八年级上册数学书习题答案2020
人教版八年级上册数学书习题13.3答案

Page 81 1(1)等腰三角形的一个角是110°,它的另外两个角是多少度?(2)等腰三角形的一个角是80°,它的另外两个角是多少度?Page82 2如图,AD ∥ BC ,BD 平分∠ABC ,求证:AD=AB 。
分析:题目要求我们证明AD=AB 。
观察图形,AB 与AD 位于△ABD 中。
由已知AD ∥BC , BD 平分∠ABC ,可考虑用等腰三角形的判定方法“等角对等边”来证明。
用已知的平行关系,可将∠ADB 与∠CBD 于关联起来,再有角平分线把∠ABD 与∠CBD 关联起来。
证明:∵AD ∥ BC ,∴∠ADB=∠CBD 。
又∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∴∠ADB=∠ABD ,∴AD=AB 。
Page82 3如图,五角星的五个角都是顶角为36°的等腰三角形,为了画出五角星,还需要知道∠AMBPage82 4如图,厂房屋顶钢架外框是等腰三角形,其中AB=AC ,立柱AD ⊥ BC ,且顶角∠BAC=120°∠B ,∠C ,∠BAD ,∠CAD 各是多少度?解:∵AB =AC ,∠BAC=120°∴∠B=∠C= 12×(180-120)°=30°。
又∵AD ⊥BC ,∴∠BAD ,∠CAD = 12 ∠BAC = 12×120°= 60°。
Page82 5如图,∠A=∠B ,CE ∥DA ,CE 交AB 于点E 。
求证:△CEB 是等腰三角形。
证明:∵CE//DA ,MA B C D E n m ∴∠A=∠CEB 。
∵∠A=∠B,∴∠CEB=∠B,∴CE=CB ,∴△CEB 是等腰三角形。
Page82 6如图,点D ,E 在△ABC 的边BC 上,AB=AC ,AD=AE 。
求证:BD=CE 。
证明:∵AB =AC ,∴∠B =∠C 。
又∵AD =AE ,∴∠ADE =∠AED 。
数学八年级上册作业本答案浙教版2020

第1页—第3页
1. 选择题
1A 2D 3A 4C
2. 填空
(1)T=20-6h 20,6 T h h
(2)Q=6x105-pt 6x105 p Q t 0≤t≤6x105/p
(3)S=1.5b (4) 0≤x≤7 0≤y≤5 5 0
3.解答题
(1)y= Q/a-x –Q/a (0≤x≤a)
(3)①在同一直线上 y=25/72x
②当x=72时,y=25
当x=144时,y=50
当x=216时,y=75
y=25/72 x (0≤x≤345.6)
③当x=158.4时,y=25/72x158.4=55
(4) ①y甲=2x+180
y乙=2.5x+140
②当x=100时,y甲=200+180=380
Y乙=140+250=390
380〈390
租甲车更活算
第13页—第15页
1.选择题
(1)D (2)C (3)C
2.填空
(1)x=2
y=3
(2)x=2 x>2
(3)-3 -2 x= -5/8 y= -1/8
(4)1/2 0 x=2
y=3
(5)y=5/4 x
2. 解答题
3. (1)略
(2)①依题意
-k+b= -5
(2) 图略
(3)身高(cm) 频数
154.5~159.5 2
159.5~164.5 4
164.5~169.5 6
169.5~174.5 10
174.5~179.5 5
179.5~184.5 3
(4)图略 结论:只有少数人对自己工作不满。
2020年秋人教版八年级数学上册第13章《等腰三角形》(讲义、随堂测试、习题及答案)

人教版八年级数学上册第13章等腰三角形(讲义)➢ 课前预习1. 已知:如图,在△ABC 中,AB =AC .(1)若∠1=∠2,则BD ____DC (填“>”,“<”或“=”); (2)若BD =CD ,则AD ____BC (填“⊥”或“∥”); (3)若AD ⊥BC ,则∠1____∠2(填“>”,“<”或“=”).D CB A 212. 已知等腰三角形的两边长分别为5和8,则这个三角形的周长为_________.➢ 知识点睛1. ______________的三角形叫做等腰三角形.2. 等腰三角形是_________图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“__________”),它们所在的直线都是等腰三角形的_________.3. 等腰三角形的两个底角________,简称______________.如果一个三角形有两个角相等,那么它们所对的边也______,简称_________________.4. 三边都______的三角形是等边三角形.等边三角形三边都相等,三个内角都是________. 5. “三线合一”模块书写:已知:如图,在△ABC 中,AB =AC ,AD 平分∠BAC 交BC 于点D .求证:BD =CD . 证明:➢ 精讲精练1. 在下面的等腰三角形中,∠A 是顶角,请分别将它们底角的度数标注在相应的图上.CB C B C B AAA108°60°2. 如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =____.D CB ADCBAEDCBA第2题图第3题图3. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,BD =BE ,∠A =100°,则∠DEC =________.4. 如图,在等腰三角形ABC 中,AB =AC ,D 为边BC 上一点,CD =AC ,AD =BD ,则∠BAC =______.CD B AABCE第4题图第5题图5. 如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AC 上,AD =AE ,若∠BAD =50°,则∠CDE =________.6. 如图,在△ABC 中,已知AB =AC ,AD ⊥BC 于点D ,过点D 作DE ∥AB 交AC 于点E .求证:AE =ED .7. 已知:如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD于点D ,12CD BC.求证:∠ACD =∠B . E CB AAB CD8. 已知:如图,△ABC 是等边三角形,D 是BC 的中点,DF ⊥AC 于F ,延长DF 到E ,使EF =DF ,连接AE .求∠E 的度数.FE DCBA9. 若等腰三角形的周长为13 cm ,其中一边长为3 cm ,则该等腰三角形的底边长为_______________.10. 若等腰三角形的一个内角为40°,则此等腰三角形的顶角为______________.11.若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为______________.12.