高中数学必修五 3.1不等关系与不等式(同步练习)

合集下载

高中数学必修5-第三章不等式-1.示范教案(3.1.1 不等关系与不等式(一))

高中数学必修5-第三章不等式-1.示范教案(3.1.1 不等关系与不等式(一))

3.1不等关系与不等式3.1.1不等关系与不等式(一)从容说课通过本节课的学习让学生从一系列的具体问题情境中感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用,这是学习本章的基础,也是不等关系在本章内容的地位与作用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较的过程,即能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程,这是学习本章第三节的基础.在本节课的学习过程中还安排了一些简单的学生易于处理的问题,用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望,这也是学生学习本章的情感基础.根据本节课教学内容,应用观察、抽象归纳、思考、交流、探究,得出数学模型,进行启发式教学并使用投影仪辅助.教学重点 1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性;2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题;3.理解不等式或不等式组对于刻画不等关系的意义和价值.教学难点1.用不等式或不等式组准确地表示不等关系;2.用不等式或不等式组解决简单的含有不等关系的实际问题.教具准备投影仪、胶片、三角板、刻度尺三维目标一、知识与技能1.通过具体情境建立不等观念,并能用不等式或不等式组表示不等关系;2.了解不等式或不等式组的实际背景;3.能用不等式或不等式组解决简单的实际问题.二、过程与方法1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设计较典型的现实问题,激发学生的学习兴趣和积极性.三、情感态度与价值观1.通过具体情境,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度;2.学习过程中,通过对问题的探究思考、广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有实际意义问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的简洁美,激发学生的学习兴趣.教学过程导入新课师日常生活中,同学们发现了哪些数量关系.你能举出一些例子吗?生实例1:某天的天气预报报道,最高气温32℃,最低气温26℃.生实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则x a<x b.(老师协助画出数轴草图)生实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.(学生迫不及待地说出这么多,说明课前的预习量很充分,学习数学的兴趣浓,此时老师应给以充分的肯定和表扬)推进新课师同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好.而且大家已经考虑到本节课的标题不等关系与不等式,所举的实例都是反映不等量关系,这将暗示我们这节课的效果将非常好.(此时,老师用投影仪给出课本上的两个实例)实例6:限时40 km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p 应不少于2.3%.[过程引导]师能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点、进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人来说必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?生可以用不等式或不等式组来表示.师什么是不等式呢?生用不等号将两个解析式连结起来所成的式子叫不等式.(老师给出一组不等式-7<-5;3+4>1+4;2x≤6;a+2≥0;3≠4.目的是让同学们回忆不等式的一些基本形式,并说明不等号“≤,≥”的含义,是或的关系.回忆了不等式的概念,不等式组学生自然而然就清楚了)师能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程,通过对不等式数学模型的研究,反过来作用于我们的现实生活,这才是我们学习数学的最终目的.(此时,同学们已经迫不及待地想说出自己的观点.)[合作探究]生我们应该先像实例2那样用不等式或不等式组把上述实例中的不等量关系表示出来.师说得非常好,下面我们就把上述实例中的不等量关系用不等式或不等式组一一表示出来.那应该怎么样来表示呢?(学生轮流回答,老师将答案相应地写在实例后面)生上述实例中的不等量关系用不等式表示应该为32℃≤t≤26℃.