单一同态同构映射

合集下载

线性空间的同构与同态

线性空间的同构与同态

线性空间的同构与同态线性空间是很多高阶数学领域所需要用到的基本概念,因此在线性代数的学习中,我们不得不对线性空间基本的性质、定义、等价性、基础定理等有一个深刻的理解。

当然,线性空间的同构与同态作为线性变换的代名词,也是我们学习线性空间理论时,需要重点关注的。

一、线性空间同构同构,是数学中一个十分重要的概念。

它指的是两个结构相同、具有相同性质的数学对象。

更准确地说,如果两个集合之间存在一一对应,且它们之间的映射不仅是单射还是满射,那么这两个集合就是同构的。

对于线性空间,它满足向量的加法和数量的乘法这两个运算规则,因此,我们可以要求用以下方式定义两个线性空间的同构:定义:若存在双射映射$f:V\to W$,并满足:1. $\forall u,v\in V$,有$f(u+v)=f(u)+f(v)$。

2. $\forall u\in V$和$c\in F$,有$f(cu)=cf(u)$。

则称线性空间$V$和$W$之间存在同构,称$f$为同构映射。

其中,$F$是一个数域,它是一个固定的标量(标量乘法满足分配律、结合律、单位元和逆元等基本性质)。

同构可以理解为两个向量空间“外形”相同,尽管它们之间的标量乘法、向量加法的具体运算方式可能不同。

关于线性空间同构,我们有如下三个重要结论:(1)同构是一种双射关系,即两个线性空间同构当且仅当它们的维度相等。

(2)两个线性空间同构,则它们必须同构于数域$F$上的$n$维线性空间$F^n$。

(3)两个线性空间同构,当且仅当它们的基底个数相等。

通过上述结论,我们可以发现,实际上同构所关注的是两个线性空间的向量基。

只有当两个线性空间的维度相等、同构映射满足条件时,它们才是同构的。

因此,为了构造同构映射,我们通常需要找到两个向量空间之间的一个映射,满足一一对应、线性、满射的性质,这样才能实现同构。

二、线性空间同态同态是另一个重要的概念。

它们也是线性代数中常用的术语,他们主要与线性空间中的变换相关。

离散数学-同态和同构

离散数学-同态和同构

离散算法设计
同态和同构可以用于设计高效的离散算法, 如通过同态映射将问题转化为易于处理的数
学形式,从而降低计算复杂度。
05
同态和同构的实例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
二次方程的同态和同构分析
要点一
总结词
要点二
详细描述
在二次方程中,同态和同构的概念主要应用于方程的变形 和等价分类。
拓扑同构映射保持了原拓扑空间中的拓扑性质,即如果映射$f: X rightarrow Y$是 拓扑空间$X, Y$之间的同构映射,那么对于任意子集$U subseteq X$,有$f(U)$是 $Y$中的开集当且仅当$U$是$X$中的开集。
保持连通性
拓扑同构映射保持了原拓扑空间中的连通性,即如果映射$f: X rightarrow Y$是拓 扑空间$X, Y$之间的同构映射,那么对于任意子集$A subseteq X, B subseteq Y$, 有$(A subseteq B) Leftrightarrow (f(A) subseteq f(B))$。
逻辑同构的性质
保持逻辑关系
逻辑同构映射保持了原逻辑系统中的逻辑关系,即如果映射$f: L_1 rightarrow L_2$是逻辑系统$L_1, L_2$之间的同构映射,那么对于任意命题$varphi in L_1, psi in L_2$,有$(L_1 models varphi) Leftrightarrow (L_2 models psi)$。
的。
同构的性质
同构是一种更强的相似性关系,它不仅保持了群的基本运算性质,还要求存在一个双射 的映射。这意味着原始群和目标群在某种程度上是完全相同的。

