八年级上册数学书习题答案2020
人教版八年级上册数学书习题13.3答案

Page 81 1(1)等腰三角形的一个角是110°,它的另外两个角是多少度?(2)等腰三角形的一个角是80°,它的另外两个角是多少度?Page82 2如图,AD ∥ BC ,BD 平分∠ABC ,求证:AD=AB 。
分析:题目要求我们证明AD=AB 。
观察图形,AB 与AD 位于△ABD 中。
由已知AD ∥BC , BD 平分∠ABC ,可考虑用等腰三角形的判定方法“等角对等边”来证明。
用已知的平行关系,可将∠ADB 与∠CBD 于关联起来,再有角平分线把∠ABD 与∠CBD 关联起来。
证明:∵AD ∥ BC ,∴∠ADB=∠CBD 。
又∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∴∠ADB=∠ABD ,∴AD=AB 。
Page82 3如图,五角星的五个角都是顶角为36°的等腰三角形,为了画出五角星,还需要知道∠AMBPage82 4如图,厂房屋顶钢架外框是等腰三角形,其中AB=AC ,立柱AD ⊥ BC ,且顶角∠BAC=120°∠B ,∠C ,∠BAD ,∠CAD 各是多少度?解:∵AB =AC ,∠BAC=120°∴∠B=∠C= 12×(180-120)°=30°。
又∵AD ⊥BC ,∴∠BAD ,∠CAD = 12 ∠BAC = 12×120°= 60°。
Page82 5如图,∠A=∠B ,CE ∥DA ,CE 交AB 于点E 。
求证:△CEB 是等腰三角形。
证明:∵CE//DA ,MA B C D E n m ∴∠A=∠CEB 。
∵∠A=∠B,∴∠CEB=∠B,∴CE=CB ,∴△CEB 是等腰三角形。
Page82 6如图,点D ,E 在△ABC 的边BC 上,AB=AC ,AD=AE 。
求证:BD=CE 。
证明:∵AB =AC ,∴∠B =∠C 。
又∵AD =AE ,∴∠ADE =∠AED 。
数学八年级上册作业本答案浙教版2020

第1页—第3页
1. 选择题
1A 2D 3A 4C
2. 填空
(1)T=20-6h 20,6 T h h
(2)Q=6x105-pt 6x105 p Q t 0≤t≤6x105/p
(3)S=1.5b (4) 0≤x≤7 0≤y≤5 5 0
3.解答题
(1)y= Q/a-x –Q/a (0≤x≤a)
(3)①在同一直线上 y=25/72x
②当x=72时,y=25
当x=144时,y=50
当x=216时,y=75
y=25/72 x (0≤x≤345.6)
③当x=158.4时,y=25/72x158.4=55
(4) ①y甲=2x+180
y乙=2.5x+140
②当x=100时,y甲=200+180=380
Y乙=140+250=390
380〈390
租甲车更活算
第13页—第15页
1.选择题
(1)D (2)C (3)C
2.填空
(1)x=2
y=3
(2)x=2 x>2
(3)-3 -2 x= -5/8 y= -1/8
(4)1/2 0 x=2
y=3
(5)y=5/4 x
2. 解答题
3. (1)略
(2)①依题意
-k+b= -5
(2) 图略
(3)身高(cm) 频数
154.5~159.5 2
159.5~164.5 4
164.5~169.5 6
169.5~174.5 10
174.5~179.5 5
179.5~184.5 3
(4)图略 结论:只有少数人对自己工作不满。
2020年秋人教版八年级数学上册第13章《等腰三角形》(讲义、随堂测试、习题及答案)

人教版八年级数学上册第13章等腰三角形(讲义)➢ 课前预习1. 已知:如图,在△ABC 中,AB =AC .(1)若∠1=∠2,则BD ____DC (填“>”,“<”或“=”); (2)若BD =CD ,则AD ____BC (填“⊥”或“∥”); (3)若AD ⊥BC ,则∠1____∠2(填“>”,“<”或“=”).D CB A 212. 已知等腰三角形的两边长分别为5和8,则这个三角形的周长为_________.➢ 知识点睛1. ______________的三角形叫做等腰三角形.2. 等腰三角形是_________图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“__________”),它们所在的直线都是等腰三角形的_________.3. 等腰三角形的两个底角________,简称______________.如果一个三角形有两个角相等,那么它们所对的边也______,简称_________________.4. 三边都______的三角形是等边三角形.等边三角形三边都相等,三个内角都是________. 5. “三线合一”模块书写:已知:如图,在△ABC 中,AB =AC ,AD 平分∠BAC 交BC 于点D .求证:BD =CD . 证明:➢ 精讲精练1. 在下面的等腰三角形中,∠A 是顶角,请分别将它们底角的度数标注在相应的图上.CB C B C B AAA108°60°2. 如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =____.D CB ADCBAEDCBA第2题图第3题图3. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,BD =BE ,∠A =100°,则∠DEC =________.4. 如图,在等腰三角形ABC 中,AB =AC ,D 为边BC 上一点,CD =AC ,AD =BD ,则∠BAC =______.CD B AABCE第4题图第5题图5. 如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AC 上,AD =AE ,若∠BAD =50°,则∠CDE =________.6. 如图,在△ABC 中,已知AB =AC ,AD ⊥BC 于点D ,过点D 作DE ∥AB 交AC 于点E .求证:AE =ED .7. 已知:如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD于点D ,12CD BC.求证:∠ACD =∠B . E CB AAB CD8. 已知:如图,△ABC 是等边三角形,D 是BC 的中点,DF ⊥AC 于F ,延长DF 到E ,使EF =DF ,连接AE .求∠E 的度数.FE DCBA9. 若等腰三角形的周长为13 cm ,其中一边长为3 cm ,则该等腰三角形的底边长为_______________.10. 若等腰三角形的一个内角为40°,则此等腰三角形的顶角为______________.11.若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为______________.12.已知:如图,线段AB的端点A在直线l上(AB与l不垂直),请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.13.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为60°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.➢课前预习1.(1)=(2)⊥(3)=2.18或21➢知识点睛1.有两边相等2.轴对称,三线合一,对称轴3.相等,等边对等角相等,等角对等边4.相等,60°5.证明:如图∵AB=AC,AD平分∠BAC∴D为BC的中点(等腰三角形三线合一)∴BD=CD➢精讲精练1.60°,60°;45°,45°;36°,36°2.80°3.100°4.108°5.25°6.证明略提示:根据等腰三角形三线合一可得∠BAD=∠CAD,再由平行可以得到∠CAD=∠BAD=∠ADE,从而AE=DE7.证明略提示:过点A作AE⊥BC于点E,根据等腰三角形三线合一可得BE=CD,再证△ABE≌△ACD即可.8.∠E=60°提示:连接AD,利用垂直平分线定理得AD=AE,从而∠E=∠ADE9.3cm10.40°或100°11.50°或130°12.这样的点能找4个,作图略13.这样的点能找2个,作图略等腰三角形(随堂测试)1.如图,在△ABC中,D为AC边上一点,且AD=BD=BC.若∠A=40°,则∠DBC=______.CDB 2.已知等腰三角形的周长为28cm,其中一边长为10cm,则该等腰三角形的底边长为_______________.3. 已知:如图,在△ABC 中,E 为BC 边上一点,连接AE ,D 为AE 的中点,连接BD ,∠BAD =∠EAC +∠C .求证:AD ⊥BD .【参考答案】1. 20°2. 10cm 或8cm3. 证明略提示:利用外角可以得到∠AEB =∠BAD ,根据等角对等边,得BA =BE ,因为D 是AE 的中点,利用等腰三角形三线合一,可以得到AD ⊥BD等腰三角形(习题)➢ 例题示范E DCB A例1:如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD 于点D ,12CD BC =.求证:∠ACD =∠B . 【思路分析】 ① 读题标注:② 梳理思路:由条件12CD BC =,可尝试取BC 的中点E ,此时结合等腰构造三线合一的线AE ,如图所示.要证∠ACD =∠B ,可以证明△ABE ≌△ACD .【过程书写】证明:如图,取BC 的中点E ,连接AE .∵E 是BC 的中点∴12BE BC =∵12CD BC = ∴BE =CD∵AB =AC ,E 是BC 的中点 ∴AE ⊥BC ∴∠AEB =90° ∵CD ⊥AD ∴∠D =90°∴∠AEB =∠D =90°在Rt △ABE 和Rt △ACD 中 AB AC BE CD =⎧⎨=⎩(已知)(已证)∴Rt △ABE ≌Rt △ACD (HL ) ∴∠ACD =∠B例2:等腰三角形的周长为12cm ,其中一边长为5cm ,则该等腰三角形的底边长为__________cm .【思路分析】ACDEA B C D A CD等腰三角形一边长为5cm ,这一边可能是底,也可能是腰,故需分类讨论: ① 如果5cm 为底,则根据周长为12cm ,可知腰长为3.5cm .此时两边之和大于第三边,这个三角形存在.② 如果5cm 为腰,则根据周长为12cm ,可知底边长为2cm .此时两边之和大于第三边,这个三角形存在.综上,该等腰三角形的底边长为5cm 或2cm . ➢ 巩固练习1. 已知:如图,在△ABC 中,AB =AC ,∠A =80°,求∠C 的度数.2. 如图,在△ABC 中,AB =AC ,BE ∥AC ,∠BDE =100°,∠BAD =70°,则∠E =______.第2题图第3题图3. 