生可以表示为x≥0.(此时,学生有疑问,老师及时点拨,可以画出图形.让学生板演)(老师顺便画出三角形草画)生|AC|+|BC|>|AB|(只需结合上述三角形草图).生 |AB |+|BC |>|AC |、|AC |+|BC |>|AB |、|AB |+|AC |>|BC |.生 |AB |-|BC |<|AC |、|AC |-|BC |<|AB |、|AB |-|AC |<|BC |.交换被减数与减数的位置也可以.生 如果用v 表示速度,则v≤40 km/h.生 f≥2.5%或p≥2.3%.(此时,一片安静,同学们在积极思考)生 这样表达是错误的,因为两个不等量关系要同时满足,所以应该用不等式组来表示此实际问题中的不等量关系,即可以表示为⎩⎨⎧≥≥%.3.2%,5.2p f 生 也可表示为f≥2.5%且p≥2.3%.师 同学们看这两位同学的观点是否正确?生 (齐答)大家齐声说,都可以.师 同学们的思考很严密,很好!应该用不等式组来表示此实际问题中的不等量关系,也可以用“且”的形式来表达. 课堂练习教科书第83页练习1、2.(老师让学生轮流回答,学生回答很好.此时,同学们已真正进入了本节课的学习状态,老师再用投影仪给出课本上的三个问题.问题是数学研究的核心,以问题展示的形式来培养学生的问题意识与探究意识)【问题1】 设点A 与平面α的距离为d,B 为平面α上的任意一点. [活动与探究]师 请同学们用不等式或不等式组来表示出此问题中的不等量关系.(此时,教室一片安静,同学们在积极思考,时间较长,老师应该及时点拨) [方法引导]师 前面我们借助图形来表示不等量关系,这个问题是否可以?(可以让学生板演,结合三角形草图来表达)过点A 作AC ⊥平面α于点C ,则d=|AC |≤|AB |. 师 这位同学做得很好,我们在解决问题时应该贯穿数形结合的思想,以形助数,以数解形.师 请同学们继续来处理问题2. [合作探究]【问题2】 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?生 可设杂志的定价为x 元,则销售量就减少2.01.05.2⨯-x 万本.师 那么销售量变为多少呢?如何表示?生 可以表示为)2.01.05.28(⨯--x 万本,则总收入为x x )2.01.05.28(⨯--万元. 〔老师板书,即销售的总收入为不低于20万元的不等式表示为)2.01.05.28(⨯--x x≥20〕 师 是否有同学还有其他的解题思路?生 可设杂志的单价提高了0.1n 元,(n ∈N *), (下面有讨论的声音,有的同学存在疑问,此时老师应密切关注学生的思维状况) 师为什么可以这样设?生 我只考虑单价的增量.师 很好,请继续讲.生 那么销售量减少了0.2n 万本,单价为(2.5+0.1n)元,则也可得销售的总收入为不低于20万元的不等式,表示为(2.5+0.1n)(8-0.2n)≥20.师 这位同学回答得很好,表述得很准确.请同学们对两种解法作比较.(留下让学生思考的时间)师 请同学们继续思考第三个问题. [合作探究]【问题3】 某钢铁厂要把长度为4 000 mm 的钢管截成500 mm 和600 mm 两种,按照生产的要求,600 mm 钢管的数量不能超过500 mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式?师 假设截得500 mm 的钢管x 根,截得600 mm 的钢管y 根.根据题意,应当有什么样的不等量关系呢?生 截得两种钢管的总长度不能超过4 000 mm.生 截得600 mm 钢管的数量不能超过500 mm 钢管的3倍.生 截得两种钢管的数量都不能为负.师 上述的三个不等关系是“或”还是“且”的关系呢?生 它们要同时满足条件,应该是且的关系.生 由实际问题的意义,还应有x,y ∈N.师 这位同学回答得很好,思维很严密.那么我们该用怎样的不等式组来表示此问题中的不等关系呢?生 要同时满足上述三个不等关系,可以用下面的不等式组来表示:⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥≥≥≤+.,,0,0,3,40000600500N y x y x y x y x 师 这位同学回答很准确.通过上述三个问题的探究,同学们对如何用不等式或不等组把实际问题中所隐含的不等量关系表示出来,这一点掌握得很好.请同学们再完成下面这个练习. 课堂练习练习:若需在长为4 000 mm 的圆钢上,截出长为698 mm 和518 mm 两种毛坯,问怎样写出满足上述所有不等关系的不等式组?分析:设截出长为698 mm 的毛坯x 个和截出长为518 mm 的毛坯y 个,把截取条件数学化地表示出来就是:⎪⎪⎩⎪⎪⎨⎧∈≥≥≤+.,,0,0,4000518698N y x y x y x(练习可让学生板演,老师结合学生具体完成情况作评析,特别应注意x≥0,y≥0,x,y ∈N ) 课堂小结师通过今天的学习,你学到了什么知识,有何体会?生 我感到学习数学可以帮助我们解决生活中的实际问题.生 数学就在我们的身边,与我们的生活联系非常紧密,我更加喜爱数学了.