同构映射的定义同构映射的定义

同构映射的定义同构映射的定义

§6.8 线性空间的同构一、同构映射的定义一、同构映射的定义二、同构的有关结论我们知道,在数域P 上的n 维线性空间V 中取定一组基后,V 中每一个向量有唯一确定的坐标向量的坐标是P 上的n 元数组,因此属于P n . 这样一来,取定了V 的一组基对于V 中每一个向量,令在这组基下的坐标与对应,就得到V 到P n 的一个单射反过来,对于P n 中的任一元素是V 中唯一确定的元素,并且即也是满射.因此,是V 到P n 的一一对应.引入12(,,,),n a a a L α12,,,,n εεεL αα12(,,,)n a a a L α12:,(,,,)n n V P a a a σα→a L 12(,,,),n a a a L 1122n na a a αεεε=+++L 12()(,,,),n a a a σα=L σσ这个对应的重要必性表现在它与运算的关系上.任取设,,V αβ∈12()(,,,)n b b b σβ=L 1122,n n a a a αεεε=+++L 1122n n b b b βεεε=+++L 12()(,,),n a a a σα=L 则1122()(,,)n n a b a b a b σαβ+=+++L 12()(,,)n k ka ka ka k Pσα=∀∈L 归结为它们的坐标的运算.这就是说,向量用坐标表示后,它们的运算可以1212(,,)(,,,)()()n n a a a b b b σασβ=+=+L L 12(,,)(),n k a a a k σα==L 从而一、同构映射的定义设都是数域P 上的线性空间,如果映射,V V ′具有以下性质:V V σ′→:则称的一个同构映射,并称线性空间V V σ′是到同构,记作V V ′与.V V ′≅ii) ()()(),,V σαβσασβαβ+=+∀∈iii) ()(),,k k k P V σασαα=∀∈∀∈i) 为双射σ为V 的一组基,则前面V 到P n 的一一对应例1 V 为数域P 上的n 维线性空间,12,,,n εεεL :,nV P σ→12(,,,)n a a a αa L V α∀∈这里为在基下的坐标,α12(,,,)n a a a L 12,,,n εεεL 就是一个V 到P n 的同构映射,所以.nV P ≅1 数域P 上任一n 维线性空间都与P n 同构.二、同构的有关结论同构映射,则有()()()00,.σσασα=−=−1)2 设是数域P 上的线性空间,的V V σ′是到,V V ′2)1122()r r k k k σααα+++L 1122()()(),r r k k k σασασα=+++L ,,1,2,,.i i V k P i r α∈∈=L线性相关(线性无关).3)V 中向量组线性相关(线性无关)12,,,r αααL 的充要条件是它们的象12(),(),,()r σασασαL 4)dim dim .V V ′=5)的逆映射为的同构映射.V V σ′→:1σ−V V ′到是的子空间,且V ′dim dim ().W W σ=(){()}W W σσαα=∈6)若W 是V 的子空间,则W 在下的象集σ中分别取即得01,k k ==−与()()()00,σσασα=−=−证:1)在同构映射定义的条件iii)()()k k σασα=2)这是同构映射定义中条件ii)与iii)结合的结果.3)因为由11220r r k k k ααα+++=L 可得1122()()()0r r k k k σασασα+++=L 反过来,由1122()()()0r r k k k σασασα+++=L 可得1122()0.r r k k k σααα+++=L而是一一对应,只有σ(0)0.σ=所以可得11220.r r k k k ααα+++=L 因此,线性相关(线性无关)12,,,r αααL 12(),(),,()r σασασα⇔L 线性相关(线性无关).4)设为V 中任意一组基.12,d ,,im ,n V n εεε=L 由2)3)知,为的一组基.σ12(),(),,()n σεσεσεL 所以dim dim .V n V ′==11(())()σσαβσσαβαβ−−′′′′′′+=+=+o 任取,,V αβ′′′∈11,,V V I I σσσσ−−′==o o I 为恒等变换.1111()()(())(())σσασσβσσασσβ−−−−′′′′=+=+o o 11(()())σσασβ−−′′=+5)首先是1-1对应,并且1:V V σ−′→同理,有11()(),,k k V k P σασαα−−′′′′=∀∈∀∈所以,为的同构映射.1σ−V V ′到σ再由是单射,有111()()()σαβσασβ−−−′′′′+=+σ6)首先,()()W V V σσ′⊆=()()(),W W σσσ∈∴≠∅Q 且0=0其次,对有W 中的向量(),,W αβσ′′∀∈,αβ使()(),.σαασββ′′==于是有()()()αβσασβσαβ′′+=+=+()(),k k k k Pασασα′==∀∈由于W 为子空间,所以,.W k W αβα+∈∈从而有()(),.W k W αβσασ′′′+∈∈由2可知,同构映射保持零元、负元、线性组合dim dim ().W W σ=故所以是的子空间.V ′()W σ()W W σ≅显然,也为W 到的同构映射,即()W σσ注及线性相关性,并且同构映射把子空间映成子空间.证:设为线性空间的同构,:V V V V στ′′′′→→:3 两个同构映射的乘积还是同构映射.()()()()τσαβτσασβ+=+o ()()()()()()τσατσβτσατσβ=+=+o o ()()()()()k k k τσατσατσα==o ()()()k k τσατσα==o 任取,,V k P αβ∈∈,有映射,则乘积是的1-1对应.V V ′′到τσo 所以,乘积是的同构映射.V V ′′到τσo同构关系具有:反身性:对称性:传递性:注,V V V V V V σττσ′′′′′′≅≅⇒≅o VI V V≅1V V V Vσσ−′′≅⇒≅4 数域P 上的两个有限维线性空间同构12,V V 12dim dim .V V ⇔=证:""⇒""⇐若由性质2之4)即得12,V V ≅12dim dim .V V =(法一)若12dim dim ,V V =12.V V ∴≅由性质1,有12,n nV P V P ≅≅设分别为V 1,V 2的一组基.1221,,;,,n n e e e εεεL L 定义使12:,V V σ→11221,n n a a a V αεεε∀=+++∈L 1122()n na e a e a e σα=+++L 则就是V 1到V 2的一个映射.σ(法二:构造同构映射)""⇐又任取设11,,n ni i i i i i a b αεβε====∑∑1,,V αβ∈1,2,,,i n =L 从而,所以是单射..αβ=σ若即则()(),σασβ=11,n n i i i i i i a e b e ===∑∑,i i a b =任取设2,V α′∈1,ni i i a e α=′=∑所以是满射.σ再由的定义,有σ(),1,2,,i i e i n σε==L ()()(),σαβσασβ+=+()(),k k σασα=易证,对有1,,k P V αβ∀∀∈∈12.V V ≅所以是V 1到V 2的一个同构映射,故σ则有使11,n i i i a V αε==∈∑().σαα′=例2 把复数域看成实数域R 上的线性空间,证法一:证维数相等证明:2C R ≅首先,可表成1,,x a bi a b R =+∈,x C x ∀∈其次,若则0.a bi ab =1+=0,=所以,1,i 为C 的一组基,dim 2.C =又,2dim 2R =2dim dim .C R =所以,12.V V ≅故,证法二构造同构映射则为C 到R 2的一个同构映射.σ作对应()()2:,,.C R a bi a b σσ→+=作成实数域R 上的线性空间.把实数域R 看成是自身上的线性空间.,ka b ab k a a⊕==o 例3 全体正实数R +关于加法⊕与数量乘法:o 证明:并写出一个同构映射. ,R R +≅证作对应():,ln ,R R a a a R σσ++→=∀∈易证为的1-1对应.σR R +到且对有,,,a b R k R +∀∈∀∈()()()()ln ln ln a b ab ab a b a b σσσσ⊕===+=+()()()ln ln kk k a a a k a k a σσσ====o 所以,为的同构映射.σR R +到故.R R +≅方法二作对应():,,x R R x e x R ττ+→=∀∈易证:为的1-1对应,而且也为同构映射.R R +到τ事实上,为的逆同构映射.τσ2)证明:复数域C 看成R 上的线性空间与W 同构,设集合(){},a b W a b R b a =∈−练习1)证明:W 为的子空间,并求出W 的维数22R×与一组基.并写出一个同构映射.。