已知:如图,在△ABC 中,AB =AC ,D 为AB 边上一点,若CD =AD =BC ,则∠A =_________.4. 如图,在△ABC 中,∠ABC 的平分线和∠ACB 的平分线相交于点E ,过点E作MN ∥BC ,交AB 于点M ,交AC 于点N .若BM +CN =9,则线段MN 的长为()CBAED CB ADB AA .6B .7C .8D .95. 已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,点P 在AD 上.求证:PB=PC .6. 已知:如图,B ,D ,E ,C 在同一直线上,AB =AC ,AD =AE .求证:BD =CE .N M EC BADCBAPA B CD E7.已知等腰三角形的两边长分别为4和8,则该等腰三角形的周长为_________________.8.若等腰三角形的一个角比另一个角大30°,则该等腰三角形的顶角的度数为_____________.9.已知:如图,线段AB的端点A在直线l上,AB与l的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请找出所有符合条件的点.➢思考小结1.要证明边相等或角相等,可以考虑两种思路:①如果边或者角在两个三角形里面,则证明两个三角形__________;②如果边或角在一个三角形里面,证明三角形是_______三角形.2.将两个含30°角的三角板如图放置,则△ABD是_________三角形(“等腰”或“等边”),故AB_____BD,BC=____BD,所以BC=____AB,从而得到对于含有30°角的直角三角形,30°角所对的直角边是斜边的_______.【参考答案】➢巩固练习 1.50° 2.50° 3.36° 4. D5. 证明略提示:利用等腰三角形三线合一的性质,得AD 垂直平分BC ,从而得到PB =PC6. 证明略提示:根据等边对等角可得∠B =∠C ,∠ADE =∠AED ,进而可得∠BAD =∠CAE ,从而证明△ABD ≌△ACE ,根据全等三角形对应边相等,可得BD =CE7. 20 D C B A8.80°或40°9.这样的点能找4个,作图略➢思考小结1.①全等②等腰2.等边,=,12,12,一半。
2020年八年级数学上册第十四章14.2.1 平方差公式

9.若(2x+3y)(mx-ny)=9y2-4x2,则( C )
A.m=2,n=3
B.m=2,n=-3
C.m=-2,n=-3 D.m=-2,n=3
2.(2019-2020·中山区期末)下列各式中,不能运用 平方差公式计算的是( C ) A.(m-n)(-m-n) B.(-1+mn)(1+mn) C.(-m+n)(m-n) D.(2m-3)(2m+3) 3.若 m2-n2=6,且 m-n=3,则 m+n=( B ) A.1 B.2 C.2 或-2 D.4 4.(2019·雅安中考)化简 x2-(x+2)(x-2)的结果 是 4.
5.计算: (1)(2a-3b)(2a+3b); 解:原式=4a2-9b2.
(2)(-2a-1)(-1+2a); 解:原式=1-4a2.
(3)
m
1 2
n
m
1 2
n
;
解:原式= 1 n2-m2. 4
(4)(1+a)(1-a)+a(a-2). 解:原式=1-a2+a2-2a=1-2a.
6.某学生化简(2x-1)2+(x+1)(x-1)时出现了错误, 解答过程如下:
12.(1)(2019·宁波中考)先化简,再求值:(x-2)(x+ 2)-x(x-1),其中 x=3; 解:原式=x2-4-x2+x=x-4. 当 x=3 时,原式=3-4=-1. (2)计算:9×11×101×10001. 解:原式=(10-1)(10+1)×101×10001=(102- 1)(102+1)×10001=(104-1)(104+1)=108-1.
八年级上册数学课本答案人教版

八年级上册数学课本答案人教版认真做八年级数学课本习题,就一定能成功!小编整理了关于人教版八年级数学上册课本的答案,希望对大家有帮助!八年级上册数学课本答案人教版(一)第41页练习1.证明:∵ AB⊥BC,AD⊥DC,垂足分为B,D,∴∠B=∠D=90°.在△ABC和△ADC中,∴△ABC≌△ADC(AAS).∴AB=AD.2.解:∵AB⊥BF ,DE⊥BF,∴∠B=∠EDC=90°.在△ABC和△EDC,中,∴△ABC≌△EDC(ASA).∴AB= DE.八年级上册数学课本答案人教版(二)习题12.21.解:△ABC与△ADC全等.理由如下:在△ABC与△ADC中,∴△ABC≌△ADC(SSS).2.证明:在△ABE和△ACD中,∴△ABE≌△ACD(SAS).∴∠B=∠C(全等三角形的对应角相等).3.只要测量A'B'的长即可,因为△AOB≌△A′OB′.4.证明:∵∠ABD+∠3=180°,∠ABC+∠4=180°,又∠3=∠4,∴∠ABD=∠ABC(等角的补角相等).在△ABD和△ABC中,∴△ABD≌△ABC(ASA).∴AC=AD.5.证明:在△ABC和△CDA中,∴△ABC≌△CDA(AAS).∴AB=CD.6.解:相等,理由:由题意知AC= BC,∠C=∠C,∠ADC=∠BEC=90°,所以△ADC≌△BEC(AAS).所以AD=BE.7.证明:(1)在Rt△ABD和Rt△ACD中,∴Rt△ABD≌Rt△ACD( HL).∴BD=CD.(2)∵Rt△ABD≌ Rt△ACD,∴∠BAD=∠CAD.8.证明:∵AC⊥CB,DB⊥CB,∴∠ACB=∠DBC=90°.∴△ACB和△DBC是直角三角形.在Rt△ACB和Rt△DBC中,∴Rt△ACB≌Rt△DBC(HL).∴∠ABC=∠DCB(全等三角形的对应角相等).∴∠ABD=∠ACD(等角的余角相等).9.证明:∵BE=CF,∴BE+EC=CF+EC.∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SSS).∴∠A=∠D.10.证明:在△AOD和△COB中.∴△AOD≌△COB(SAS).(6分)∴∠A=∠C.(7分)11.证明:∵AB//ED,AC//FD,∴∠B=∠E,∠ACB=∠DFE.又∵FB=CE,∴FB+FC=CE+FC,∴BC= EF.在△ABC和△DEF中,∴△ABC≌△DEF(ASA).∴AB=DE,AC=DF(全等三角形的对应边相等).12.解:AE=CE.证明如下:∵FC//AB,∴∠F=∠ADE,∠FCE=∠A.在△CEF和△AED中,∴△CEF≌△AED(AAS).∴ AE=CE(全等三角形的对应边相等).13.解:△ABD≌△ACD,△ABE≌△ACE,△EBD≌△ECD.在△ABD和△ACD中,∴△ABD≌△ACD(SSS).∴∠BAE= ∠CAE.在△ABE和△ACE中,∴△ABE≌△ACE(SAS).∴BD=CD,在△EBD和△ECD中,:.△EBD≌△ECD(SSS).八年级上册数学课本答案人教版(三)习题12.31.解:∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°.在Rt△OPM和Rt△ONP中,∴Rt△OMP≌Rt△ONP(HL).∴PM=PN(全等三角形的对应边相等).∴OP是∠AOB的平分线.2.证明:∵AD是∠BAC的平分线,且DE,DF分别垂直于AB ,AC,垂足分别为E,F,∴DE=DF.在Rt△BDE和Rt△CDF中,Rt△BDE≌Rt△CDF(HL).∴EB=FC(全等三角形的对应边相等)3.证明:∵CD⊥AB, BE⊥AC,∴∠BDO=∠CEO= 90°.∵∠DOB=∠EOC,OB=OC,∴△DOB≌△EOC∴OD= OE.∴AO是∠BAC的平分线.∴∠1=∠2.4.证明:如图12 -3-26所示,作DM⊥PE于M,DN⊥PF于N,∵AD是∠BAC的平分线,∴∠1=∠2.又:PE//AB,PF∥AC,∴∠1=∠3,∠2=∠4.∴∠3 =∠4.∴PD是∠EPF的平分线,又∵DM⊥PE,DN⊥PF,∴DM=DN,即点D到PE和PF的距离相等.5.证明:∵OC是∠ AOB的平分线,且PD⊥OA,PE⊥OB,∴PD=PE,∠OPD=∠OPE.∴∠DPF=∠EPF.在△DPF和△EPF中,∴△DPF≌△EPF(SAS).∴DF=EF(全等三角形的对应边相等).6.解:AD与EF垂直.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.在Rt△ADE和Rt△ADF中,∴Rt△ADE≌Rt△ADF(HL).∴∠ADE=∠ADF.在△GDE和△GDF中,∴△GDF≌△GDF(SAS).∴∠DGE=∠DGF.又∵∠DGE+∠DGF=180°,∴∠DGE=∠DGF=90°,∴AD⊥EF.7,证明:过点E作EF上AD于点F.如图12-3-27所示,∵∠B=∠C= 90°,∴EC⊥CD,EB⊥AB.∵DE平分∠ADC,∴EF=EC.又∵E是BC的中点,∴EC=EB.∴EF=EB.∵EF⊥AD,EB⊥AB,∴AE是∠DAB的平分线,。
八年级上册数学作业本答案浙教版2020

② 541.8÷7= 77.4 (米)
③ 77.4-36.12=41.28 (米)
3、185×5.4= 999(千米)
4、0.8×24×18=19.2×18=345.6(元)
第四页:
5、324×1.2+48=388.8+48=436.8(元)
提升篇:
1、28
(2.7+6.3)×5÷2=45÷2=22.5(平方分米)
9)10×20+(12-10)×(20-14)÷2=200+6=206(平方厘米)(方法多种)
提升篇:
1、甲数的小数点向右移动一位就等于乙数,说明乙数是甲数的10倍。
解: 设甲数是X,则乙数是10X 。
10X-X=7.02
解得 X=0.78,10X=7.8
八年级上册数学作业本答案浙教版2020
第一页:
一、3, 1.2, 8.7, 1.26, 12,4
17,0.4, 0.24, 3 , 0.06,15
二、4.14,0.144,2.04 ,28
三、16.25,162.5 ,0.1625,42 ,0.42 , 0.42
四、15.6,27.72
第二页:
四、2.25,4.16 ,25.75,82
=0.79×0.46+0.79×2.4+1.14×0.79
=0.79×(0.46+2.4+1.14)
=0.79×4
=3.16
第五页:
1、>,,>
2、32.37.7
3、0.832.46
4、0.56×101 =0.56×100+0.56×1=56+0.56=56.56
2020年秋人教版八年级数学上册第11章三角形综合应用(讲义、随堂练习、习题及答案)
