD 中, ∠BDG =∠CDF, BD=CD, ∠GBD=∠C∴△BGD ≌△CFD (ASA )…………………………………3分(2) AB=AF+BG …………………………………………………4分 由(1)可知:△BGD ≌△CFD ∴BG=FC …………………………5分∵AC=AF+FC∴AC=AF+BG ……………………………………………6分 ∵AB=AC∴AB=AF+BG ………………………………………………7分24、证明:延长AD 至H ,使DH=AD .在△BHD和△CAD中,BD=CD,∠BDH=∠ADC,DH=AD∴△ABD≌△ECD(SAS)∴BH=AC,BH∥AC ……………………………………………2分∴∠H =∠CAF…………………………………………………3分∵BF=AC∴BF=BH∴∠H =∠BFH…………………………………………………4分∵∠BFH =∠AFE ∴∠H =∠AFE∵∠H =∠CAF∴∠AFE =∠CAF ………………………………………………5分∴AE=EF ……………………………………………………6分25、证明:(1)∵△ABC、△DCE均是等边三角形∴AC=BC,DC=DE,∠ACB=∠D CE=60°…………………1分∴∠ACB+∠A CD=∠DCE+∠ACD即∠BCD=∠ACE.……………………………………2分在△DCB 和A CE中, AC=BC ∠BCD =∠ACE, DC=DE∴△DCB≌△ACE(SAS)…………………………………3分∴ BD =AE…………………………………………………4分(2)△CMN为等边三角形………………………………………5分由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CBN.∵AC=BC,AM=BN∴△ACM≌△BCN(SAS)……………………………………6分∴CM=CN,∠ACM=∠BCN …………………………………7分∵∠ACB=60°即∠BCN+∠ACN=60°∴∠ACM+∠ACN=60°即∠MCN=60°∴△CMN为等边三角形…………………………………8分26、解:(1)(4分)证明:∵AF平分∠BAC,∴∠CAD=∠DAB=12∠BAC.∵D与A关于E对称∴E为AD中点.∵BC⊥AD∴BC为AD的中垂线∴AC=CD.在Rt△ACE和Rt△ABE中,∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB.∴∠ACE=∠ABE,∴AC=AB.∴AB=CD.(2)(5分)证明:∵∠BAC=2∠MPC,∠BAC=2∠CAD∴∠MPC=∠CAD.∵AC=CD,∴∠CAD=∠CDA,∴∠MPC=∠CDA.∴∠MPF=∠CDM.∵AC=AB,AE⊥BC,∴CE=BE.∴AM为BC的中垂线,∴CM=BM.∵EM⊥BC,∴EM平分∠CMB,(等腰三角形三线合一) ∴∠CME=∠BME.∵∠B ME=∠PMF,∴∠PMF=∠CME,∴∠MCD=∠F(三角形内角和).。