同构映射的定义同构映射的定义

同构映射的定义同构映射的定义

§6.8 线性空间的同构一、同构映射的定义一、同构映射的定义二、同构的有关结论我们知道,在数域P 上的n 维线性空间V 中取定一组基后,V 中每一个向量有唯一确定的坐标向量的坐标是P 上的n 元数组,因此属于P n . 这样一来,取定了V 的一组基对于V 中每一个向量,令在这组基下的坐标与对应,就得到V 到P n 的一个单射反过来,对于P n 中的任一元素是V 中唯一确定的元素,并且即也是满射.因此,是V 到P n 的一一对应.引入12(,,,),n a a a L α12,,,,n εεεL αα12(,,,)n a a a L α12:,(,,,)n n V P a a a σα→a L 12(,,,),n a a a L 1122n na a a αεεε=+++L 12()(,,,),n a a a σα=L σσ这个对应的重要必性表现在它与运算的关系上.任取设,,V αβ∈12()(,,,)n b b b σβ=L 1122,n n a a a αεεε=+++L 1122n n b b b βεεε=+++L 12()(,,),n a a a σα=L 则1122()(,,)n n a b a b a b σαβ+=+++L 12()(,,)n k ka ka ka k Pσα=∀∈L 归结为它们的坐标的运算.这就是说,向量用坐标表示后,它们的运算可以1212(,,)(,,,)()()n n a a a b b b σασβ=+=+L L 12(,,)(),n k a a a k σα==L 从而一、同构映射的定义设都是数域P 上的线性空间,如果映射,V V ′具有以下性质:V V σ′→:则称的一个同构映射,并称线性空间V V σ′是到同构,记作V V ′与.V V ′≅ii) ()()(),,V σαβσασβαβ+=+∀∈iii) ()(),,k k k P V σασαα=∀∈∀∈i) 为双射σ为V 的一组基,则前面V 到P n 的一一对应例1 V 为数域P 上的n 维线性空间,12,,,n εεεL :,nV P σ→12(,,,)n a a a αa L V α∀∈这里为在基下的坐标,α12(,,,)n a a a L 12,,,n εεεL 就是一个V 到P n 的同构映射,所以.nV P ≅1 数域P 上任一n 维线性空间都与P n 同构.二、同构的有关结论同构映射,则有()()()00,.σσασα=−=−1)2 设是数域P 上的线性空间,的V V σ′是到,V V ′2)1122()r r k k k σααα+++L 1122()()(),r r k k k σασασα=+++L ,,1,2,,.i i V k P i r α∈∈=L线性相关(线性无关).3)V 中向量组线性相关(线性无关)12,,,r αααL 的充要条件是它们的象12(),(),,()r σασασαL 4)dim dim .V V ′=5)的逆映射为的同构映射.V V σ′→:1σ−V V ′到是的子空间,且V ′dim dim ().W W σ=(){()}W W σσαα=∈6)若W 是V 的子空间,则W 在下的象集σ中分别取即得01,k k ==−与()()()00,σσασα=−=−证:1)在同构映射定义的条件iii)()()k k σασα=2)这是同构映射定义中条件ii)与iii)结合的结果.3)因为由11220r r k k k ααα+++=L 可得1122()()()0r r k k k σασασα+++=L 反过来,由1122()()()0r r k k k σασασα+++=L 可得1122()0.r r k k k σααα+++=L而是一一对应,只有σ(0)0.σ=所以可得11220.r r k k k ααα+++=L 因此,线性相关(线性无关)12,,,r αααL 12(),(),,()r σασασα⇔L 线性相关(线性无关).4)设为V 中任意一组基.12,d ,,im ,n V n εεε=L 由2)3)知,为的一组基.σ12(),(),,()n σεσεσεL 所以dim dim .V n V ′==11(())()σσαβσσαβαβ−−′′′′′′+=+=+o 任取,,V αβ′′′∈11,,V V I I σσσσ−−′==o o I 为恒等变换.1111()()(())(())σσασσβσσασσβ−−−−′′′′=+=+o o 11(()())σσασβ−−′′=+5)首先是1-1对应,并且1:V V σ−′→同理,有11()(),,k k V k P σασαα−−′′′′=∀∈∀∈所以,为的同构映射.1σ−V V ′到σ再由是单射,有111()()()σαβσασβ−−−′′′′+=+σ6)首先,()()W V V σσ′⊆=()()(),W W σσσ∈∴≠∅Q 且0=0其次,对有W 中的向量(),,W αβσ′′∀∈,αβ使()(),.σαασββ′′==于是有()()()αβσασβσαβ′′+=+=+()(),k k k k Pασασα′==∀∈由于W 为子空间,所以,.W k W αβα+∈∈从而有()(),.W k W αβσασ′′′+∈∈由2可知,同构映射保持零元、负元、线性组合dim dim ().W W σ=故所以是的子空间.V ′()W σ()W W σ≅显然,也为W 到的同构映射,即()W σσ注及线性相关性,并且同构映射把子空间映成子空间.证:设为线性空间的同构,:V V V V στ′′′′→→:3 两个同构映射的乘积还是同构映射.()()()()τσαβτσασβ+=+o ()()()()()()τσατσβτσατσβ=+=+o o ()()()()()k k k τσατσατσα==o ()()()k k τσατσα==o 任取,,V k P αβ∈∈,有映射,则乘积是的1-1对应.V V ′′到τσo 所以,乘积是的同构映射.V V ′′到τσo同构关系具有:反身性:对称性:传递性:注,V V V V V V σττσ′′′′′′≅≅⇒≅o VI V V≅1V V V Vσσ−′′≅⇒≅4 数域P 上的两个有限维线性空间同构12,V V 12dim dim .V V ⇔=证:""⇒""⇐若由性质2之4)即得12,V V ≅12dim dim .V V =(法一)若12dim dim ,V V =12.V V ∴≅由性质1,有12,n nV P V P ≅≅设分别为V 1,V 2的一组基.1221,,;,,n n e e e εεεL L 定义使12:,V V σ→11221,n n a a a V αεεε∀=+++∈L 1122()n na e a e a e σα=+++L 则就是V 1到V 2的一个映射.σ(法二:构造同构映射)""⇐又任取设11,,n ni i i i i i a b αεβε====∑∑1,,V αβ∈1,2,,,i n =L 从而,所以是单射..αβ=σ若即则()(),σασβ=11,n n i i i i i i a e b e ===∑∑,i i a b =任取设2,V α′∈1,ni i i a e α=′=∑所以是满射.σ再由的定义,有σ(),1,2,,i i e i n σε==L ()()(),σαβσασβ+=+()(),k k σασα=易证,对有1,,k P V αβ∀∀∈∈12.V V ≅所以是V 1到V 2的一个同构映射,故σ则有使11,n i i i a V αε==∈∑().σαα′=例2 把复数域看成实数域R 上的线性空间,证法一:证维数相等证明:2C R ≅首先,可表成1,,x a bi a b R =+∈,x C x ∀∈其次,若则0.a bi ab =1+=0,=所以,1,i 为C 的一组基,dim 2.C =又,2dim 2R =2dim dim .C R =所以,12.V V ≅故,证法二构造同构映射则为C 到R 2的一个同构映射.σ作对应()()2:,,.C R a bi a b σσ→+=作成实数域R 上的线性空间.把实数域R 看成是自身上的线性空间.,ka b ab k a a⊕==o 例3 全体正实数R +关于加法⊕与数量乘法:o 证明:并写出一个同构映射. ,R R +≅证作对应():,ln ,R R a a a R σσ++→=∀∈易证为的1-1对应.σR R +到且对有,,,a b R k R +∀∈∀∈()()()()ln ln ln a b ab ab a b a b σσσσ⊕===+=+()()()ln ln kk k a a a k a k a σσσ====o 所以,为的同构映射.σR R +到故.R R +≅方法二作对应():,,x R R x e x R ττ+→=∀∈易证:为的1-1对应,而且也为同构映射.R R +到τ事实上,为的逆同构映射.τσ2)证明:复数域C 看成R 上的线性空间与W 同构,设集合(){},a b W a b R b a =∈−练习1)证明:W 为的子空间,并求出W 的维数22R×与一组基.并写出一个同构映射.。