人教版八年级数学上册第11章 三角形综合应用(讲义)➢ 知识点睛在三角形背景下处理问题的思考方向: 1. 三角形中的隐含条件是:边:_______________________________________________. 角:①______________________________________________;②_____________________________________________.2. 角平分线出现时,为了计算方便,通常采用__________解决问题.3. 高线出现时考虑__________或__________.➢ 精讲精练1. 现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是() A .1个B .2个C .3个D .4个2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,中相邻两螺丝的距离依次为2,3,4,6A .5 B .6 C .7 D .10 3. 下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有__________________(填序号). 4. 如图,在三角形纸片ABC 中,∠A =60°,∠B =55°.将纸片一角折叠使点C 落在△ABC 内,则∠1+∠2=_________.C 21AABCDE第4题图第5题图5. 如图,一个五角星的五个角的和是________.6. 如图,∠A +∠B +∠C +∠D +∠E +∠F =________.第2题图FEBA7. 如图1,线段AB ,CD 相交于点O ,连接AD ,BC ,我们把形如图1的图形称之为“X 型”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N ,试解答下列问题: (1)在图1中,请直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系:_____________________________; (2)在图2中,共有______个“X 型”;(3)在图2中,若∠D =40°,∠B =30°,则∠APC =_______; (4)在图2中,若∠D =α,∠B =β,则∠APC =__________.图2图1P NMABCDOO DCBA8. 探究:(1)如图1,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB ,猜想∠P 和∠A 有何数量关系?(2)如图2,在△ABC 中,BP 平分∠ABC ,CP 平分外角∠ACE ,猜想∠P 和∠A 有何数量关系?(3)如图3,BP 平分∠CBF ,CP 平分∠BCE ,猜想∠P 和∠A 有何数量关系?E C AB FPA PP A CE图1 图2 图39. 如图,在△ABC 中,三个内角的角平分线交于点O ,OE ⊥BC 于点E .(1)∠ABO +∠BCO +∠CAO =____________;(2)∠BOD 和∠COE 的数量关系是________________.O D ECM ANB DA第9题图第10题图10. 如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D .(1)若AB =6,AC =8,BC =10,则AD =____________;(2)若AB =2,BC =3,则AC :AD =____________.11. 如图,在△ABC 中,若AB =2cm ,AC =3cm ,BC =4cm ,AD ,BF ,CE为△ABC 的三条高,则这三条高的比AD :BF :CE =____________________.C EAF 12. 如图,在△ABC 中,AB =AC ,P 是BC 边上任意一点,PD ⊥AB 于点D ,PE ⊥AC 于点E .(1)若AB =8,△ABC 的面积为14,则PD +PE 的值是多少?(2)过点B 作BF ⊥AC 于点F ,求证:PD +PE =BF .D PCEFA【参考答案】➢ 知识点睛1. 三角形两边之和大于第三边,两边之差小于第三边;三角形内角和等于180°;三角形的一个外角等于和它不相邻的两个内角的和. 2. 设元 3. 互余,面积➢精讲精练1. B2. C3.①③⑤4.130°5.180°6.360°7.(1)∠A+∠D=∠B+∠C;(2)3;(3)35°;(4)12(α+β)8.(1)∠P=90°+12∠A;(2)∠P=12∠A;(3)∠P=90° 12∠A9.(1)90°(2)∠BOD=∠COE10.(1)245(2)3:211.3:4:612.(1)72(2)证明略三角形综合应用(讲义)➢知识点睛在三角形背景下处理问题的思考方向:4.三角形中的隐含条件是:边:_______________________________________________.角:①______________________________________________;②_____________________________________________.5.角平分线出现时,为了计算方便,通常采用__________解决问题.6.高线出现时考虑__________或__________.➢精讲精练13.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个14.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,中相邻两螺丝的距离依次为2,3,4,6A.5 B.6 C.7 D.10第2题图15. 下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有__________________(填序号). 16. 如图,在三角形纸片ABC 中,∠A =60°,∠B =55°.将纸片一角折叠使点C 落在△ABC 内,则∠1+∠2=_________.BC 21AABCDE第4题图第5题图17. 如图,一个五角星的五个角的和是________. 18. 如图,∠A +∠B +∠C +∠D +∠E +∠F =________.FEBA19. 如图1,线段AB ,CD 相交于点O ,连接AD ,BC ,我们把形如图1的图形称之为“X 型”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N ,试解答下列问题: (1)在图1中,请直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系:_____________________________; (2)在图2中,共有______个“X 型”;(3)在图2中,若∠D =40°,∠B =30°,则∠APC =_______; (4)在图2中,若∠D =α,∠B =β,则∠APC =__________.图2图1P NMABCDOO DCBA20. 探究:(1)如图1,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB ,猜想∠P 和∠A 有何数量关系?(2)如图2,在△ABC 中,BP 平分∠ABC ,CP 平分外角∠ACE ,猜想∠P 和∠A 有何数量关系?(3)如图3,BP 平分∠CBF ,CP 平分∠BCE ,猜想∠P 和∠A 有何数量关系?E C AB FA PP A CE图1 图2 图321. 如图,在△ABC 中,三个内角的角平分线交于点O ,OE ⊥BC 于点E .(1)∠ABO +∠BCO +∠CAO =____________;(2)∠BOD 和∠COE 的数量关系是________________.O D ECM ANB DC B A第9题图第10题图22. 如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D .(1)若AB =6,AC =8,BC =10,则AD =____________;(2)若AB =2,BC =3,则AC :AD =____________.23. 如图,在△ABC 中,若AB =2cm ,AC =3cm ,BC =4cm ,AD ,BF ,CE为△ABC 的三条高,则这三条高的比AD :BF :CE =____________________.C DEAF B 24. 如图,在△ABC 中,AB =AC ,P 是BC 边上任意一点,PD ⊥AB 于点D ,PE ⊥AC 于点E .(1)若AB =8,△ABC 的面积为14,则PD +PE 的值是多少?(2)过点B 作BF ⊥AC 于点F ,求证:PD +PE =BF .D BPCEFA【参考答案】➢ 知识点睛4. 三角形两边之和大于第三边,两边之差小于第三边;三角形内角和等于180°;三角形的一个外角等于和它不相邻的两个内角的和. 5. 设元 6. 互余,面积➢ 精讲精练 13. B 14. C15. ①③⑤ 16. 130° 17. 180° 18. 360°19. (1)∠A +∠D =∠B +∠C ;(2)3; (3)35°;(4)12(α+β)20. (1)∠P =90°+12∠A ; (2)∠P =12∠A ;(3)∠P =90° 12∠A21. (1)90° (2)∠BOD =∠COE22. (1)245(2)3:223. 3:4:624. (1)72(2)证明略三角形综合应用(随堂测试)1. 现有2cm ,3cm ,4cm ,5cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是() A .1个B .2个C .3个D .4个2. 如图,∠A +∠B +∠C +∠D +∠E =___________.3. 如图,点E ,D 分别在△ABC 的边BA ,CA 的延长线上,CF ,EF 分别平分∠ACB 和∠AED ,若∠B =65°,∠D =45°,则∠F 的度数为________.【参考答案】1. C2. 180°3. 55°E DCBAE DCBA三角形综合应用(习题)➢ 例题示范例1:如图,BD ,CD 分别平分∠ABC ,∠ACB ,CE ⊥BD 交BD 的延长线于点E . 求证:∠DCE =∠CAD .【思路分析】①看到条件BD ,CD 平分∠ABC ,可知AD 也平分∠BAC ,得到:,,;②根据CE ⊥BD ,得,所以;③题目所求为∠DCE =∠CAD ,若能够说明即可; ④根据三角形的内角和定理得:,所以,再根据三角形的外角定理可知,所以,证明成立. 【过程书写】 证明:如图,∵BD ,CD 分别平分∠ABC ,∠ACB∴,,在△ABC 中,∴ ∵∠EDC 是△BCD 的一个外角 ∴ ∴ ∵CE ⊥BE ∴ ∴ ∴∠DCE =∠CAD➢ 巩固练习1. 