生 本节课我们还进一步巩固了初中所学的二元一次不等式及二元一次不等式组,并且用它来解决现实生活中存在的大量不等量关系的实际问题.师 我来补充一下,在用二元一次不等式及二元一次不等式组表示实际问题中的不等关系时,思维要严密、规范,并且要注意数形结合等思想方法的综合应用.(慢慢培养学生学会自己来归纳总结,将所学的知识,结合获取知识的过程与方法,进行回顾与反思,从而达到三维目标的整合.进而培养学生的概括能力和语言表达能力) 布置作业第84页习题3.1A 组4、 5.板书设计 不等关系与不等式(一)实例 方法引导 方法归纳 如何用不等式或不等式组表示 实例剖析(知识方法应用) 小结 实际问题中不等量关系? 示范解题备课资料一、备用习题1.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料需要的主要原料是磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨、硝酸盐15吨.现有库存磷酸盐10吨、硝酸盐66吨,在此基础上进行生产.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设x,y 分别为计划生产甲、乙两种混合肥料的车皮数,则⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,661518,104y x y x y x 2.某年夏天,我国遭受特大洪灾,灾区学生小李家中经济发生困难.为帮助小李解决开学费用问题,小李所在班级学生(小李除外)决定承担这笔费用.若每人承担12元人民币,则多余84元;若每人承担10元,则不够;若每人承担11元,又多出40元以上.问该班共有多少人?这笔开学费用共多少元?请用不等式或不等式组把此实例中的不等量关系表示出来,不必解答.分析:设该班共有x 人,这笔开学费用共y 元,则⎪⎪⎩⎪⎪⎨⎧∈=-=-.,4011,10,8412*N x y x y x y x <. 3.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设投资人分别用x 万元、y 万元投资甲、乙两个项目,由题意,知⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,8.11.03.0,10y x y x y x4.某企业生产A 、B 两种产品,A 产品的单位利润为60元,B 产品的单位利润为80元,两种产品都需要在加工车间和装配车间进行生产,每件A 产品在加工车间和装配车间各需经过0.8 h 和2.4 h ,每件B 产品在两个车间都需经过1.6 h ,在一定时期中,加工车间最大加工时间为240 h ,装配车间最大生产时间为288 h.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设该企业分别生产A 产品x 件、B 产品y 件,则⎪⎪⎩⎪⎪⎨⎧∈≥≤+≤+.,0,,2886.14.2,2406.18.0Z y x y x y x y x 二、课外探究 开放性问题已知:不等式组⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥≥=+≥+,,,1,1,100,50N y x y x y x y x 你能举出符合此不等式组的实际问题吗?3.1.2不等关系与不等式(二)从容说课本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.为了利用不等式更好地研究不等关系,也能够让学生在以后的解不等式以及对不等式的证明奠定一定的理论基础.在本节课的学习过程中将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.了解不等式的一些基本性质并能给出严格的理论证明,能用不等式的基本性质进行一些简单的不等式证明,进而更深一层次地从理性角度建立不等观念.这是学习本节课的目的也是本节课的内容安排在本章的地位与作用.对实数基本理论的复习,教师应作好点拨,利用数轴数形结合,做好归纳总结.对不等式的基本性质,教师应指导学生用数学观点与等式的基本性质作类比、归纳、逻辑分析,并鼓励学生从理性角度去分析量与量的比较的过程,进而能利用不等式的基本性质来证明一些简单的不等式.在本节课的学习过程中,课外作业仍安排了一些简单的学生易于处理的实际问题,用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并进一步让学生体会研究不等式基本性质的必要性,这也是学生学习本学时的情感基础.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小和证明不等式的一些性质.应用观察、类比、归纳、逻辑分析、思考、交流、探究,得出不等式的基本性质,并能利用不等式的基本性质进行一些简单的不等式证明.进行启发、探究式教学并使用投影仪辅助.教学重点 1.利用数轴,数形结合回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小;2.了解不等式性质研究的必要性及不等式的一些基本性质;3.