同构映射的定义同构映射的定义

同构映射的定义同构映射的定义

同构映射的定义同构映射的定义§6.8 线性空间的同构一、同构映射的定义一、同构映射的定义二、同构的有关结论我们知道,在数域P 上的n 维线性空间V 中取定一组基后,V 中每一个向量有唯一确定的坐标向量的坐标是P 上的n 元数组,因此属于P n . 这样一来,取定了V 的一组基对于V 中每一个向量,令在这组基下的坐标与对应,就得到V 到P n 的一个单射反过来,对于P n 中的任一元素是V 中唯一确定的元素,并且即也是满射.因此,是V 到P n 的一一对应.引入12(,,,),n a a a L α12,,,,n εεεL αα12(,,,)n a a a L α12:,(,,,)n n V P a a a σα→a L 12(,,,),n a a a L 1122n na a a αεεε=+++L 12()(,,,),n a a a σα=L σσ这个对应的重要必性表现在它与运算的关系上.任取设,,V αβ∈12()(,,,)n b b b σβ=L 1122,n n a a a αεεε=+++L 1122n n b b b βεεε=+++L 12()(,,),n a a a σα=L 则1122()(,,)n n a b a b a b σαβ+=+++L 12()(,,)n k ka ka ka k Pσα=?∈L 归结为它们的坐标的运算.这就是说,向量用坐标表示后,它们的运算可以1212(,,)(,,,)()()n n a a a b b b σασβ=+=+L L 12(,,)(),n k a a a k σα==L 从而一、同构映射的定义设都是数域P 上的线性空间,如果映射,V V ′具有以下性质:V V σ′→:则称的一个同构映射,并称线性空间V V σ′是到同构,记作V V ′与.V V ′?ii) ()()(),,V σαβσασβαβ+=+?∈iii) ()(),,k k k P Vσασαα=?∈?∈i) 为双射σ为V 的一组基,则前面V 到P n 的一一对应例1 V 为数域P 上的n 维线性空间,12,,,n εεεL :,nV P σ→12(,,,)n a a a αa L V α?∈这里为在基下的坐标,α12(,,,)n a a a L 12,,,n εεεL 就是一个V 到P n 的同构映射,所以.nV P ?1 数域P 上任一n 维线性空间都与P n 同构.二、同构的有关结论同构映射,则有()()()00,.σσασα=?=?1)2 设是数域P 上的线性空间,的V V σ′是到,V V ′2)1122()r r k k k σααα+++L 1122()()(),r r k k k σασασα=+++L ,,1,2,,.i i V k P i r α∈∈=L线性相关(线性无关).3)V 中向量组线性相关(线性无关)12,,,r αααL 的充要条件是它们的象12(),(),,()r σασασαL 4)dim dim .V V ′=5)的逆映射为的同构映射.V V σ′→:1σ?V V ′到是的子空间,且V ′dim dim ().W W σ=(){()}W W σσαα=∈6)若W 是V 的子空间,则W 在下的象集σ中分别取即得01,k k ==?与()()()00,σσασα=?=?证:1)在同构映射定义的条件iii)()()k k σασα=2)这是同构映射定义中条件ii)与iii)结合的结果.3)因为由11220r r k k k ααα+++=L 可得1122()()()0r r k k k σασασα+++=L 反过来,由1122()()()0r r k k k σασασα+++=L 可得1122()0.r r k k k σααα+++=L而是一一对应,只有σ(0)0.σ=所以可得11220.r r k k k ααα+++=L 因此,线性相关(线性无关)12,,,r αααL 12(),(),,()r σασασα?L 线性相关(线性无关).4)设为V 中任意一组基.12,d ,,im ,n V n εεε=L 由2)3)知,为的一组基.σ12(),(),,()n σεσεσεL 所以dim dim .V n V ′==11(())()σσαβσσαβαβ??′′′′′′+=+=+o 任取,,V αβ′′′∈11,,V V I I σσσσ??′==o o I 为恒等变换.1111()()(())(())σσασσβσσασσβ′′′′=+=+o o 11(()())σσασβ??′′=+5)首先是1-1对应,并且1:V V σ?′→同理,有11()(),,k k V k Pσασαα??′′′′=?∈?∈所以,为的同构映射.1σ?V V ′到σ再由是单射,有111()()()σαβσασβ′′′′+=+σ6)首先,()()W V V σσ′=()()(),W W σσσ∈∴≠?Q 且0=0其次,对有W 中的向量(),,W αβσ′′?∈,αβ使()(),.σαασββ′′==于是有()()()αβσασβσαβ′′+=+=+()(),k k k k Pασασα′==?∈由于W 为子空间,所以,.W k W αβα+∈∈从而有()(),.W k W αβσασ′′′+∈∈由2可知,同构映射保持零元、负元、线性组合dim dim ().W W σ=故所以是的子空间.V ′()W σ()W W σ?显然,也为W 到的同构映射,即()W σσ注及线性相关性,并且同构映射把子空间映成子空间.证:设为线性空间的同构,:V V V V στ′′′′→→:3 两个同构映射的乘积还是同构映射.()()()()τσαβτσασβ+=+o ()()()()()()τσατσβτσατσβ=+=+o o ()()()()() k k k τσατσατσα==o ()()()k k τσατσα==o 任取,,V k P αβ∈∈,有映射,则乘积是的1-1对应.V V ′′到τσo 所以,乘积是的同构映射.V V ′′到τσo同构关系具有:反身性:对称性:传递性:注,V V V V V V σττσ′′′′′′o VI V V1V V V Vσσ?′′4 数域P 上的两个有限维线性空间同构12,V V 12dim dim .V V ?=证:""?""?若由性质2之4)即得12,V V ?12dim dim .V V =(法一)若12dim dim ,V V =12.V V ∴?由性质1,有12,n nV P V P ??设分别为V 1,V 2的一组基.1221,,;,,n n e e e εεεL L 定义使12:,V V σ→11221,n n a a a V αεεε?=+++∈L 1122()n na e a e a e σα=+++L 则就是V 1到V 2的一个映射.σ(法二:构造同构映射)""?又任取设11,,n ni i i i i i a b αεβε====∑∑1,,V αβ∈1,2,,,i n =L 从而,所以是单射..αβ=σ若即则()(),σασβ=11,n n i i i i i i a e b e ===∑∑,i i a b =任取设2,V α′∈1,ni i i a e α=′=∑所以是满射.σ再由的定义,有σ(),1,2,,i i e i n σε==L ()()(),σαβσασβ+=+()(),k k σασα=易证,对有1,,k P V αβ??∈∈12.V V ?所以是V 1到V 2的一个同构映射,故σ则有使11,n i i i a V αε==∈∑().σαα′=例2 把复数域看成实数域R 上的线性空间,证法一:证维数相等证明:2C R ?首先,可表成1,,x a bi a b R =+∈,x C x ?∈其次,若则0.a bi ab =1+=0,=所以,1,i 为C 的一组基,dim 2.C =又,2dim 2R =2dim dim .C R =所以,12.V V ?故,证法二构造同构映射则为C 到R 2的一个同构映射.σ作对应()()2:,,.C R a bi a b σσ→+=作成实数域R 上的线性空间. 把实数域R 看成是自身上的线性空间.,ka b ab k a a⊕==o 例3 全体正实数R +关于加法⊕与数量乘法:o 证明:并写出一个同构映射. ,R R +?。

同构及同态在代数中的应用论文

同构及同态在代数中的应用论文

同构及同态在代数中的应用摘要:在近世代数的主要内容是研究所谓代数系统,即带有运算的集合,而在近世代数中同态与同构又是其一等重要的概念,在近世代数中有重要的作用。

在不同的代数系统中同态成为同构的条件不同,本文给出了同态成为同构的条件,论述了同构在不同代数系统上的一些应用,从中说明了同态与同构的重要性。

关键词:同态;同构;群;环1 代数系统的同态与同构1.1同态映射及同态的定义一个A 到A 的映射φ,叫做一个对于代数运算 和 来说的,A 到A 的同态映射,假如,在φ之下,不管a 和b 是A 的哪两个元,只要a a →,b b →就有 a b a b →定义1:假如对于代数运算 和 来说,就有一个A 到A 的满射的同态映射存在,我们就说,这个映射是一个同态满射,并说,对于代数运算 和 来说,A 与A 同态。