现有2cm ,4cm ,6cm ,8cm 长的四根木棒,任意选取三根组成一个三角形,DECBA12DAC BAC ∠=∠12DBC ABC ∠=∠12DCB ACB ∠=∠90DEC ∠=︒90DCE EDC ∠+∠=︒90CAD EDC ∠+∠=︒180BAC ABC ACB ∠+∠+∠=︒90CAD DBC DCB ∠+∠+∠=︒EDC DBC DCB ∠=∠+∠90CAD EDC ∠+∠=︒12DAC BAC ∠=∠12DBC ABC ∠=∠12DCB ACB ∠=∠180BAC ABC ACB ∠+∠+∠=︒90CAD DBC DCB ∠+∠+∠=︒EDC DBC DCB ∠=∠+∠90CAD EDC ∠+∠=︒90DEC ∠=︒90DCE EDC ∠+∠=︒DECBA那么可以组成三角形的个数为() A .1个B .2个C .3个D .4个2. 满足下列条件的△ABC 中,不是直角三角形的是()A .∠B +∠A =∠C B .∠A :∠B :∠C =2:3:5 C .∠A =2∠B =3∠CD .一个外角等于和它相邻的一个内角3. 如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=___________.4. 如图,∠A +∠B +∠C +∠D +∠E +∠F =________.第4题图第5题图5. 如图,在Rt △ABC 中,∠C =90°,若∠CAB 与∠CBA 的平分线相交于点O ,则∠AOB =__________.6. 如图,在△ABC 中,∠ABC 的平分线BD 与外角平分线CE 的反向延长线交于点D ,若∠A =30°,则∠D =________.7. 如图,在△ABC 中,AD 平分∠BAC ,点F 在DA 的延长线上,FE ⊥BC 于E ,若∠B =40°,∠C =70°,则∠D F E =________.第2题图12F ECBAOC FECBA第7题图第8题图8. 如图,在△ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于点E ,且满足BE ⊥AC ,F 为AB 上一点,且CF ⊥AD 于点H .下列结论:①线段AG 是△ABE 的角平分线;②BE 是△ABC 的中线;③线段AE 是△ABG 的边BG 上的高;④△ABG 与△DBG 的面积相等.其中正确的结论有________(填序号). 9. 如图,在△ABC 中,若AB =2cm ,BC =4cm ,则△ABC 的高AD 与CE 的比是__________. 10. 如图,在△ABC 中,AD 是高,AE ,BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =60°,求∠CAD 及∠AOB 的度数.➢ 思考小结F E CAG H FE DCA 21OFE D CAE D C B A(1)“X 型”:(2)“角平分线模型”1902P A ∠=︒+∠12P A ∠=∠1902P A∠=︒-∠【参考答案】➢ 巩固练习 1. A 2. C 3. 270° 4. 360° 5. 135° 6.15°E7.15°8.①③④9.1:210.∠CAD=30°,∠AOB=120°➢思考小结1.大于,小于,180°,和它不相邻的两个内角的和2.略。
2020年秋人教版八年级数学上册第12章《三角形全等之倍长中线》(讲义、随堂测试、习题及答案)
人教版八年级数学上册12章三角形全等之倍长中线(讲义)➢课前预习1.填空(1)三角形全等的判定有:三边分别___________的两个三角形全等,即(____);两边和它们的_____分别相等的两个三角形全等,即(____);两角和它们的_____分别相等的两个三角形全等,即(____);两角和其中一个角的______分别相等的两个三角形全等,即(____);斜边和_______边分别相等的两个直角三角形全等,即(____).(2)要证明两条边相等或者两个角相等,可以考虑放在两个三角形中证________;要证明两个三角形全等需要准备______组条件,这三组条件里面必须有______;然后依据判定进行证明,其中AAA,SSA不能证明两个三角形全等,请举出对应的反例.2.想一想,证一证已知:如图,AB与CD相交于点O,且O是AB的中点.(1)当OC=OD时,求证:△AOC≌△BOD;(2)当AC∥BD时,求证:△AOC≌△BOD.O BCA➢知识点睛1.“三角形全等”辅助线:见中线,要__________,________之后______________.2. 中点的思考方向:①(类)倍长中线D C BAMAB CD延长AD 到E ,使DE =AD , 延长MD 到E ,使DE =MD , 连接BE 连接CE②平行夹中点F EDCBA延长FE 交BC 的延长线于点G➢ 精讲精练1. 如图,在△ABC 中,AD 为BC 边上的中线.(1)按要求作图:延长AD 到点E ,使DE =AD ;连接BE . (2)求证:△ACD ≌△EBD . (3)求证:AB +AC >2AD .D A(4)若AB =5,AC =3,求AD 的取值范围.2. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .3. 如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC .求证:①CE =2CD ;②CB 平分∠DCE .D CB ADB A4.如图,在△ABC中,D是BC的中点,E是AD上一点,BE=AC,BE的延长线交AC于点F.求证:∠AEF=∠EAF.5.如图,在△ABC中,AD交BC于点D,点E是BC的中点,EF∥AD交CA的延长线于点F,交AB于点G,BG=CF.求证:AD为△ABC的角平分线.FED CAGFE DB A6. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F是CD 的中点,且AF ⊥AB ,已知AD =2.7,AE =BE =5,求CE的长.7. 如图,在正方形ABCD 中,CD =BC ,∠DCB =90°,点E 在CB 的延长线上,过点E 作EF ⊥BE ,且EF=BE .连接BF ,FD ,取FD 的中点G ,连接EG ,CG .求证:EG =CG 且EG ⊥CG .GFE DCAGF EDCBAFE DCB A【参考答案】➢课前预习1.(1)相等,SSS;夹角,SAS;夹边,ASA;对边,AAS;直角,HL(2)全等,三,边2.(1)证明:如图∵O是AB的中点∴AO =BO在△AOC 和△BOD 中AO BO AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴△AOC ≌△BOD (SAS ) (2)证明:如图 ∵O 是AB 的中点 ∴AO =BO ∵AC ∥BD ∴∠A =∠B在△AOC 和△BOD 中A B AO BOAOC BOD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOC ≌△BOD (ASA ) ➢ 精讲精练 1. 解:(1)如图,21BCDA(2)证明:如图, ∵AD 为BC 边上的中线 ∴BD =CD在△BDE 和△CDA 中12BD CD ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) (3)证明:如图,∵△BDE ≌△CDA ∴BE =AC ∵DE =AD ∴AE =2AD在△ABE 中,AB +BE >AE ∴AB +AC >2AD (4)在△ABE 中, AB -BE <AE <AB +BE由(3)得AE =2AD ,BE =AC ∵AC =3,AB =5 ∴5-3<AE <5+3 ∴2<2AD <8 ∴1<AD <42. 证明:如图,延长AD 到E ,使DE =AD ,连接BE在△ADC 和△EDB 中CD BD ADC EDB AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS ) ∴AC =EB ,∠2=∠E ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE∴AB =AC3. 证明:如图,延长CD 到F ,使DF =CD ,连接BF∴CF =2CD∵CD 是△ABC 的中线 ∴BD =AD在△BDF 和△ADC 中BD AD ADC BDF DF DC =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC (SAS ) ∴BF =AC ,∠1=∠F ∵CB 是△AEC 的中线21EDCBA∵AC =AB ∴BE =BF ∵∠1=∠F ∴BF ∥AC∴∠1+∠2+∠5+∠6=180° 又∵AC =AB ∴∠1+∠2=∠5 又∵∠4+∠5=180° ∴∠4=∠5+∠6 即∠CBE =∠CBF 在△CBE 和△CBF 中CB CB CBE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴△CBE ≌△CBF (SAS ) ∴CE =CF ,∠2=∠3 ∴CE =2CDCB 平分∠DCE4. 证明:如图,延长AD 到M ,使DM =AD ,连接BM∵D 是BC 边的中点∴BD =CD在△ADC 和△MDB 中CD BD ADC MDB AD MD =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△MDB (SAS ) ∴∠1=∠M ,AC =MB ∵BE =AC ∴BE =MB ∴∠M =∠3 ∴∠1=∠3321MA BCDEF∴∠1=∠2 即∠AEF =∠EAF5. 证明:如图,延长FE 到M ,使EM =EF ,连接BM∵点E 是BC 的中点∴BE =CE在△CFE 和△BME 中FE ME CEF BEM CE BE =⎧⎪∠=∠⎨⎪=⎩∴△CFE ≌△BME (SAS ) ∴CF =BM ,∠F =∠M ∵BG =CF ∴BG =BM ∴∠1=∠M ∴∠1=∠F ∵AD ∥EF∴∠3=∠F ,∠1=∠2 ∴∠2=∠3即AD 为△ABC 的角平分线6. 解:如图,延长AF 交BC 的延长线于点G∵AD ∥BC∴∠3=∠G ∵点F 是CD 的中点 ∴DF =CF在△ADF 和△GCF 中3G AFD GFC DF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ADF ≌△GCF (AAS )∴AD =CG ∵AD =2.7 ∴CG =2.7 ∵AE =BE ∴∠1=∠B321MABCD EF G∵AB ⊥AF ∴∠1+∠2=90° ∠B +∠G =90° ∴∠2=∠G ∴EG =AE =5 ∴CE =EG -CG=5-2.7=2.37. 