已知:如图,线段AB的端点A在直线l上(AB与l不垂直),请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.13.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为60°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.➢课前预习1.(1)=(2)⊥(3)=2.18或21➢知识点睛1.有两边相等2.轴对称,三线合一,对称轴3.相等,等边对等角相等,等角对等边4.相等,60°5.证明:如图∵AB=AC,AD平分∠BAC∴D为BC的中点(等腰三角形三线合一)∴BD=CD➢精讲精练1.60°,60°;45°,45°;36°,36°2.80°3.100°4.108°5.25°6.证明略提示:根据等腰三角形三线合一可得∠BAD=∠CAD,再由平行可以得到∠CAD=∠BAD=∠ADE,从而AE=DE7.证明略提示:过点A作AE⊥BC于点E,根据等腰三角形三线合一可得BE=CD,再证△ABE≌△ACD即可.8.∠E=60°提示:连接AD,利用垂直平分线定理得AD=AE,从而∠E=∠ADE9.3cm10.40°或100°11.50°或130°12.这样的点能找4个,作图略13.这样的点能找2个,作图略等腰三角形(随堂测试)1.如图,在△ABC中,D为AC边上一点,且AD=BD=BC.若∠A=40°,则∠DBC=______.CDB 2.已知等腰三角形的周长为28cm,其中一边长为10cm,则该等腰三角形的底边长为_______________.3. 已知:如图,在△ABC 中,E 为BC 边上一点,连接AE ,D 为AE 的中点,连接BD ,∠BAD =∠EAC +∠C .求证:AD ⊥BD .【参考答案】1. 20°2. 10cm 或8cm3. 证明略提示:利用外角可以得到∠AEB =∠BAD ,根据等角对等边,得BA =BE ,因为D 是AE 的中点,利用等腰三角形三线合一,可以得到AD ⊥BD等腰三角形(习题)➢ 例题示范E DCB A例1:如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD 于点D ,12CD BC =.求证:∠ACD =∠B . 【思路分析】 ① 读题标注:② 梳理思路:由条件12CD BC =,可尝试取BC 的中点E ,此时结合等腰构造三线合一的线AE ,如图所示.要证∠ACD =∠B ,可以证明△ABE ≌△ACD .【过程书写】证明:如图,取BC 的中点E ,连接AE .∵E 是BC 的中点∴12BE BC =∵12CD BC = ∴BE =CD∵AB =AC ,E 是BC 的中点 ∴AE ⊥BC ∴∠AEB =90° ∵CD ⊥AD ∴∠D =90°∴∠AEB =∠D =90°在Rt △ABE 和Rt △ACD 中 AB AC BE CD =⎧⎨=⎩(已知)(已证)∴Rt △ABE ≌Rt △ACD (HL ) ∴∠ACD =∠B例2:等腰三角形的周长为12cm ,其中一边长为5cm ,则该等腰三角形的底边长为__________cm .【思路分析】ACDEA B C D A CD等腰三角形一边长为5cm ,这一边可能是底,也可能是腰,故需分类讨论: ① 如果5cm 为底,则根据周长为12cm ,可知腰长为3.5cm .此时两边之和大于第三边,这个三角形存在.② 如果5cm 为腰,则根据周长为12cm ,可知底边长为2cm .此时两边之和大于第三边,这个三角形存在.综上,该等腰三角形的底边长为5cm 或2cm . ➢ 巩固练习1. 已知:如图,在△ABC 中,AB =AC ,∠A =80°,求∠C 的度数.2. 如图,在△ABC 中,AB =AC ,BE ∥AC ,∠BDE =100°,∠BAD =70°,则∠E =______.第2题图第3题图3. 已知:如图,在△ABC 中,AB =AC ,D 为AB 边上一点,若CD =AD =BC ,则∠A =_________.4. 如图,在△ABC 中,∠ABC 的平分线和∠ACB 的平分线相交于点E ,过点E作MN ∥BC ,交AB 于点M ,交AC 于点N .若BM +CN =9,则线段MN 的长为()CBAED CB ADB AA .6B .7C .8D .95. 已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,点P 在AD 上.求证:PB=PC .6. 已知:如图,B ,D ,E ,C 在同一直线上,AB =AC ,AD =AE .求证:BD =CE .N M EC BADCBAPA B CD E7.已知等腰三角形的两边长分别为4和8,则该等腰三角形的周长为_________________.8.若等腰三角形的一个角比另一个角大30°,则该等腰三角形的顶角的度数为_____________.9.已知:如图,线段AB的端点A在直线l上,AB与l的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请找出所有符合条件的点.➢思考小结1.要证明边相等或角相等,可以考虑两种思路:①如果边或者角在两个三角形里面,则证明两个三角形__________;②如果边或角在一个三角形里面,证明三角形是_______三角形.2.将两个含30°角的三角板如图放置,则△ABD是_________三角形(“等腰”或“等边”),故AB_____BD,BC=____BD,所以BC=____AB,从而得到对于含有30°角的直角三角形,30°角所对的直角边是斜边的_______.【参考答案】➢巩固练习 1.50° 2.50° 3.36° 4. D5. 证明略提示:利用等腰三角形三线合一的性质,得AD 垂直平分BC ,从而得到PB =PC6. 证明略提示:根据等边对等角可得∠B =∠C ,∠ADE =∠AED ,进而可得∠BAD =∠CAE ,从而证明△ABD ≌△ACE ,根据全等三角形对应边相等,可得BD =CE7. 20 D C B A8.80°或40°9.这样的点能找4个,作图略➢思考小结1.①全等②等腰2.等边,=,12,12,一半。
2020年八年级数学上册第十四章14.2.1 平方差公式

9.若(2x+3y)(mx-ny)=9y2-4x2,则( C )
A.m=2,n=3
B.m=2,n=-3
C.m=-2,n=-3 D.m=-2,n=3
2.(2019-2020·中山区期末)下列各式中,不能运用 平方差公式计算的是( C ) A.(m-n)(-m-n) B.(-1+mn)(1+mn) C.(-m+n)(m-n) D.(2m-3)(2m+3) 3.若 m2-n2=6,且 m-n=3,则 m+n=( B ) A.1 B.2 C.2 或-2 D.4 4.(2019·雅安中考)化简 x2-(x+2)(x-2)的结果 是 4.