定义2: 我们说,一个A 与A 间的一一映射φ是一个对于代数运算 与 来说的,A 与A 间的同构映射(简称同构),假如在φ之下,不管a ,b 是A 的哪两个元,只要a a →,b b →就有 a b a b →1.2同态与同构的联系1)从定义上看2)一个无限集可以与它的子集同态或同构,但一个有限集只能与它的子集同态而不能同构关于代数系统的同态有以下定理:定理1 :假定,对于代数运算 和 来说,A 与A 同态。

那么,(1)若 适合结合律, 也适合结合律;(2)若 适合交换律, 也适合交换律。

定理2:假定,⊗,⊕都是集合A 的代数运算,⊗,⊕都是集合A 的代数运算,并且存在一个A 到A 的满射φ,使得A 与A 对于代数运算⊗,⊗来说同态,对于代数运算⊕,⊕来说也同态。

那么,(1)若⊗,⊕适合第一分配律,⊗,⊕也适合第一分配律;(2)若⊗,⊕适合第二分配律,⊗,⊕也适合第二分配律。

2群的同态与同构2.1群的同态与同构定义定义3: 给定群(),G 和群(),G ⨯称集G 到集G 的一个映射φ:G G →是群G 到群G 的一个同态映射(简称同态),如果对任意a ,b ∈G ,有()()()a b a b φφφ=⨯当φ是单(满)射时,称φ为单(满)同态;当φ是一一映射时,称φ为G 与G 间的同构映射(简称同构,记为G G ≅); 当φ是群G 到群G 得一个同态时,令ker φ={x G ∈|()x e φ'=,e '是G 的单位元},称之为φ的核。

同态与同构

离散结构同态与同构教学目标基本要求(1)掌握同态映射与同构映射的定义(2)掌握同态映射与同构映射的判定方法重点难点(1)同态映射的证明同态映射定义:设V1=<A,∘>和V2=<B,∗>是同类型的代数系统,f:A→B,且∀x, y∈A 有f(x∘y) = f(x)∗f(y), 则称f 是V1到V2的同态映射,简称同态.同态分类:(1) 如果f是单射,则称为单同态(2) 如果f是满射,则称为满同态,这时称V2是V1的同态像,记作V1∼ V2(3) 如果f是双射,则称为同构,也称代数系统V1同构于V2,记作V1 ≅ V2(4) 如果V1 = V2,则称作自同态实例例:设G为非0实数集R*关于普通乘法构成的代数系统,判断下述函数是否为G的自同态?如果不是,说明理由. 如果是,判别它们是否为单同态、满同态、同构.(1) f(x) = |x| +1(2) f(x) = |x|(3) f(x) = 0(4) f(x) = 2解:(1) 不是同态, 因为f(2×2)=f(4)=5, f(2)×f(2)=3×3=9(2) 是同态,不是单同态,也不是满同态,因为f(1)= f(−1), 且 ran f中没有负数.(3) 不是G 的自同态,因为f不是 G 到 G 的函数实例例:(1) 设V1=<Z,+>, V2=<Z n,⊕>.其中Z为整数集,+为普通加法;Z n={0,1,…,n−1},⊕为模n,f (x)=(x)mod n加. 令f: Z→Znf 是V1到V2的满同态.【f满射,f(x1+x2)=(x1+x2)mod n=(x1 mod n )⊕(x2 mod n)=f(x1)⊕f(x2)】(2) 设V1=<R,+>, V2=<R*,· >,其中R和R*分别为实数集与非零实数集,+ 和 · 分别表示普通加法与乘法.令f: R→R*,f (x)= e xf是V1到V2的单同态. 【f单射,f(x1+x2)=e(x1+x2)=e x1· e x2=f(x1) · f(x2)】(3) 设V=<Z,+>,其中Z为整数集,+为普通加法. ∀a∈Z,令f a : Z→Z,f a (x)=ax,f a 是V的自同态. 【f(x1+x2)=a(x1+x2)=ax1+ax2=f(x1)+f(x2)】当a=0时称f为零同态;为自同构;当a=±1时,称fa例. 证明<Z4,+4>与<X, >同构。