能用不等式的基本性质来证明一些简单的不等式.教学难点1.用实数的基本理论来比较两个代数式的大小时对差的合理变形;2.利用不等式的基本性质来证明一些简单的不等式.教具准备投影仪、胶片、三角板、刻度尺三维目标一、知识与技能1.利用数轴,数形结合回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小与用实数的基本理论来证明不等式的一些性质;2.通过回忆与复习学生所熟悉的等式性质类比得出不等的一些基本性质;3.在了解不等式一些基本性质的基础之上能利用它们来证明一些简单的不等式.二、过程与方法1.采用探究法,按照联想、类比、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣.三、情感态度与价值观1.通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;2.学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,从而激发学生的学习兴趣.教学过程导入新课师上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系.为了利用不等式更好地研究不等量关系及用不等式或不等式组研究含有不等关系的问题.我们需要对不等式的性质有必要的了解.推进新课师我们已学习过等式、不等式,同学们还记得等式的性质吗?生等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得到的仍是等式.师很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,结果将会如何呢?(此时很快能让学生进入对初中所学过的不等式三条基本性质的回忆与复习)师一般地说,不等式的基本性质有三条:性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向_________.(让同学回答)性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向________.(让同学回答)性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向________.(让同学回答) [过程引导]师 不等式的这三条基本性质,都可以用数学的符号语言表达出来.(让三位同学板演) 性质1:a <b a +c <b +c (或a -c <b -c );a >b a +c >b +c (或a -c >b -c ).性质2:a <b 且c >0⇒ac <bc (或cb c a <);a >b 且c >0ac >bc (或c b c a >).性质3:a <b 且c <0⇒ac >bc (或c b c a >);a >b 且c <0ac <bc (或c b c a <). (用数学符号表达不等式的性质,目的是为下面用符号进行不等式性质与证明打基础,给学生也有一适应过程.老师对学生的板演作点评)师 性质2、性质3两条性质中,对a 、b 、c 有什么要求?生 对a 、b 没什么要求,特别要注意c 是正数还是负数.师 很好,c 可以为零吗?生 c 不能为零.因为c 为零时,任何不等式两边都乘以零就变成等式了.若是“≤”或“≥”则可以.师 这位同学回答的非常好,思维既严谨又周到.师 对于不等式的这三条基本性质,我们不仅要理解这三条性质,还要能灵活运用.在初中,我们对这三条性质只是作了感性的归纳,现在我们应对它给出严格的证明,只有这样应用这些性质才能有理有据. (学生已迫不及待)生(齐声)那我们来给出严格的证明吧.(此处,说明老师点拨很到位.真正体现了课堂上教师的主导地位与学生的主体地位)师 为了对不等式的基本性质给出严格证明,我们还有必要回忆实数的基本性质. (此时学生对这一名词肯定感到生疏,老师在黑板上应很快给出数轴)[教师精讲]师 若点A对应的实数为a ,点B对应的实数为b ,因为点A在点B的左边,所以可得a >b .a >b 表示a 减去b 所得的差是一个大于0的数即正数,即a >b ⇒a -b >0.它的逆命题是否正确?生 显然正确.师 类似地,如果a <b ,则a 减去b 是负数,如果a =b ,则a 减去b 等于0,它们的逆命题也正确.一般地,a >b ⇒a -b >0;a =b ⇒a -b =0;a <b ⇒a -b <0.师 这就是实数的基本性质的一部分,还有任意两个正数的和与积都是正数等.等价符号左边不等式反映的是实数的大小顺序,右边不等式反映的则是实数的运算性质,合起来就成为实数的运算性质与大小顺序之间的关系,它是不等式这一章的理论基础,是证明不等式以及解不等式的主要依据.师 由实数的基本性质可知,我们如何比较两个实数的大小呢?生 只要考察它们的差就可以了.师 很好.请同学们思考下面这个问题.(此时,老师用投影仪给出问题) [合作探究]【问题1】 已知x≠0,比较(x 2+1)2与x 4+x 2+1的大小.