证明:如图,延长EG 交CD 的延长线于点M由题意,∠FEB =90°,∠DCB =90° ∴∠DCB +∠FEB =180° ∴EF ∥CD ∴∠FEG =∠M ∵点G 为FD 的中点 ∴FG =DG在△FGE 和△DGM 中1M FGE DGM FG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△FGE ≌△DGM (AAS ) ∴EF =MD ,EG =MG ∵△FEB 是等腰直角三角形 ∴EF =EB ∴BE =MD在正方形ABCD 中,BC =CD ∴BE +BC =MD +CD 即EC =MC∴△ECM 是等腰直角三角形 ∵EG =MG∴EG⊥CG,∠3=∠4=45°∴∠2=∠3=45°∴EG=CG三角形全等之倍长中线(随堂测试)1.在△ABC中,AC=5,中线AD=4,则边AB的取值范围是_______________.思路分析:①画出草图,标注条件:②根据题目条件,见_________,考虑_____________;添加辅助线是______________________________________;③倍长之后证全等:__________≌___________(),证全等转移边:______=_______;④全等转移条件后,利用三角形三边关系可以得到AB的取值范围.2.如图,在正方形ABCD中,AD∥BC,E为AB边的中点,G,F分别为AD,BC边上的点,且AG=1,BF=2.若GE⊥EF,则GF的长为多少?【参考答案】GFEADBC1. 3<AB <13①图略②中线AD 倍长中线延长AD 到点E ,使DE =AD ,连接CE ③△ADC △EDB SAS ACEB ④略2. AD ∥BC ,E 为AB 边的中点,平行夹中点;AG =BH ,GE =HE ;到线段两端点的距离相等,FH ,AG +BF 解:如图,延长GE 交CB 的延长线于点H ∵AD ∥BC ∴∠GAE =∠HBE ∵E 为AB 边的中点 ∴AE =BE在△AGE 和△BHE 中,AEG BEH AE BEGAE HBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AGE ≌△BHE (ASA ) ∴BH =AG ,HE =GE ∵GE ⊥EF ∴GF =HF ∵BF =2,AG =1 ∴GF =HF =BF +BH =BF +AG =2+1 =3三角形全等之倍长中线(习题)➢ 例题示范例1:已知:如图,在△ABC 中,AB ≠AC ,D ,E 在BC 上,且DE =EC ,过D 作DF ∥BA 交AE 于点F ,DF =AC . 求证:AE 平分∠BAC .A B D CE F【思路分析】 读题标注:见中线,要倍长,倍长之后证全等.结合此题,DE =EC ,点E 是DC 的中点,考虑倍长,有两种考虑方法: ①考虑倍长FE ,如图所示:②考虑倍长AE ,如图所示:(这个过程需要考虑倍长之后具体要连接哪两个点)倍长中线的目的是为了证明全等:以方法①为例,可证△DEF ≌△CEG ,由全等转移边和角,重新组织条件证明即可. 【过程书写】证明:如图,延长FE 到G ,使EG =EF ,连接CG .在△DEF 和△CEG 中, ED EC DEF CEG EF EG =⎧⎪∠=∠⎨⎪=⎩??FE C D BA AB DCE F??GG??FECDBA AB D CE F??∴△DEF≌△CEG(SAS)∴DF=CG,∠DFE=∠G∵DF=AC∴CG=AC∴∠G=∠CAE∴∠DFE=∠CAE∵DF∥AB∴∠DFE=∠BAE∴∠BAE=∠CAE∴AE平分∠BAC➢巩固练习1.已知:如图,在△ABC中,AB=4,AC=2,点D为BC边的中点,且AD是整数,则AD=________.A2.已知:如图,BD平分∠ABC交AC于D,点E为CD上一点,且AD=DE,EF∥BC交BD于F.求证:AB=EF.ADF ECBEFAD C3.已知:如图,在△ABC中,AD是BC边上的中线,分别以AB,AC为直角边向外作等腰直角三角形,AB=AE,AC=AF,∠BAE=∠CAF=90°.求证:EF=2AD.4.如图,在△ABC中,AB >AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.5.如图,在四边形ABCD中,AD∥BC,点E在BC上,点F是CD的中点,连接AF,EF,AE,若∠DAF=∠EAF,求证:GFE D CAFEDB CA➢ 思考小结1. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .比较下列两种不同的证明方法,并回答问题.方法1:如图,延长AD 到E ,使DE =AD ,连接BE 在△BDE 和△CDA 中BD CD BDE CDA DE DA =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) ∴AC =BE ,∠E =∠2 ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BECDB A21ECDBA方法2:如图,过点B 作BE ∥AC ,交AD 的延长线于点E ∵BE ∥AC∴∠E =∠2在△BDE 和△CDA 中2E BDE CDA BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (AAS ) ∴BE =AC ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =AC 相同点:两种方法都是通过辅助线构造全等,利用全等转移条件进而解决问题.方法1是看到中点考虑通过___________构造全等,方法2是通过平行夹中点构造全等. 不同点:倍长中线的方法在证明全等时,利用的判定是________,实质是构造了一组对应边相等;利用平行夹中点证明全等时,利用的判定是_____,实质是利用平行构造了一组_____相等.2. 利用“倍长中线”我们就可以证明直角三角形中非常重要的一个定理:直角三角形斜边中线等于斜边的一半.请你尝试进行证明.已知:如图,在Rt △ABC 中,∠BCA =90°,CD 是斜边AB 的中线.求证:CD 12=AB .DC21ECDB A【参考答案】➢巩固练习1. 22.证明略(提示:延长FD到点G,使得DG=DF,连接AG,证明△ADG≌△EDF,转角证明AB=EF)3.证明略(提示:延长AD到点G,使得GD=AD,连接CG,证明△ABD≌△GCD,△EAF≌△GCA)4.证明略(提示:延长FE到点H,使得EH=FE,连接CH,证明△BFE≌△CHE,转角证明BF=CG)5.证明略(提示:延长AF交BC的延长线于点G,证明△ADF≌△GCF,转角证明AF⊥EF)➢思考小结1.倍长中线SAS AAS 角2.证明略。
2020秋北师大版八年级数学上《第2章实数》习题集锦含答案解析
第2章实数一、选择题1.下面四个实数,你认为是无理数的是()A.B.C.3 D.0.32.下列四个数中,是负数的是()A.|﹣2|B.(﹣2)2C.﹣D.3.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④4.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+b B.﹣2a+b C.b D.2a﹣b5.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n6.下列说法:①5是25的算术平方根;②是的一个平方根;③(﹣4)2的平方根是﹣4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有()A.1个B.2个C.3个D.4个7.下列计算正确的是()A.=×B.=﹣C.=D.=8.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根9.下列各式正确的是()A.B.C.D.10.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为()A.3 B.4 C.5 D.6二、填空题11.﹣的相反数是.12.16的算术平方根是.13.写出一个比﹣3大的无理数是.14.化简﹣=.15.比较大小:2π(填“>”、“<”或“=”).16.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.17.若x,y为实数,且|x+2|+=0,则(x+y)2014的值为.18.已知m=,则m2﹣2m﹣2013=.三、解答题(共66分)19.(2012﹣π)0﹣()﹣1+|﹣2|+;(2)1+(﹣)﹣1﹣÷()0.20.先化简,再求值:(1)(a﹣2b)(a+2b)+ab3÷(﹣ab),其中a=,b=;(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.21.有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).22.计算:(1)++﹣;(2)2÷×;(3)(﹣4+3)÷2.23.甲同学用如图方法作出C点,表示数,在△OAB中,∠OAB=90°,OA=2,AB=3,且点O,A,C在同一数轴上,OB=OC(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所给数轴上描出表示﹣的点A.24.如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,,2.25.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=.②参照(三)式化简=.(2)化简: +++…+.参考答案与试题解析一、选择题1.下面四个实数,你认为是无理数的是()A.B.C.3 D.0.3【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:、3、0.3是有理数,是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列四个数中,是负数的是()A.|﹣2|B.(﹣2)2C.﹣D.【考点】实数的运算;正数和负数.【分析】根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项分析判断后利用排除法求解.【解答】解:A、|﹣2|=2,是正数,故本选项错误;B、(﹣2)2=4,是正数,故本选项错误;C、﹣<0,是负数,故本选项正确;D、==2,是正数,故本选项错误.故选C.【点评】本题考查了实数的运用,主要利用了绝对值的性质,有理数的乘方,以及算术平方根的定义,先化简是判断正、负数的关键.3.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.4.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+b B.