群论中的同态映射与同构定理解析

群论中的同态映射与同构定理解析群论是数学中的一个重要分支,研究的是代数结构中的群以及群之间的映射和关系。

在群论中,同态映射与同构定理是两个基本概念,它们在研究群的结构和性质时起到了关键作用。

本文将对群论中的同态映射与同构定理进行解析。

一、同态映射同态映射是指保持群运算结构的映射。

设有两个群G和H,若映射φ:G→H满足对于任意的g1,g2∈G,有φ(g1⋅g2)=φ(g1)⋅φ(g2),则称φ为从G到H的同态映射。

其中,⋅表示群G中的运算,⋅表示群H中的运算。

同态映射的定义表明,同态映射保持了群运算的结构。

通过同态映射,我们可以将一个群映射成另一个群,同时保持原有群的运算性质。

同态映射的性质如下:1. 同态映射将群的单位元映射为群的单位元,即φ(eG)=eH,其中eG和eH分别表示群G和H的单位元。

2. 同态映射将群的逆元映射为群的逆元,即φ(g^-1)=φ(g)^-1,其中g表示群G中的元素。

3. 同态映射保持群的运算,即对于任意的g1,g2∈G,有φ(g1⋅g2)=φ(g1)⋅φ(g2)。

二、同构定理同构是指两个群之间存在一个双射的同态映射。

设有两个群G和H,若存在一个双射的同态映射φ:G→H,则称G与H同构,记作G≅H。

同构的概念描述了两个群之间的一种特殊关系,即它们具有相同的结构和性质。

同构的性质如下:1. 同构是等价关系,即满足自反性、对称性和传递性。

对于任意的群G,有G≅G;若G≅H,则H≅G;若G≅H且H≅K,则G≅K。

2. 同构保持群的运算和结构,即对于任意的g1,g2∈G,有φ(g1⋅g2)=φ(g1)⋅φ(g2)。

3. 同构保持群的性质,如群的阶、子群、循环性等。

同构定理是群论中的重要定理,它揭示了群之间的结构和性质的关联。

常见的同构定理包括拉格朗日定理、卡莱定理和第一同构定理等。

三、应用与举例同态映射和同构定理在群论中有广泛的应用。

它们可以用来研究群的结构、性质和分类。

以整数加法群(Z,+)和模n整数加法群(Z/nZ,+)为例,可以构造一个自然同态映射φ:Z→Z/nZ,即将整数映射到模n的等价类。

群同态三大基本定理

群同态三大基本定理群同态三大基本定理是群论中的重要结果,包括同态基本定理、同构基本定理和同态映射定理。

这些定理对于研究群及其结构和性质具有重要意义。

本文将分别介绍和阐述这三大基本定理。

一、同态基本定理同态基本定理是群同态理论的基石,它表明了群同态的基本性质。

该定理断言,对于任意群G和H,如果存在一个由G到H的群同态φ,则G的核Ker(φ)是G的一个正规子群,且G/ Ker(φ)与φ(G)同构。

其中,核是指同态映射φ的零空间,即使得φ(g) = e_H的所有元素g构成的子集。

同态基本定理的证明思路是,首先证明Ker(φ)是G的一个正规子群,然后构造一个映射ψ: G/Ker(φ) → φ(G),通过ψ(gKer(φ)) = φ(g)将G/Ker(φ)的元素映射到φ(G)的元素,证明ψ是一个双射,并且保持群运算。

因此,G/Ker(φ)与φ(G)同构。

二、同构基本定理同构基本定理是群论中的一个重要结果,它给出了同构的判定条件。

该定理指出,如果存在一个双射φ: G → H,且满足φ(xy) = φ(x)φ(y),那么G与H是同构的。

换句话说,如果两个群之间存在一个双射,且保持群运算,那么这两个群是同构的。

同构基本定理的证明思路是,首先证明φ是一个同态映射,即φ(xy)= φ(x)φ(y)成立。

然后证明φ的逆映射存在,即存在一个映射ψ: H → G,使得ψ(φ(x)) = x和φ(ψ(y)) = y对于所有的x∈G和y∈H 成立。

最后,证明ψ也是一个同态映射,即ψ(xy) = ψ(x)ψ(y)成立。

因此,φ和ψ构成了G和H之间的同构关系。

三、同态映射定理同态映射定理是群同态理论中的一个重要结果,它给出了同态映射的性质。

该定理指出,如果φ: G → H是一个群同态,那么φ(G)是H的一个子群,且φ(G)的阶是G的核Ker(φ)的阶的整数倍。

同态映射定理的证明思路是,首先证明φ(G)是H的一个子群。