(问题是数学研究的核心,此处以问题展示的形式来培养学生的问题意识与探究意识) (让学生板演,老师根据学生的完成情况作点评)解:(x 2+1)2-x 4-x 2-1=x 4+2x 2+1-x 4-x 2-1=x 2,由x≠0,得x 2>0,从而(x 2+1)2>x 4+x 2+1.(学生对x≠0,得x 2>0在说理过程中往往会忽略)师 下面我们来看一组比较复杂的问题,请大家都来开动脑筋,认真审题,仔细分析. (让学生板演,老师根据学生的完成情况作点评)【例1】 比较下列各组数的大小(a ≠b ). (1)2b a +与ba 112+ (a >0,b >0); (2)a 4-b 4与4a 3(a -b ).师 比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.解:(1))(2)()(24)(22112222b a b a b a ab b a b a ab b a ba b a +-=+-+=+-+=+-+, ∵a >0,b >0且a ≠b ,∴a +b >0,(a -b )2>0. ∴ba b a b a b a 11220,)(2)(2+++->即>. (2)a 4-b 4-4a 3(a -b )=(a -b )(a +b )(a 2+b 2)-4a 3(a -b)=(a -b )(a 3+a 2b +ab 2+b 3-4a 3)=(a -b )[(a 2b -a 3)+(ab 2-a 3)+(b 3-a 3)]=-(a -b )2(3a 2+2ab +b 2)=-(a -b )2[2a 2+(a +b )2],∵2a 2+(a +b )2≥0(当且仅当a =b =0时取等号),又a ≠b ,∴(a -b )2>0,2a 2+(a +b )2>0.∴-(a -b )2[2a 2+(a +b )2]<0.∴a 4-b 4<4a 3(a -b).师 同学们完成得很好,证明不等式时,应注意有理有据、严谨细致,还应条理清晰.比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用. (此时,老师用投影仪给出下列问题)[合作探究]【问题2】 求证:(1)a >b 且c >0⇒ac >bc ;(2)a >b a +c >b +c .师请同学们思考第一小问该如何证明?生 可用实数的基本性质,∵a >b ,∴a -b >0.又∵c >0,由任意两个正数的积都是正数可得(a -b )c >0,即ac >bc.师 这位同学证明的思路很好,很严密.同学们还有其他的证明思路吗?生 ac -bc =(a -b )c ,∵a >b ,∴a -b >0.又∵c >0,由任意两个正数的积都是正数可得(a -b )c >0,所以得证.师 这位同学证明得是否正确?生 正确.师 这两位同学的证明都正确,请同学们认真地审视一下,比较这两位同学证题思路的区别与联系.生 第一位同学的证明是由条件到结论,第二位同学的证明是由结论到条件,即寻找结论成立的条件.师回答得非常好,这位同学看出了两种证明方法的本质.由条件到结论,由结论到条件,这是我们证明问题经常采用的思路.(按照教材对不等式的证明要求,此处对不等式证明的分析法与综合法没有点明,只是让学生通过具体的问题了解不等式证明的分析法与综合法的证题思路)师 请同学继续思考第二小问该如何证明?生 可由结论到条件,a +c -(b +c )=a -b ,∵a >b ,∴a -b >0,∴a +c >b +c .师 这位位同学回答得很好,有理有据,严谨细致,也很有条理清晰.别的同学有问题吗?生(齐声)没问题.师 这说明同学们对不等式的证明思路掌握得很好.师 下面我们再来看一个比较复杂的问题,请大家继续开动脑筋,认真审题,仔细分析. (此处,老师再一次这样说的目的是能够激发起同学们克服难题的欲望,进而增强学习的积极性与主动性)(此时,老师用投影仪给出本课时的例2) [例题剖析]已知a >b >0,c <0,求证:b c a c >.师 前面我们已经利用不等式及实数的基本性质证明了一些简单的不等式.请同学思考此该如何证明?生 可由条件到结论.∵a >b >0,两边同乘以正数ab 1,得b 1>a 1,即a 1<b 1b .又∵c <0,∴b c a c >.师 这位同学回答得很好.通过此例的解答可以看出,本课时,同学们对简单不等式的证明掌握得非常好.希望同学们课后进一步探究,对不等式的基本性质和实数的性质应用既要严密、规范,又要灵活,才能达到要求. 课堂小结常用的不等式的基本性质及证明:(1)a >b ,b >c ⇒a >c ;a >b ,b >c ⇒a -b >0,b -c >0⇒ (a -b )+(b -c )>0⇒a -c >0a >c .(2)a >b a +c >b +c ;a >b ⇒a -b >0⇒ (a -b )+(c -c )>0⇒ (a +c )-(b +c )>0⇒a +c >b +c .(3)a >b ,c >0⇒ac >bc ;a >b ,c >0⇒a -b >0,c >0⇒ (a -b )c >0⇒ac -bc >0⇒ac >bc .(4)a >b ,c <0⇒ac <bc .a >b ,c <0⇒a -b >0,c <0⇒ (a -b )c <0⇒ac -bc <0⇒ac <bc .。