﹣2a+b C.b D.2a﹣b【考点】二次根式的性质与化简;实数与数轴.【分析】现根据数轴可知a<0,b>0,而|a|>|b|,那么可知a+b<0,再结合二次根式的性质、绝对值的计算进行化简计算即可.【解答】解:根据数轴可知,a<0,b>0,原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选C.【点评】本题考查了二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性.5.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【考点】二次根式的性质与化简.【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.6.下列说法:①5是25的算术平方根;②是的一个平方根;③(﹣4)2的平方根是﹣4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有()A.1个B.2个C.3个D.4个【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根以及立方根逐一分析4条结论的正误,由此即可得出结论.【解答】解:①∵52=25,∴5是25的算术平方根,①正确;②∵=,∴是的一个平方根,②正确;③∵(±4)2=(﹣4)2,∴(﹣4)2的平方根是±4,③错误;④∵02=03=0,12=13=1,∴立方根和算术平方根都等于自身的数是0和1,正确.故选C.【点评】本题考查了方根、算术平方根以及立方根,解题的关键是根据算术平方根与平方根的定义找出它们的区别.7.下列计算正确的是()A.=×B.=﹣C.=D.=【考点】二次根式的混合运算.【分析】根据二次根式的性质对各个选项进行计算,判断即可.【解答】解:=×,A错误;=,B错误;是最简二次根式,C错误;=,D正确,故选:D.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质是解题的关键.8.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根【考点】估算无理数的大小.【分析】先根据数轴判断A的范围,再根据下列选项分别求得其具体值,选取最符合题意的值即可.【解答】解:根据数轴可知点A的位置在2和3之间,且靠近3,而=2,<2,2<=2<3,=2,只有8的算术平方根符合题意.故选C.【点评】此题主要考查了利用数轴确定无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.9.下列各式正确的是()A.B.C.D.【考点】二次根式的性质与化简.【分析】根据二次根式的运算性质化简.【解答】解:A、原式=,错误;B、被开方数不同,不能合并,错误;C、运用了平方差公式,正确;D、原式==,错误.故选C.【点评】本题考查了二次根式的化简,注意要化简成最简二次根式.10.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为()A.3 B.4 C.5 D.6【考点】估算无理数的大小.【分析】先求出+1的范围,再根据范围求出即可.【解答】解:∵3<<4,∴4<+1<5,∴[+1]=4,故选B.【点评】本题考查了估算无理数的大小的应用,关键是求出+1的范围.二、填空题11.﹣的相反数是.【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故答案为:.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.12.16的算术平方根是4.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.13.写出一个比﹣3大的无理数是如等(答案不唯一).【考点】实数大小比较.【分析】根据这个数即要比﹣3大又是无理数,解答出即可.【解答】解:由题意可得,﹣>﹣3,并且﹣是无理数.故答案为:如等(答案不唯一)【点评】本题考查了实数大小的比较及无理数的定义,任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.14.化简﹣=﹣.【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=2﹣3=﹣.【点评】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.15.比较大小:2<π(填“>”、“<”或“=”).【考点】实数大小比较.【分析】首先利用计算器分别求2和π的近似值,然后利用近似值即可比较求解.【解答】解:因为2≈2.828,π≈3.414,所以<π.【点评】本题主要考查了实数的大小的比较,主要采用了求近似值来比较两个无理数的大小.16.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【考点】平方根.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.17.若x,y为实数,且|x+2|+=0,则(x+y)2014的值为1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】先根据非负数的性质列出关于x、y方程组,然后解方程组求出x、y的值,再代入原式求解即可.【解答】解:由题意,得:,解得;∴(x+y)2014=(﹣2+3)2014=1;故答案为1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.18.已知m=,则m2﹣2m﹣2013=0.【考点】二次根式的化简求值.【分析】先分母有理化,再将m2﹣2m﹣2013变形为(m﹣1)2﹣2014,再代入计算即可求解.【解答】解:m==+1,则m2﹣2m﹣20130=(m﹣1)2﹣2014=(+1﹣1)2﹣2014=2014﹣2014=0.故答案为:0.【点评】此题考查了二次根式的化简求值,分母有理化,完全平方公式,二次根式的化简求值,一定要先化简再代入求值.三、解答题(共66分)19.(2012﹣π)0﹣()﹣1+|﹣2|+;(2)1+(﹣)﹣1﹣÷()0.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零指数幂和负整数指数幂的意义计算;(2)根据零指数幂、负整数指数幂和二次根式的意义计算.【解答】解:(1)原式=1﹣3+2﹣+=0;(2)原式=1﹣2﹣(2﹣)÷1=1﹣2﹣2+=﹣3.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.20.先化简,再求值:(1)(a﹣2b)(a+2b)+ab3÷(﹣ab),其中a=,b=;(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【考点】整式的混合运算—化简求值.【分析】(1)先算乘法和除法,再合并同类项,最后代入求出即可;(2)先算乘法和除法,再合并同类项,最后代入求出即可.【解答】解:(1)(a﹣2b)(a+2b)+ab3÷(﹣ab)=a2﹣4b2﹣b2=a2﹣5b2,当a=,b=时,原式=()2﹣5×()2=﹣13;(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=时,原式=﹣2.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.21.有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):A、D、E;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).【考点】实数的运算.【分析】(1)根据实数的乘法法则和有理数、无理数的定义即可求解;(2)根据(1)的结果可以得到规律.【解答】解:(1)A、D、E;注:每填对一个得,每填错一个扣,但本小题总分最少0分.(2)设这个数为x,则x=a(a为有理数),所以x=(a为有理数).(注:无“a为有理数”扣;写x=a视同x=)【点评】此题主要考查了实数的运算,也考查了有理数、无理数的定义,文字阅读比较多,解题时要注意审题,正确理解题意.22.计算:(1)++﹣;(2)2÷×;(3)(﹣4+3)÷2.【考点】二次根式的混合运算.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算;(3)先把各二次根式化简为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+5+﹣3=6+;(2原式=2×××=;(3)原式=(﹣2+6)÷2=(+4)÷2=+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.23.甲同学用如图方法作出C点,表示数,在△OAB中,∠OAB=90°,OA=2,AB=3,且点O,A,C在同一数轴上,OB=OC(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所给数轴上描出表示﹣的点A.【考点】实数与数轴;勾股定理.【分析】(1)依据勾股定理求得OB的长,从而得到OC的长,故此可得到点C表示的数;(2)由29=25+4,依据勾股定理即可做出表示﹣的点.【解答】解:(1)在Rt△AOB中,OB===,∵OB=OC,∴OC=.∴点C表示的数为.(2)如图所示:取OB=5,作BC⊥OB,取BC=2.由勾股定理可知:OC===.∵OA=OC=.∴点A表示的数为﹣.【点评】本题主要考查的是实数与数轴、勾股定理的应用,掌握勾股定理是解题的关键.24.如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,,2.【考点】勾股定理;二次根式的应用.【分析】(1)利用勾股定理得出AB,BC,AC的长,进而得出答案;(2)直接利用各边长结合勾股定理得出答案.【解答】解:(1)如图①所示:AB=4,AC==3,BC==,所以AB的长度是有理数,AC和BC的长度是无理数;(2)如图②所示:【点评】此题主要考查了勾股定理以及二次根式的应用,正确应用勾股定理是解题关键.25.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=﹣.②参照(三)式化简=﹣.(2)化简: +++…+.【考点】分母有理化.【分析】(1)原式各项仿照题中分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可得到结果.