5.计算: (1)(2a-3b)(2a+3b); 解:原式=4a2-9b2.
(2)(-2a-1)(-1+2a); 解:原式=1-4a2.
(3)
m
1 2
n
m
1 2
n
;
解:原式= 1 n2-m2. 4
(4)(1+a)(1-a)+a(a-2). 解:原式=1-a2+a2-2a=1-2a.
6.某学生化简(2x-1)2+(x+1)(x-1)时出现了错误, 解答过程如下:
12.(1)(2019·宁波中考)先化简,再求值:(x-2)(x+ 2)-x(x-1),其中 x=3; 解:原式=x2-4-x2+x=x-4. 当 x=3 时,原式=3-4=-1. (2)计算:9×11×101×10001. 解:原式=(10-1)(10+1)×101×10001=(102- 1)(102+1)×10001=(104-1)(104+1)=108-1.
八年级上册数学课本答案人教版

八年级上册数学课本答案人教版认真做八年级数学课本习题,就一定能成功!小编整理了关于人教版八年级数学上册课本的答案,希望对大家有帮助!八年级上册数学课本答案人教版(一)第41页练习1.证明:∵ AB⊥BC,AD⊥DC,垂足分为B,D,∴∠B=∠D=90°.在△ABC和△ADC中,∴△ABC≌△ADC(AAS).∴AB=AD.2.解:∵AB⊥BF ,DE⊥BF,∴∠B=∠EDC=90°.在△ABC和△EDC,中,∴△ABC≌△EDC(ASA).∴AB= DE.八年级上册数学课本答案人教版(二)习题12.21.解:△ABC与△ADC全等.理由如下:在△ABC与△ADC中,∴△ABC≌△ADC(SSS).2.证明:在△ABE和△ACD中,∴△ABE≌△ACD(SAS).∴∠B=∠C(全等三角形的对应角相等).3.只要测量A'B'的长即可,因为△AOB≌△A′OB′.4.证明:∵∠ABD+∠3=180°,∠ABC+∠4=180°,又∠3=∠4,∴∠ABD=∠ABC(等角的补角相等).在△ABD和△ABC中,∴△ABD≌△ABC(ASA).∴AC=AD.5.证明:在△ABC和△CDA中,∴△ABC≌△CDA(AAS).∴AB=CD.6.解:相等,理由:由题意知AC= BC,∠C=∠C,∠ADC=∠BEC=90°,所以△ADC≌△BEC(AAS).所以AD=BE.7.证明:(1)在Rt△ABD和Rt△ACD中,∴Rt△ABD≌Rt△ACD( HL).∴BD=CD.(2)∵Rt△ABD≌ Rt△ACD,∴∠BAD=∠CAD.8.证明:∵AC⊥CB,DB⊥CB,∴∠ACB=∠DBC=90°.∴△ACB和△DBC是直角三角形.在Rt△ACB和Rt△DBC中,∴Rt△ACB≌Rt△DBC(HL).∴∠ABC=∠DCB(全等三角形的对应角相等).∴∠ABD=∠ACD(等角的余角相等).9.证明:∵BE=CF,∴BE+EC=CF+EC.∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SSS).∴∠A=∠D.10.证明:在△AOD和△COB中.∴△AOD≌△COB(SAS).(6分)∴∠A=∠C.(7分)11.证明:∵AB//ED,AC//FD,∴∠B=∠E,∠ACB=∠DFE.又∵FB=CE,∴FB+FC=CE+FC,∴BC= EF.在△ABC和△DEF中,∴△ABC≌△DEF(ASA).∴AB=DE,AC=DF(全等三角形的对应边相等).12.解:AE=CE.证明如下:∵FC//AB,∴∠F=∠ADE,∠FCE=∠A.在△CEF和△AED中,∴△CEF≌△AED(AAS).∴ AE=CE(全等三角形的对应边相等).13.解:△ABD≌△ACD,△ABE≌△ACE,△EBD≌△ECD.在△ABD和△ACD中,∴△ABD≌△ACD(SSS).∴∠BAE= ∠CAE.在△ABE和△ACE中,∴△ABE≌△ACE(SAS).∴BD=CD,在△EBD和△ECD中,:.△EBD≌△ECD(SSS).八年级上册数学课本答案人教版(三)习题12.31.解:∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°.在Rt△OPM和Rt△ONP中,∴Rt△OMP≌Rt△ONP(HL).∴PM=PN(全等三角形的对应边相等).∴OP是∠AOB的平分线.2.证明:∵AD是∠BAC的平分线,且DE,DF分别垂直于AB ,AC,垂足分别为E,F,∴DE=DF.在Rt△BDE和Rt△CDF中,Rt△BDE≌Rt△CDF(HL).∴EB=FC(全等三角形的对应边相等)3.证明:∵CD⊥AB, BE⊥AC,∴∠BDO=∠CEO= 90°.∵∠DOB=∠EOC,OB=OC,∴△DOB≌△EOC∴OD= OE.∴AO是∠BAC的平分线.∴∠1=∠2.4.证明:如图12 -3-26所示,作DM⊥PE于M,DN⊥PF于N,∵AD是∠BAC的平分线,∴∠1=∠2.又:PE//AB,PF∥AC,∴∠1=∠3,∠2=∠4.∴∠3 =∠4.∴PD是∠EPF的平分线,又∵DM⊥PE,DN⊥PF,∴DM=DN,即点D到PE和PF的距离相等.5.证明:∵OC是∠ AOB的平分线,且PD⊥OA,PE⊥OB,∴PD=PE,∠OPD=∠OPE.∴∠DPF=∠EPF.在△DPF和△EPF中,∴△DPF≌△EPF(SAS).∴DF=EF(全等三角形的对应边相等).6.解:AD与EF垂直.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.在Rt△ADE和Rt△ADF中,∴Rt△ADE≌Rt△ADF(HL).∴∠ADE=∠ADF.在△GDE和△GDF中,∴△GDF≌△GDF(SAS).∴∠DGE=∠DGF.又∵∠DGE+∠DGF=180°,∴∠DGE=∠DGF=90°,∴AD⊥EF.7,证明:过点E作EF上AD于点F.如图12-3-27所示,∵∠B=∠C= 90°,∴EC⊥CD,EB⊥AB.∵DE平分∠ADC,∴EF=EC.又∵E是BC的中点,∴EC=EB.∴EF=EB.∵EF⊥AD,EB⊥AB,∴AE是∠DAB的平分线,。