高中数学 3.1.1+2 不等关系与不等式 不等式的性质课件

高中数学 3.1.1+2 不等关系与不等式 不等式的性质课件

误 辨 析
教 学
(3)了解不等式的基本性质.



案 设
2.过程与方法
双 基



(1)通过列不等式,训练学生的分析判断能力和逻辑推理 标

自 能力.



导 学
(2)设计较典型的现实问题,激发学生的学习兴趣和积极
作 业
课 性.
堂 互 动 探 究
教 师 备 课 资 源
菜单
RB ·数学 必修5



菜单
RB ·数学 必修5
易 错 易 误 辨 析
当 堂 双 基 达 标
课 时 作 业
教 师 备 课 资 源
教 学 教 法 分 析
教 学 方 案 设 计
课 前 自 主 导 学
课 堂 互 动 探 究
菜单
RB ·数学 必修5
易 错 易 误 辨 析
当 堂 双 基 达 标
课 时 作 业
教 师 备 课 资 源
教 学 教 法 分 析
等式或不等式组解决简单的含有不等关系的实际问题.
作 业
课 堂 互 动 探 究
教 师 备 课 资 源
菜单
RB ·数学 必修5










●教学建议
辨 析


根据本节课的特点,采用引导发现和归纳概括相结合的 当


案 设
教学方法,通过提出问题、思考问题、解决问题等教学过程,
双 基


课 观察对比、概括归纳,再通过具体问题的提出和解决,来激 标

3.1.1不等关系和3.1.2不等关系与不等式(一)课件ppt

3.1.1不等关系和3.1.2不等关系与不等式(一)课件ppt
a a- b a (2)当 a=b 时, =1,a-b=0,∴ =1, b b
∴aabb=abba.(8 分) a (3)当 a<b 时,0< <1,a-b<0, b
a a-b ∴ >1,∴aabb>abba.(11 分) b
综上可知,当 a>0,b>0 时,aabb≥abba.(12 分)
课堂讲练互动
自学导引
1.关于a≥b或a≤b的含义 (1)a>b或a<b,表示严格的不等式. 大于或等于b 或者a (2)不等式“a≥b”读作“_____________”.其含义是指“_____ >b,或者a=b ______________”,等价于“a不小于b”,即a>b或a=b中有
一个正确,则a≥b正确. a小于或等于b (3)不等式“a≤b”读作“______________”.其含义是指“或者 a不大于b a<b,或者a=b”,等价于“__________”,即a<b或a=b中 有一个正确,则a≤b正确.
解 1)(x
2
(x3-1)-(2x2-2x)=(x-1)(x2+x+1)-2x(x-1)=(x-
1 2 3 -x+1)=(x-1)x- + 2 4
12 3 ∵x<1,∴x-1<0,又x- + >0. 2 4 1 2 3 ∴(x-1)[x- + ]<0,∴x3-1<2x2-2x. 2 4
课前探究学习
课堂讲练互动
【题后反思】 (1)作商比较法的应用条件,利用作商比较 法的前提是两个数需同号,一般情况下,比较两个正数间 的大小关系多用作商法. (2)作商法的基本步骤: ①作商;②变形;③判断与1的大小;④得出结论.
课前探究学习
课堂讲练互动
【训练3】 若m>0,比较mm与2m的大小.

人教A版高中数学必修五河北省张家口第三章不等关系与不等式学案

人教A版高中数学必修五河北省张家口第三章不等关系与不等式学案

3.1 不等关系与不等式(一)一、教学目标1.通过具体实例使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,能列出不等式与不等式组,解决实际问题。

让学生学会用数学思想来思考问题,用数学知识来解决问题。

2. 掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小.3. 培养学生转化的数学思想和逻辑推理能力。

二、教学重、难点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。

差值比较法:作差→变形→判断差三、教学过程(一)[创设问题情境]下面的几个不等关系用什么样的不等词表示?能用简洁的数学符号表示吗?你还能列举出你周围日常生活中的不等关系吗?1. 限速40km/h 的路标,表示汽车的速度v 不超过40km/h 。