然后证明φ(G)的阶是G的核Ker(φ)的阶的整数倍。

代数系统(习题课)


即 a, b ∈ S
(3) S 中含幺元:设 e 是 G 中的幺元,因为对任意的
x ∈ G 有 e ∗ x = x ∗ e ,所以 e ∈ S .
(4)可逆性:对任意的 a∈ S ,所以对任意的 x∈ G 有
a ∗ x = x ∗ a ⇒ a ∗ ( a ∗ x) ∗ a = a ∗ ( x ∗ a ) ∗ a
6阶群不可能有 阶子群.( 阶群不可能有4 8. 6阶群不可能有4阶子群.(
) )
若群中每个元素以自身为逆,则是交换群.( 9. 若群中每个元素以自身为逆,则是交换群.( 10. 为整数集合, 为普通加法. 10. 设V=<I, +>, I为整数集合,+为普通加法. 则命题为假的是 I,+>是群 A. < I,+>是群 I,+>是循环群 B. < I,+>是循环群 I,+>交换群 C. < I,+>交换群 不是A,B,C D. 不是A,B,C
代数结构
代数系统又称为代数结构(抽象代数,近世代数), 代数系统又称为代数结构(抽象代数,近世代数), 它是在一个抽象集合上定义了若干抽象代数运算后所组 成的系统. 成的系统. 不同的数学结构常常具有相同的代数运算性质, 不同的数学结构常常具有相同的代数运算性质,把 这 些 共 同 的 性 质 抽 象 出 来 加 以 统 一 研 究 就形成了代数系统这门学科. 就形成了代数系统这门学科. 代数系统的理论在逻辑电路设计,形式语言, 代数系统的理论在逻辑电路设计,形式语言,自动 机,数据结构,编码理论等的研究中有广泛的应用. 数据结构,编码理论等的研究中有广泛的应用.
−1 −1 −1
因此, < G ,∗ > 是个阿贝尔群.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 若f是从A到B的一个满射,则称f为满同态; (2) 若f是从A到B的一个入射,则称f为单一同态; (3) 若f是从A到B的一个双射,则称f为同构映射, 称 <A, >和<B,*>是同构的,记为A≌B 。
3
例1:<R-{0}, • >,<R,+>,定义一个函数f:R-{0}R,使f为满同态。
(3) 若<A, °>是群,则<f(A),*>也是群 对 f(x)f(A), ∵<A,>是群,∴ xA,有x-1A f(x)*f(x-1) = f(xx-1) = f(e) =f(x-1x) = f(x-1)*f(x) ∴(f(x))-1 = f(x -1) ,∴每个元素都有逆元 ∴ <f(A),*>是群
7
自同态、自同构
定义3: <A,°> 是一个代数系统, 若f是由<A,°>到<A,°>的同态映射,则称f是自同态; 若f是由<A,°>到<A, °>的同构映射,则称f是自同构。
例:代数系统<I,+>中,f(n)=2n 是自同态, f(n1+n2) = 2(n1+n2) = 2n1+2n2 = f(n1)+f(n2) f(n)=n是自同构
11
定义3:f是群<G,>到群<G’,*>的同态映射,e’是G’ 中的幺元,称 Ker(f)={x | x G且f(x)=e’}为同态映射 f 的核,简称为 f 的同态核。 说明:同态核也可记为K(f),同态核就是<G’,*>的幺元所
对应的原象集合,由同态核构成的代数系统也是一个 群。
6
例4: 若 f 是从<A, ⊕>到<B,*>的同构映射,则 f-1是从<B,*>到 <A, ⊕>的同构映射。
证明:∵f是从A到B的双射,∴ f -1是从B到A的双射 对于y1,y2B,存在x1,x2A, 使 f-1(y1)=x1,f-1(y2)=x2,y1=f(x1),y2=f(x2) f-1(y1*y2)=f-1(f(x1)*f(x2)) ∵f 是从<A, ⊕>到<B,*>的同构映射, ∴f(x1)*f(x2)=f(x1 ⊕ x2) ∴f-1(y1*y2)=f-1(f(x1 ⊕x2))=x1 ⊕x2=f-1(y1) ⊕f-1(y2) ∴f-1是从<B,*>到<A, ⊕>的同态映射,又∵ f是双射 ∴f-1是从<B,*>到<A, ⊕>的同构映射。
4
例3:有三个代数系统如下:
Hale Waihona Puke < A, >