八年级上册数学作业本答案浙教版2020

② 541.8÷7= 77.4 (米)
③ 77.4-36.12=41.28 (米)
3、185×5.4= 999(千米)
4、0.8×24×18=19.2×18=345.6(元)
第四页:
5、324×1.2+48=388.8+48=436.8(元)
提升篇:
1、28
(2.7+6.3)×5÷2=45÷2=22.5(平方分米)
9)10×20+(12-10)×(20-14)÷2=200+6=206(平方厘米)(方法多种)
提升篇:
1、甲数的小数点向右移动一位就等于乙数,说明乙数是甲数的10倍。
解: 设甲数是X,则乙数是10X 。
10X-X=7.02
解得 X=0.78,10X=7.8
八年级上册数学作业本答案浙教版2020
第一页:
一、3, 1.2, 8.7, 1.26, 12,4
17,0.4, 0.24, 3 , 0.06,15
二、4.14,0.144,2.04 ,28
三、16.25,162.5 ,0.1625,42 ,0.42 , 0.42
四、15.6,27.72
第二页:
四、2.25,4.16 ,25.75,82
=0.79×0.46+0.79×2.4+1.14×0.79
=0.79×(0.46+2.4+1.14)
=0.79×4
=3.16
第五页:
1、>,,>
2、32.37.7
3、0.832.46
4、0.56×101 =0.56×100+0.56×1=56+0.56=56.56
2020年秋人教版八年级数学上册第11章三角形综合应用(讲义、随堂练习、习题及答案)

人教版八年级数学上册第11章 三角形综合应用(讲义)➢ 知识点睛在三角形背景下处理问题的思考方向: 1. 三角形中的隐含条件是:边:_______________________________________________. 角:①______________________________________________;②_____________________________________________.2. 角平分线出现时,为了计算方便,通常采用__________解决问题.3. 高线出现时考虑__________或__________.➢ 精讲精练1. 现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是() A .1个B .2个C .3个D .4个2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,中相邻两螺丝的距离依次为2,3,4,6A .5 B .6 C .7 D .10 3. 下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有__________________(填序号). 4. 如图,在三角形纸片ABC 中,∠A =60°,∠B =55°.将纸片一角折叠使点C 落在△ABC 内,则∠1+∠2=_________.C 21AABCDE第4题图第5题图5. 如图,一个五角星的五个角的和是________.6. 如图,∠A +∠B +∠C +∠D +∠E +∠F =________.第2题图FEBA7. 如图1,线段AB ,CD 相交于点O ,连接AD ,BC ,我们把形如图1的图形称之为“X 型”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N ,试解答下列问题: (1)在图1中,请直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系:_____________________________; (2)在图2中,共有______个“X 型”;(3)在图2中,若∠D =40°,∠B =30°,则∠APC =_______; (4)在图2中,若∠D =α,∠B =β,则∠APC =__________.图2图1P NMABCDOO DCBA8. 探究:(1)如图1,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB ,猜想∠P 和∠A 有何数量关系?(2)如图2,在△ABC 中,BP 平分∠ABC ,CP 平分外角∠ACE ,猜想∠P 和∠A 有何数量关系?(3)如图3,BP 平分∠CBF ,CP 平分∠BCE ,猜想∠P 和∠A 有何数量关系?E C AB FPA PP A CE图1 图2 图39. 如图,在△ABC 中,三个内角的角平分线交于点O ,OE ⊥BC 于点E .(1)∠ABO +∠BCO +∠CAO =____________;(2)∠BOD 和∠COE 的数量关系是________________.O D ECM ANB DA第9题图第10题图10. 如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D .(1)若AB =6,AC =8,BC =10,则AD =____________;(2)若AB =2,BC =3,则AC :AD =____________.11. 如图,在△ABC 中,若AB =2cm ,AC =3cm ,BC =4cm ,AD ,BF ,CE为△ABC 的三条高,则这三条高的比AD :BF :CE =____________________.C EAF 12. 如图,在△ABC 中,AB =AC ,P 是BC 边上任意一点,PD ⊥AB 于点D ,PE ⊥AC 于点E .(1)若AB =8,△ABC 的面积为14,则PD +PE 的值是多少?(2)过点B 作BF ⊥AC 于点F ,求证:PD +PE =BF .D PCEFA【参考答案】➢ 知识点睛1. 三角形两边之和大于第三边,两边之差小于第三边;三角形内角和等于180°;三角形的一个外角等于和它不相邻的两个内角的和. 2. 设元 3. 互余,面积➢精讲精练1. B2. C3.①③⑤4.130°5.180°6.360°7.