2. 某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量应不少于2.3%。

3. a 与b 的和是非负数。

4. 大圆1O 的半径为R ,小圆2O 的半径为r ,两圆的圆心距为d ,若两圆相交,则d 需要满足什么条件?5. 某种杂志原以每本2.5元的价格销售,可以售出8万本。

根据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。

若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元?6. 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍。

7. 某厂使用两种零件A 、B,装配两种产品甲乙,该厂的生产能力是甲月产量最多2500件,乙月产量最多1200件,而组装一件产品,甲需要4个A ,2个B ;乙需要6个A ,8个B 。

某个月,该厂能用的A 最多有14000个,B 最多有12000个,用不等式将甲乙两种产品产量之间的关系表示出来。

(典型题)高中数学必修五第三章《不等式》检测(有答案解析)(1)

(典型题)高中数学必修五第三章《不等式》检测(有答案解析)(1)

一、选择题1.设x ,y R +∈,1x y +=,求14x y +的最小值为( ). A .2 B .4 C .8 D .92.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .3.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( ) A .5 B .4 C .2 D 24.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-5.若直线l :()200,0ax by a b -+=>>被圆222410x y x y ++-+=截得的弦长为4,则21a b +的最小值为( ) A .2 B .4 C 2 D .226.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A .2B .32C .6D .8 7.已知实数x 、y 满足约束条件22x y a x y ≤⎧⎪≤⎨⎪+≥⎩,且32x y +的最大值为10,则a =( )A .1B .2C .3D .48.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <nC .m >nD .不确定9.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b =+,则m n +的最小值是( )A .3B .4C .5D .6 10.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( )A.BC .1D .2 11.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( ) A.720+B.720- CD.720-12.已知正数x ,y 满足x +y =1,且2211x y y x +++≥m ,则m 的最大值为( ) A .163 B .13 C .2 D .4二、填空题13.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 14.已知110,0,1x y x y >>+=,则2236x y y xy++的最小值是_________. 15.已知变量x ,y 满足430401x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x y xy +的最大值为______.16.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.17.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.18.满足关于x 的不等式()()20ax b x -->的解集为1{|2}2x x <<,则满足条件的一组有序实数对(),a b 的值可以是______.19.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 20.设x 、y 满足约束条件22010240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值是__________.三、解答题21.定义两个函数的关系:函数()m x ,()n x 的定义域为A ,B ,若对任意的1x A ∈,总存在2x B ∈,使得()()12m x n x =,我们就称函数()m x 为()n x 的“子函数”.设,0a b >,已知函数()f x=23(1)b a b +--,22||11()1822||x g x x a a x x =+-++. (1)当1a =时,求函数()f x 的单调区间;(2)若函数()f x 是()g x 的“子函数”,求22a b ab+的最大值. 22.现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为111623,,;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p (0<p <1),设乙项目产品价格在一年内进行两次独立的调整.记乙项目产品价格在一年内的下降次数为X ,对乙项目每投资10万元,X 取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量X 1、X 2分别表示对甲、乙两项目各投资10万元一年后的利润.(1)求X 1,X 2的概率分布和均值E (X 1),E (X 2);(2)当E (X 1)<E (X 2)时,求p 的取值范围.23.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)24.已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且24006,040()740040000,40x x R x x xx -<⎧⎪=⎨->⎪⎩, (1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.25.已知函数2()3f x x ax a =-++.(1)当7a =时,解不等式()0f x >;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围.26.解关于x 的不等式:()2230x a a x a -++>.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由“1”有代换利用基本不等式可得最小值.【详解】因为x ,y R +∈,1x y +=,所以14144()559x y x y x y x y y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立. 故选:D .【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.2.C解析:C【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象.【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴2121bacaa⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴2b ac aa=-⎧⎪=-⎨⎪<⎩,2222(2)y ax bx c ax ax a a x x=++=--=--,图象开口向下,两个零点为2,1-.故选:C.