【解答】解:(1)①==﹣;②===﹣;(2)原式=+++…+==.故答案为:(1)①﹣;②﹣【点评】此题考查了分母有理化,熟练掌握分母有理化的方法是解本题的关键.第2章实数一、选择题(共20小题)1.下列四个式子中,x的取值范围为x≥2的是()A.B.C.D.2.若式子在实数范围内有意义,则x的取值范围是()A.x=1 B.x≥1 C.x>1 D.x<13.x取下列各数中的哪个数时,二次根式有意义()A.﹣2 B.0 C.2 D.44.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥25.要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠16.若在实数范围内有意义,则x的取值范围是()A.x>0 B.x>3 C.x≥3 D.x≤37.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥48.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤19.要使二次根式在实数范围内有意义,则x的取值范围是()A.x= B.x≠C.x≥D.x≤10.要使式子有意义,则a的取值范围为()A.B.C.D.11.若代数式有意义,则实数x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠3 C.x>﹣1 D.x>﹣1且x≠312.要使二次根式在实数范围内有意义,则实数x的取值范围是()A.x>2 B.x≥2 C.x>﹣2 D.x≥﹣213.函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠214.代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1 B.x≠1 C.x≥1且x≠﹣1 D.x≥﹣115.下列说法中,正确的是()A.当x<1时,有意义B.方程x2+x﹣2=0的根是x1=﹣1,x2=2C.的化简结果是D.a,b,c均为实数,若a>b,b>c,则a>c16.在式子,,,中,x可以取2和3的是()A.B.C.D.17.使代数式有意义的x的取值范围是()A.x≥0 B.﹣5≤x<5 C.x≥5 D.x≥﹣518.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠19.二次根式有意义,则实数x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<2 D.x≤220.要使式子有意义,则m的取值范围是()A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1二、填空题(共10小题)21.代数式在实数范围内有意义,则x的取值范围是.22.使二次根式有意义的x的取值范围是.23.使有意义的x的取值范围是.24.要使式子在实数范围内有意义,则x的取值范围是.25.使有意义的x的取值范围是.26.若,则(x+y)y= .27.二次根式在实数范围内有意义,则x的取值范围为.28.使式子1+有意义的x的取值范围是.29.已知x、y为实数,且y=﹣+4,则x﹣y= .30.若式子有意义,则实数x的取值范围是.参考答案与试题解析一、选择题(共20小题)1.下列四个式子中,x的取值范围为x≥2的是()A.B.C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数分别进行分析即可.【解答】解:A、x﹣2≥0,且x﹣2≠0,解得:x>2,故A错误;B、x﹣2>0,解得:x>2,故B错误;C、x﹣2≥0,解得x≥2,故C正确;D、2﹣x≥0,解得x≤2,故D错误;故选:C.【点评】此题主要考查了二次根式有意义的条件,以及分式有意义的条件,题目比较基础.2.若式子在实数范围内有意义,则x的取值范围是()A.x=1 B.x≥1 C.x>1 D.x<1【考点】二次根式有意义的条件.【分析】二次根式有意义:被开方数是非负数.【解答】解:由题意,得x﹣1≥0,解得,x≥1.故选B.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3. x取下列各数中的哪个数时,二次根式有意义()A.﹣2 B.0 C.2 D.4【考点】二次根式有意义的条件.【分析】二次根式的被开方数是非负数.【解答】解:依题意,得x﹣3≥0,解得,x≥3.观察选项,只有D符合题意.故选:D.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数,即可求解.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.故选:D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠1【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选:A.【点评】本题考查的知识点为:二次根式的被开方数是非负数.6.若在实数范围内有意义,则x的取值范围是()A.x>0 B.x>3 C.x≥3 D.x≤3【考点】二次根式有意义的条件.【专题】常规题型.【分析】先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.【解答】解:∵使在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.7.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥4【考点】二次根式有意义的条件.【分析】二次根式有意义,被开方数是非负数.【解答】解:依题意知,x﹣4≥0,解得x≥4.故选:D.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1【考点】二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的被开方数是非负数列出不等式x﹣1≥0,通过解该不等式即可求得x的取值范围.【解答】解:根据题意,得x﹣1≥0,解得,x≥1.故选:C.【点评】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.要使二次根式在实数范围内有意义,则x的取值范围是()A.x= B.x≠C.x≥D.x≤【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得5x﹣3≥0,再解不等式即可.【解答】解:由题意得:5x﹣3≥0,解得:x≥,故选:C.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.10.要使式子有意义,则a的取值范围为()A.B.C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】二次根式的被开方数是非负数,且分式的分母不等于0.【解答】解:依题意得1﹣2a>0,解得a<.故选:A.【点评】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.11.若代数式有意义,则实数x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠3 C.x>﹣1 D.x>﹣1且x≠3【考点】二次根式有意义的条件;分式有意义的条件.【专题】计算题.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+1≥0且x﹣3≠0,解得:x≥﹣1且x≠3.故选:B.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.要使二次根式在实数范围内有意义,则实数x的取值范围是()A.x>2 B.x≥2 C.x>﹣2 D.x≥﹣2【考点】二次根式有意义的条件.【分析】直接利用二次根式的概念.形如(a≥0)的式子叫做二次根式,进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+2≥0,解得:x≥﹣2,则实数x的取值范围是:x≥﹣2.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.13.函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠2【考点】二次根式有意义的条件.【分析】二次根式的被开方数大于等于零.【解答】解:依题意,得2﹣x≥0,解得 x≤2.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1 B.x≠1 C.x≥1且x≠﹣1 D.x≥﹣1【考点】二次根式有意义的条件;分式有意义的条件.【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【解答】解:依题意,得x+1≥0且x﹣1≠0,解得 x≥﹣1且x≠1.故选:A.【点评】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.下列说法中,正确的是()A.当x<1时,有意义B.方程x2+x﹣2=0的根是x1=﹣1,x2=2C.的化简结果是D.a,b,c均为实数,若a>b,b>c,则a>c【考点】二次根式有意义的条件;实数大小比较;分母有理化;解一元二次方程-因式分解法.【专题】代数综合题.【分析】根据二次根式有意义,被开方数大于等于0,因式分解法解一元二次方程,分母有理化以及实数的大小比较对各选项分析判断利用排除法求解.【解答】解:A、x<1,则x﹣1<0,无意义,故A错误;B、方程x2+x﹣2=0的根是x1=1,x2=﹣2,故B错误;C、的化简结果是,故C错误;D、a,b,c均为实数,若a>b,b>c,则a>c正确,故D正确.故选:D.【点评】本题考查了二次根式有意义的条件,实数的大小比较,分母有理化,以及因式分解法解一元二次方程,是基础题,熟记各概念以及解法是解题的关键.16.在式子,,,中,x可以取2和3的是()A.B.C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义:被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断.【解答】解:A、的分母不可以为0,即x﹣2≠0,解得:x≠2,故A错误;B、的分母不可以为0,即x﹣3≠0,解得:x≠3,故B错误;C、被开方数大于等于0,即x﹣2≥0,解得:x≥2,则x可以取2和3,故C正确;D、被开方数大于等于0,即x﹣3≥0,解得:x≥3,x不能取2,故D错误.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.17.使代数式有意义的x的取值范围是()A.x≥0 B.﹣5≤x<5 C.x≥5 D.x≥﹣5【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+5≥0,解得x≥﹣5.故选:D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.18.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.19.(2014•达州)二次根式有意义,则实数x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,﹣2x+4≥0,解得x≤2.故选:D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.20.要使式子有意义,则m的取值范围是()A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:,解得:m≥﹣1且m≠1.故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.二、填空题(共10小题)21.代数式在实数范围内有意义,则x的取值范围是x≥1 .。