(1)∠A+∠D=∠B+∠C;(2)3;(3)35°;(4)12(α+β)8.(1)∠P=90°+12∠A;(2)∠P=12∠A;(3)∠P=90° 12∠A9.(1)90°(2)∠BOD=∠COE10.(1)245(2)3:211.3:4:612.(1)72(2)证明略三角形综合应用(讲义)➢知识点睛在三角形背景下处理问题的思考方向:4.三角形中的隐含条件是:边:_______________________________________________.角:①______________________________________________;②_____________________________________________.5.角平分线出现时,为了计算方便,通常采用__________解决问题.6.高线出现时考虑__________或__________.➢精讲精练13.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个14.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,中相邻两螺丝的距离依次为2,3,4,6A.5 B.6 C.7 D.10第2题图15. 下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有__________________(填序号). 16. 如图,在三角形纸片ABC 中,∠A =60°,∠B =55°.将纸片一角折叠使点C 落在△ABC 内,则∠1+∠2=_________.BC 21AABCDE第4题图第5题图17. 如图,一个五角星的五个角的和是________. 18. 如图,∠A +∠B +∠C +∠D +∠E +∠F =________.FEBA19. 如图1,线段AB ,CD 相交于点O ,连接AD ,BC ,我们把形如图1的图形称之为“X 型”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N ,试解答下列问题: (1)在图1中,请直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系:_____________________________; (2)在图2中,共有______个“X 型”;(3)在图2中,若∠D =40°,∠B =30°,则∠APC =_______; (4)在图2中,若∠D =α,∠B =β,则∠APC =__________.图2图1P NMABCDOO DCBA20. 探究:(1)如图1,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB ,猜想∠P 和∠A 有何数量关系?(2)如图2,在△ABC 中,BP 平分∠ABC ,CP 平分外角∠ACE ,猜想∠P 和∠A 有何数量关系?(3)如图3,BP 平分∠CBF ,CP 平分∠BCE ,猜想∠P 和∠A 有何数量关系?E C AB FA PP A CE图1 图2 图321. 如图,在△ABC 中,三个内角的角平分线交于点O ,OE ⊥BC 于点E .(1)∠ABO +∠BCO +∠CAO =____________;(2)∠BOD 和∠COE 的数量关系是________________.O D ECM ANB DC B A第9题图第10题图22. 如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D .(1)若AB =6,AC =8,BC =10,则AD =____________;(2)若AB =2,BC =3,则AC :AD =____________.23. 如图,在△ABC 中,若AB =2cm ,AC =3cm ,BC =4cm ,AD ,BF ,CE为△ABC 的三条高,则这三条高的比AD :BF :CE =____________________.C DEAF B 24. 如图,在△ABC 中,AB =AC ,P 是BC 边上任意一点,PD ⊥AB 于点D ,PE ⊥AC 于点E .(1)若AB =8,△ABC 的面积为14,则PD +PE 的值是多少?(2)过点B 作BF ⊥AC 于点F ,求证:PD +PE =BF .D BPCEFA【参考答案】➢ 知识点睛4. 三角形两边之和大于第三边,两边之差小于第三边;三角形内角和等于180°;三角形的一个外角等于和它不相邻的两个内角的和. 5. 设元 6. 互余,面积➢ 精讲精练 13. B 14. C15. ①③⑤ 16. 130° 17. 180° 18. 360°19. (1)∠A +∠D =∠B +∠C ;(2)3; (3)35°;(4)12(α+β)20. (1)∠P =90°+12∠A ; (2)∠P =12∠A ;(3)∠P =90° 12∠A21. (1)90° (2)∠BOD =∠COE22. (1)245(2)3:223. 3:4:624. (1)72(2)证明略三角形综合应用(随堂测试)1. 现有2cm ,3cm ,4cm ,5cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是() A .1个B .2个C .3个D .4个2. 如图,∠A +∠B +∠C +∠D +∠E =___________.3. 如图,点E ,D 分别在△ABC 的边BA ,CA 的延长线上,CF ,EF 分别平分∠ACB 和∠AED ,若∠B =65°,∠D =45°,则∠F 的度数为________.【参考答案】1. C2. 180°3. 55°E DCBAE DCBA三角形综合应用(习题)➢ 例题示范例1:如图,BD ,CD 分别平分∠ABC ,∠ACB ,CE ⊥BD 交BD 的延长线于点E . 求证:∠DCE =∠CAD .