a
b
aab
bba
< B, >
偶奇 偶 偶奇 奇 奇偶
< C, * >
* 0° 180° 0° 0 ° 180° 180° 180° 0°
这三个代数系统是同构的。
5
上节回顾
设<H,*>是群<G,*>的子群,如果 A={x|x∈G,x*H*x-1=H} 证明<A,*>是<G,*>的一个子群。
主要内容
1 代数系统的基本概念 2 半群与含幺半群(独异点) 3 群(阿贝尔群与循环群) 4 子群与陪集 5 同态与同构 6 环与域
1
同态、同态映射、同态象
定义1:<A,>和<B,*>是两个代数系统,和*分别是A和B
上的二元运算,f是从A到B的一个映射,对a1,a2A ,

f(a1a2) =f(a1)*f(a2)
= f(x1x2)*f(x3) = (f(x1)*f(x2))*f(x3) = (y1*y2)*y3 ∴*在f(A) 上可结合; ∴ <f(A),*>是半群
10
(2) 若<A,°>是独异点,则<f(A),*>也是独异点 设e是<A,>的幺元,则f(e)f(A), yf(A),存在xA,使y=f(x) y * f(e) = f(x) * f(e) = f(xe) = f(x) = y f(e) * y = f(e) * f(x) = f(ex) = f(x) = y ∴f(e)是<f(A), *>的幺元 ∴ <f(A),*>是独异点
9
对y1,y2,y3f(A),存在x1,x2,x3A, 使y1=f(x1)、y2=f(x2)、y3=f(x3) y1*(y2*y3) = f(x1)*(f(x2)*f(x3))
= f(x1)*f(x2x3) = f (x1(x2x3)) ∵<A,>是半群,∴可结合, ∴y1*(y2*y3) = f ((x1x2)x3)
例2:f:RR,f(x)=5x,验证f是从<R,+>到<R,•>的单一同态。 证明:(根据定义证明)
对 x1,x2 R,f (x1+x2) =5x1+x2=5x1 •5x2=f(x1) •f(x2) ∴f是<R,+>到<R, • >的同态 若x1≠x2,则f(x1)=5x1,f(x2)=5x2,f(x1) ≠ f(x2) ∴ f是入射, ∴ f是从<R,+>到<R,•>的单一同态。
解:定义 f(x) = ln | x | 对 x1,x2 R - {0} f (x1•x2) = ln | x1 • x2 | = ln | x1 | • | x2 | = ln | x1 | + ln | x2 | ∴f是<R-{0},•>到<R,+>的同态 , 而f是满射 ∴ f是满同态
定理1:G是代数系统的集合,则G中代数系统之间的同 构关系是等价关系。
证明略
8
定理2: f是<A,°>到<B,*>的一个同态映射,若<A,°>是半 群(独异点、群),则在f作用下,同态象<f(A),*>也是 半群(独异点、群)。
证明: (1)若<A,>是半群,则<f(A),*>也是半群
对y1,y2f(A),存在x1,x2A, 使y1=f(x1)、y2=f(x2) y1*y2=f(x1)*f(x2)=f(x1x2) ∵<A,>是半群,∴x1x2A, ∴f(x1x2) f(A),y1*y2 f(A) ∴*在f(A) 上封闭;
则称 f 为由<A,>到<B,*>的一个同态映射;
称 <A,>同态于<B,*>,记为A~B;
称 <f(A),*>为<A, >的一个同态象,
其中 f (A) = {x | x = f(a), aA} B。
2
满同态、单一同态、同构映射 定义2: f是由<A,>到<B,*>的一个同态映射,
相关文档
最新文档