2020学年八年级数学上册全一册同步练习(含解析)(打包26套)(新版)新人教版
第十一章 三角形第一节 与三角形有关的线段一、单选题(共10小题)1.(2017·山东乐安中学初一期中)如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°【答案】A 【解析】根据题意可得,在△ABC 中,,则, 又AD 为△ABC 的角平分线,又在△AEF 中,BE 为△ABC 的高 ∴ 考点:1、三角形的内角内角之和的关系 2、对顶角相等的性质.2.(2019·成都市武侯区西蜀实验学校初一期末)下列说法正确的有( )①同位角相等;②过直线外一点有且只有一条直线与这条直线平行;③相等的角是对顶角;④三角形两边长分别为3,5,则第三边c 的范围是28c ≤≤.A .1个B .2个C .3个D .4个 【答案】A【解析】分别判断①②③④是否正确即可解答.解:①同位角相等,错误;②过直线外一点有且只有一条直线与这条直线平行,正确;③相等的角是对顶角,错误;④三角形两边长分别为3,5,则第三边c 的范围是28c ≤≤,错误.故选:A.点睛:本题考查了三角形三边关系、同位角、对顶角、平行线的知识,熟练掌握是解题的关键.3.(2019·江西南昌二中初一期末)下列图中不具有稳定性的是( )A.B.C.D.【答案】B【解析】三角形不容易产生变化,因此三角形是最稳定的.四边形不具有稳定性,据此解答即可.解:根据三角形具有稳定性,四边形不具有稳定性可知四个选项中只有正方形不具有稳定性的.故选B.点睛:本题主要考查三角形的稳定性.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.(2019·富顺县赵化中学校初三中考真题)已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【答案】C【解析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.解:设第三边为x,根据三角形的三边关系,得:4-1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选C.点睛:此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.a的三条线段能组成一个三角形,则a的值可以是()5.(2019·浙江初三中考真题)若长度分别为,3,5A.1 B.2 C.3 D.8【答案】C【解析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.点睛:本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.6.(2019·重庆重庆十八中初一期中)如图,两个三角形的面积分别为16,9,若两阴影部分的面积分别为a、b(a>b),则(a﹣b)等于()A.8 B.7 C.6 D.5【答案】B【解析】可以设空白面积为x,然后三角形的面积列出关系式,相减即可得出答案.解:设空白面积为x,得a+x=16,b+x=9,则a-b=(a+c)-(b+c)=16-9=7,所以答案选择B项.点睛:本题考察了未知数的设以及方程的合并,熟悉掌握概念是解决本题的关键.7.(2019·贵州初三中考真题)在下列长度的三条线段中,不能组成三角形的是( )A.2cm,3cm,4cm B.3cm,6cm,76cmC.2cm,2cm,6cm D.5cm,6cm,7cm【答案】C【解析】根据三角形任意两边的和大于第三边,进行分析判断即可.解:A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形,故选C.点睛:本题考查了三角形构成条件,熟练掌握三角形三边关系是解题的关键.8.(2019·连云港市新海实验中学初一期中)现有两根木棒,它们的长分别为30cm和40cm,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A.10cm的木棒B.60cm的木棒C.70cm的木棒D.100cm的木棒【答案】B【解析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.解:解:根据三角形的三边关系,得:第三边应大于两边之差,即40−30=10;第三边应小于两边之和,即30+40=70.下列答案中,只有60符合条件.故选:B.点睛:熟练掌握构成三角形的条件是解题的关键.9.(2019·邢台市第十二中学初一期末)如图所示,△ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BD D.线段BC【答案】C【解析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.解:由图可知,ABC中AC边上的高线是BD.故选:C.点睛:掌握垂线的定义是解题的关键.10.(2019·山东济南十四中初一期末)如果等腰三角形两边长是6和3,那么它的周长是( )A.15或12 B.9 C.12 D.15【答案】D【解析】由已知可得第三边是6,故可求周长.【详解】另外一边可能是3或6,根据三角形三边关系,第三边是6,所以,三角形的周长是:6+6+3=15.故选:D【点睛】本题考核知识点:等腰三角形.解题关键点:分析等腰三角形三边的关系.二、填空题(共5小题)11.(2019·兰州市外国语学校初一期末)等腰三角形的周长为12cm,其中一边长为3cm,则该等腰三角形的腰长为___________.【答案】4.5cm【解析】此题要分情况考虑:3cm是底或3cm是腰.根据周长求得另一边,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,判断是否能够组成三角形.解:当3cm是底时,则腰长是(12−3)÷2=4.5(cm),此时能够组成三角形;当3cm是腰时,则底是12−3×2=6(cm),此时3+3=6,不能组成三角形,应舍去.故答案为:4.5cm点睛:此题考查等腰三角形的性质,三角形三边关系,解题关键在于分情况讨论12.(2019·乐清育英学校初中分校初一期中)如图,CD平分∠ACB,DE∥BC,∠AED=80°,则∠EDC的度数为___.【答案】40°.【解析】根据平行线的性质求出∠ACB,根据角平分线定义求出∠BCD,再根据平行线的性质即可求解. 解:∵DE∥BC,∠AED=80°,∴∠ACB=∠AED=80°,∵CD平分∠ACB,∴∠BCD=∠ACB=40°,∵DE∥BC,∴∠EDC=∠BCD=40°故答案为:40°点睛:本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.13.(2019·扬州市梅岭中学初一期中)若一个三角形的三条边的长分别是2,x,6,则整数x的值有__________个.【答案】3【解析】根据已知边长求第三边x的取值范围为:4<x<8,进而解答即可.解:解:设第三边长为xcm,则6-2<x<6+2,4<x<8,故x取5,6,7,故答案为:3点睛:本题考查三角形三边关系定理:三角形两边之和大于第三边.已知两边确定第三边的范围时,第三边的长大于已知两边的差,且小于已知两边的和.14.(2018·北京昌平中学初二期末)要使五边形木框不变形,应至少钉上_____根木条,这样做的依据是_____.【答案】2;三角形具有稳定性.【解析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解:因为三角形具有稳定性,再钉上两根木条,就可以使五边形分成三个三角形,故至少要再钉两根木条. 故答案为:2;三角形具有稳定性.点睛:本题考查的知识点是三角形的稳定性,解题的关键是熟练的掌握三角形的稳定性.15.(2019·江苏苏州中学初一期中)如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是7,则四边形CEFD的面积是____.【答案】7【解析】根据等底等高的三角形的面积相等可知三角形的中线把三角形分成面积相等的两个三角形,然后表示出S△ABE=S△ACD=12S△ABC,再表示出S△ABF与S四边形CEFD,即可得解.解:∵AD、BE是△ABC的中线,∴S△ABE=S△ACD=12S△ABC,∵S△ABF=S△ABE-S△AEF,S四边形CEFD=S△ACD-S△AEF,∴S△ABF=S四边形CEFD=7,故答案为:7.点睛:本题考查了三角形的面积,熟记三角形的中线把三角形分成面积相等的两个三角形是解题的关键.三、解答题(共2小题)16.(2019·长春吉大附中实验学校初一期中)在5×5的正方形网格中,每个小正方形的边长均为1,点A、B在网格格点上,若点C也在网格格点上,分别在下面的3个图中画出△ABC使其面积为2(形状完全相同算一种).【答案】见解析【解析】根据三角形的面积为2构造底和高即可求解.解:如图所示.点睛:此题主要考查网格的作图,解题的关键是根据面积公式构造底和高.17.(2019·兰州市第三十五中学初一期中)如图,直线AB,CD相交于点O,OE平分∠AOD,FO⊥OD于O,∠1=40°,试求∠2和∠4的度数。