【思路分析】①看到条件BD ,CD 平分∠ABC ,可知AD 也平分∠BAC ,得到:,,;②根据CE ⊥BD ,得,所以;③题目所求为∠DCE =∠CAD ,若能够说明即可; ④根据三角形的内角和定理得:,所以,再根据三角形的外角定理可知,所以,证明成立. 【过程书写】 证明:如图,∵BD ,CD 分别平分∠ABC ,∠ACB∴,,在△ABC 中,∴ ∵∠EDC 是△BCD 的一个外角 ∴ ∴ ∵CE ⊥BE ∴ ∴ ∴∠DCE =∠CAD➢ 巩固练习1. 现有2cm ,4cm ,6cm ,8cm 长的四根木棒,任意选取三根组成一个三角形,DECBA12DAC BAC ∠=∠12DBC ABC ∠=∠12DCB ACB ∠=∠90DEC ∠=︒90DCE EDC ∠+∠=︒90CAD EDC ∠+∠=︒180BAC ABC ACB ∠+∠+∠=︒90CAD DBC DCB ∠+∠+∠=︒EDC DBC DCB ∠=∠+∠90CAD EDC ∠+∠=︒12DAC BAC ∠=∠12DBC ABC ∠=∠12DCB ACB ∠=∠180BAC ABC ACB ∠+∠+∠=︒90CAD DBC DCB ∠+∠+∠=︒EDC DBC DCB ∠=∠+∠90CAD EDC ∠+∠=︒90DEC ∠=︒90DCE EDC ∠+∠=︒DECBA那么可以组成三角形的个数为() A .1个B .2个C .3个D .4个2. 满足下列条件的△ABC 中,不是直角三角形的是()A .∠B +∠A =∠C B .∠A :∠B :∠C =2:3:5 C .∠A =2∠B =3∠CD .一个外角等于和它相邻的一个内角3. 如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=___________.4. 如图,∠A +∠B +∠C +∠D +∠E +∠F =________.第4题图第5题图5. 如图,在Rt △ABC 中,∠C =90°,若∠CAB 与∠CBA 的平分线相交于点O ,则∠AOB =__________.6. 如图,在△ABC 中,∠ABC 的平分线BD 与外角平分线CE 的反向延长线交于点D ,若∠A =30°,则∠D =________.7. 如图,在△ABC 中,AD 平分∠BAC ,点F 在DA 的延长线上,FE ⊥BC 于E ,若∠B =40°,∠C =70°,则∠D F E =________.第2题图12F ECBAOC FECBA第7题图第8题图8. 如图,在△ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于点E ,且满足BE ⊥AC ,F 为AB 上一点,且CF ⊥AD 于点H .下列结论:①线段AG 是△ABE 的角平分线;②BE 是△ABC 的中线;③线段AE 是△ABG 的边BG 上的高;④△ABG 与△DBG 的面积相等.其中正确的结论有________(填序号). 9. 如图,在△ABC 中,若AB =2cm ,BC =4cm ,则△ABC 的高AD 与CE 的比是__________. 10. 如图,在△ABC 中,AD 是高,AE ,BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =60°,求∠CAD 及∠AOB 的度数.➢ 思考小结F E CAG H FE DCA 21OFE D CAE D C B A(1)“X 型”:(2)“角平分线模型”1902P A ∠=︒+∠12P A ∠=∠1902P A∠=︒-∠【参考答案】➢ 巩固练习 1. A 2. C 3. 270° 4. 360° 5. 135° 6.15°E7.15°8.①③④9.1:210.∠CAD=30°,∠AOB=120°➢思考小结1.大于,小于,180°,和它不相邻的两个内角的和2.略。
2020年秋人教版八年级数学上册第12章《三角形全等之倍长中线》(讲义、随堂测试、习题及答案)

人教版八年级数学上册12章三角形全等之倍长中线(讲义)➢课前预习1.填空(1)三角形全等的判定有:三边分别___________的两个三角形全等,即(____);两边和它们的_____分别相等的两个三角形全等,即(____);两角和它们的_____分别相等的两个三角形全等,即(____);两角和其中一个角的______分别相等的两个三角形全等,即(____);斜边和_______边分别相等的两个直角三角形全等,即(____).(2)要证明两条边相等或者两个角相等,可以考虑放在两个三角形中证________;要证明两个三角形全等需要准备______组条件,这三组条件里面必须有______;然后依据判定进行证明,其中AAA,SSA不能证明两个三角形全等,请举出对应的反例.2.想一想,证一证已知:如图,AB与CD相交于点O,且O是AB的中点.(1)当OC=OD时,求证:△AOC≌△BOD;(2)当AC∥BD时,求证:△AOC≌△BOD.O BCA➢知识点睛1.“三角形全等”辅助线:见中线,要__________,________之后______________.2. 中点的思考方向:①(类)倍长中线D C BAMAB CD延长AD 到E ,使DE =AD , 延长MD 到E ,使DE =MD , 连接BE 连接CE②平行夹中点F EDCBA延长FE 交BC 的延长线于点G➢ 精讲精练1. 如图,在△ABC 中,AD 为BC 边上的中线.(1)按要求作图:延长AD 到点E ,使DE =AD ;连接BE . (2)求证:△ACD ≌△EBD . (3)求证:AB +AC >2AD .D A(4)若AB =5,AC =3,求AD 的取值范围.2. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .3. 如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC .求证:①CE =2CD ;②CB 平分∠DCE .D CB ADB A4.如图,在△ABC中,D是BC的中点,E是AD上一点,BE=AC,BE的延长线交AC于点F.求证:∠AEF=∠EAF.5.如图,在△ABC中,AD交BC于点D,点E是BC的中点,EF∥AD交CA的延长线于点F,交AB于点G,BG=CF.求证:AD为△ABC的角平分线.FED CAGFE DB A6. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F是CD 的中点,且AF ⊥AB ,已知AD =2.7,AE =BE =5,求CE的长.7. 如图,在正方形ABCD 中,CD =BC ,∠DCB =90°,点E 在CB 的延长线上,过点E 作EF ⊥BE ,且EF=BE .连接BF ,FD ,取FD 的中点G ,连接EG ,CG .求证:EG =CG 且EG ⊥CG .GFE DCAGF EDCBAFE DCB A【参考答案】➢课前预习1.(1)相等,SSS;夹角,SAS;夹边,ASA;对边,AAS;直角,HL(2)全等,三,边2.(1)证明:如图∵O是AB的中点∴AO =BO在△AOC 和△BOD 中AO BO AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴△AOC ≌△BOD (SAS ) (2)证明:如图 ∵O 是AB 的中点 ∴AO =BO ∵AC ∥BD ∴∠A =∠B在△AOC 和△BOD 中A B AO BOAOC BOD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOC ≌△BOD (ASA ) ➢ 精讲精练 1. 解:(1)如图,21BCDA(2)证明:如图, ∵AD 为BC 边上的中线 ∴BD =CD在△BDE 和△CDA 中12BD CD ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) (3)证明:如图,∵△BDE ≌△CDA ∴BE =AC ∵DE =AD ∴AE =2AD在△ABE 中,AB +BE >AE ∴AB +AC >2AD (4)在△ABE 中, AB -BE <AE <AB +BE由(3)得AE =2AD ,BE =AC ∵AC =3,AB =5 ∴5-3<AE <5+3 ∴2<2AD <8 ∴1<AD <42. 证明:如图,延长AD 到E ,使DE =AD ,连接BE在△ADC 和△EDB 中CD BD ADC EDB AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS ) ∴AC =EB ,∠2=∠E ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE∴AB =AC3. 证明:如图,延长CD 到F ,使DF =CD ,连接BF∴CF =2CD∵CD 是△ABC 的中线 ∴BD =AD在△BDF 和△ADC 中BD AD ADC BDF DF DC =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC (SAS ) ∴BF =AC ,∠1=∠F ∵CB 是△AEC 的中线21EDCBA∵AC =AB ∴BE =BF ∵∠1=∠F ∴BF ∥AC∴∠1+∠2+∠5+∠6=180° 又∵AC =AB ∴∠1+∠2=∠5 又∵∠4+∠5=180° ∴∠4=∠5+∠6 即∠CBE =∠CBF 在△CBE 和△CBF 中CB CB CBE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴△CBE ≌△CBF (SAS ) ∴CE =CF ,∠2=∠3 ∴CE =2CDCB 平分∠DCE4. 证明:如图,延长AD 到M ,使DM =AD ,连接BM∵D 是BC 边的中点∴BD =CD在△ADC 和△MDB 中CD BD ADC MDB AD MD =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△MDB (SAS ) ∴∠1=∠M ,AC =MB ∵BE =AC ∴BE =MB ∴∠M =∠3 ∴∠1=∠3321MA BCDEF∴∠1=∠2 即∠AEF =∠EAF5. 证明:如图,延长FE 到M ,使EM =EF ,连接BM∵点E 是BC 的中点∴BE =CE在△CFE 和△BME 中FE ME CEF BEM CE BE =⎧⎪∠=∠⎨⎪=⎩∴△CFE ≌△BME (SAS ) ∴CF =BM ,∠F =∠M ∵BG =CF ∴BG =BM ∴∠1=∠M ∴∠1=∠F ∵AD ∥EF∴∠3=∠F ,∠1=∠2 ∴∠2=∠3即AD 为△ABC 的角平分线6. 解:如图,延长AF 交BC 的延长线于点G∵AD ∥BC∴∠3=∠G ∵点F 是CD 的中点 ∴DF =CF在△ADF 和△GCF 中3G AFD GFC DF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ADF ≌△GCF (AAS )∴AD =CG ∵AD =2.7 ∴CG =2.7 ∵AE =BE ∴∠1=∠B321MABCD EF G∵AB ⊥AF ∴∠1+∠2=90° ∠B +∠G =90° ∴∠2=∠G ∴EG =AE =5 ∴CE =EG -CG=5-2.7=2.37. 证明:如图,延长EG 交CD 的延长线于点M由题意,∠FEB =90°,∠DCB =90° ∴∠DCB +∠FEB =180° ∴EF ∥CD ∴∠FEG =∠M ∵点G 为FD 的中点 ∴FG =DG在△FGE 和△DGM 中1M FGE DGM FG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△FGE ≌△DGM (AAS ) ∴EF =MD ,EG =MG ∵△FEB 是等腰直角三角形 ∴EF =EB ∴BE =MD在正方形ABCD 中,BC =CD ∴BE +BC =MD +CD 即EC =MC∴△ECM 是等腰直角三角形 ∵EG =MG∴EG⊥CG,∠3=∠4=45°∴∠2=∠3=45°∴EG=CG三角形全等之倍长中线(随堂测试)1.在△ABC中,AC=5,中线AD=4,则边AB的取值范围是_______________.思路分析:①画出草图,标注条件:②根据题目条件,见_________,考虑_____________;添加辅助线是______________________________________;③倍长之后证全等:__________≌___________(),证全等转移边:______=_______;④全等转移条件后,利用三角形三边关系可以得到AB的取值范围.2.如图,在正方形ABCD中,AD∥BC,E为AB边的中点,G,F分别为AD,BC边上的点,且AG=1,BF=2.若GE⊥EF,则GF的长为多少?【参考答案】GFEADBC1. 3<AB <13①图略②中线AD 倍长中线延长AD 到点E ,使DE =AD ,连接CE ③△ADC △EDB SAS ACEB ④略2. AD ∥BC ,E 为AB 边的中点,平行夹中点;AG =BH ,GE =HE ;到线段两端点的距离相等,FH ,AG +BF 解:如图,延长GE 交CB 的延长线于点H ∵AD ∥BC ∴∠GAE =∠HBE ∵E 为AB 边的中点 ∴AE =BE在△AGE 和△BHE 中,AEG BEH AE BEGAE HBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AGE ≌△BHE (ASA ) ∴BH =AG ,HE =GE ∵GE ⊥EF ∴GF =HF ∵BF =2,AG =1 ∴GF =HF =BF +BH =BF +AG =2+1 =3三角形全等之倍长中线(习题)➢ 例题示范例1:已知:如图,在△ABC 中,AB ≠AC ,D ,E 在BC 上,且DE =EC ,过D 作DF ∥BA 交AE 于点F ,DF =AC . 求证:AE 平分∠BAC .A B D CE F【思路分析】 读题标注:见中线,要倍长,倍长之后证全等.结合此题,DE =EC ,点E 是DC 的中点,考虑倍长,有两种考虑方法: ①考虑倍长FE ,如图所示:②考虑倍长AE ,如图所示:(这个过程需要考虑倍长之后具体要连接哪两个点)倍长中线的目的是为了证明全等:以方法①为例,可证△DEF ≌△CEG ,由全等转移边和角,重新组织条件证明即可. 【过程书写】证明:如图,延长FE 到G ,使EG =EF ,连接CG .在△DEF 和△CEG 中, ED EC DEF CEG EF EG =⎧⎪∠=∠⎨⎪=⎩??FE C D BA AB DCE F??GG??FECDBA AB D CE F??∴△DEF≌△CEG(SAS)∴DF=CG,∠DFE=∠G∵DF=AC∴CG=AC∴∠G=∠CAE∴∠DFE=∠CAE∵DF∥AB∴∠DFE=∠BAE∴∠BAE=∠CAE∴AE平分∠BAC➢巩固练习1.已知:如图,在△ABC中,AB=4,AC=2,点D为BC边的中点,且AD是整数,则AD=________.A2.已知:如图,BD平分∠ABC交AC于D,点E为CD上一点,且AD=DE,EF∥BC交BD于F.求证:AB=EF.ADF ECBEFAD C3.已知:如图,在△ABC中,AD是BC边上的中线,分别以AB,AC为直角边向外作等腰直角三角形,AB=AE,AC=AF,∠BAE=∠CAF=90°.求证:EF=2AD.4.如图,在△ABC中,AB >AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.5.如图,在四边形ABCD中,AD∥BC,点E在BC上,点F是CD的中点,连接AF,EF,AE,若∠DAF=∠EAF,求证:GFE D CAFEDB CA➢ 思考小结1. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .比较下列两种不同的证明方法,并回答问题.方法1:如图,延长AD 到E ,使DE =AD ,连接BE 在△BDE 和△CDA 中BD CD BDE CDA DE DA =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) ∴AC =BE ,∠E =∠2 ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BECDB A21ECDBA方法2:如图,过点B 作BE ∥AC ,交AD 的延长线于点E ∵BE ∥AC∴∠E =∠2在△BDE 和△CDA 中2E BDE CDA BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (AAS ) ∴BE =AC ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =AC 相同点:两种方法都是通过辅助线构造全等,利用全等转移条件进而解决问题.方法1是看到中点考虑通过___________构造全等,方法2是通过平行夹中点构造全等. 不同点:倍长中线的方法在证明全等时,利用的判定是________,实质是构造了一组对应边相等;利用平行夹中点证明全等时,利用的判定是_____,实质是利用平行构造了一组_____相等.2. 利用“倍长中线”我们就可以证明直角三角形中非常重要的一个定理:直角三角形斜边中线等于斜边的一半.请你尝试进行证明.已知:如图,在Rt △ABC 中,∠BCA =90°,CD 是斜边AB 的中线.求证:CD 12=AB .DC21ECDB A【参考答案】➢巩固练习1. 22.证明略(提示:延长FD到点G,使得DG=DF,连接AG,证明△ADG≌△EDF,转角证明AB=EF)3.证明略(提示:延长AD到点G,使得GD=AD,连接CG,证明△ABD≌△GCD,△EAF≌△GCA)4.证明略(提示:延长FE到点H,使得EH=FE,连接CH,证明△BFE≌△CHE,转角证明BF=CG)5.证明略(提示:延长AF交BC的延长线于点G,证明△ADF≌△GCF,转角证明AF⊥EF)➢思考小结1.倍长中线SAS AAS 角2.证明略。