【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.3.C解析:C【分析】由不等式组作出可行域,如图,目标函数22x y+可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y+=的距离平方,根据点到直线的距离公式可得选项.【详解】由不等式组做出可行域如图,目标函数22x y+可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y+=的距离的平方,由点到直线的距离公式可知,原点到直线2x y+=的距离为22d==,所以所求最小值为2.故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C++≥转化为y kx b≤+(或y kx b≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.4.A【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-, 故选:A.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题. 5.B解析:B求出圆的圆心与半径,可得圆心在直线20(0,0)ax by a b -+=>>上,推出22a b +=,利用基本不等式转化求解21a b+取最小值. 【详解】解:圆222410x y x y ++-+=,即22(1)(2)4x y ++-=, 表示以2()1,M -为圆心,以2为半径的圆,由题意可得圆心在直线20(0,0)ax by a b -+=>>上,故220a b --+=,即22a b +=, ∴2212222112242a ba b b a b a b a b a b a +++=+=++++,当且仅当22b a a b=,即2a b =时,等号成立, 故选:B .【点睛】 本题考查直线与圆的方程的综合应用,基本不等式的应用,考查转化思想以及计算能力,属于中档题. 6.D解析:D【分析】运用基本不等式2422x y+≥= 【详解】因为20,40x y >>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”).故答案为D.【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.7.B解析:B【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出使得目标函数32z x y =+取得最大值时对应的最优解,代入目标函数可得出关于实数a 的等式,由此可解得实数a 的值.【详解】不等式组所表示的可行域如下图所示:易知点()2,A a ,由题意可知,点A 在直线2x y +=上或其上方,则22a +≥,可得0a ≥,令32z x y =+,平移直线32z x y =+,当直线32z x y =+经过点A 时,直线32z x y =+在y 轴上的截距最大,此时,z 取得最大值,即max 3226210z a a =⨯+=+=,解得2a =.故选:B.【点睛】本题考查利用线性目标函数的最值求参数,考查数形结合思想的应用,属于中等题. 8.C解析:C【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥-- ()12242a a +-⋅=-,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综上可得m >n ,故选C .9.B解析:B【分析】由等比中项定义得1ab = ,再由基本不等式求最值.【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1ba++1a b +=a b a b ab +++ = 2()a b + ≥ 44ab = .当且仅当1a b == 时,等号成立.故选B .【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.10.D解析:D【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值.【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D.【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11.C解析:C【分析】由题意可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),将所求式子化为b 的关系式,由基本不等式可得所求最小值.【详解】直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5), 则1216412311696a b b b+=+++-+ 120=[(11﹣6b )+(9+6b )](1611696b b+-+)120=(7()61169611696b b b b -+++-+)≥,当且仅当()61169611696b b b b -+=-+时,即b =,a =720+, 故选:C .【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题. 12.B解析:B【分析】根据题意2211x y y x +++=22(1)(1)11--+++y x y x =(4411+++y x )﹣5,由基本不等式的性质求出4411+++y x =13(4411+++y x )[(x +1)+(y +1)]的最小值,即可得2211x y y x +++的最小值,据此分析可得答案.【详解】根据题意,正数x ,y 满足x +y =1, 则2211x y y x +++=22(1)(1)11--+++y x y x =(y +1)+41+y ﹣4+(x +1)+41x +﹣4=(4411+++y x )﹣5, 又由4411+++y x =13(4411+++y x ) [(x +1)+(y +1)], =13 [8+4(1)4(1)11+++++x y y x ]≥163, 当且仅当x =y =12时等号成立, 所以2211x y y x +++=(4411+++y x )﹣5163≥﹣5=13, 即2211x y y x +++的最小值为13, 所以3m ≤,则m 的最大值为13; 故选:B .【点睛】本题主要考查基本不等式的性质以及应用,还考查了转化求解问题的能力,属于中档题. 二、填空题13.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】 根据题中条件,由1222()2212y x y x y y x x y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果.【详解】因为正实数x ,y 满足1x y +=,所以1222()221237y x y x y y x x y x y x y ++++=+=+++≥+=, 当且仅当y x x y =,即1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立. 故答案为:7.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】由题得化简整理得再利用基本不等式可得解【详解】由得则当且仅当时等号成立此时或;则的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一 解析:11【分析】 由题得1x y x y xy xy+=⇒+=,化简整理得()2223636361xy xy x y y xy xy xy xy-+++==+-再利用基本不等式可得解. 【详解】 由110,0,1x y x y>>+=, 得1x y x y xy xy+=⇒+=, 则()2223636x y x y x y y xy xy+++++= ()2223636x y xy x xy y xy xy +-++++== ()236361111xy xy xy xy xy -+==+-≥=, 当且仅当6xy =时等号成立,此时3333 xy⎧=+⎪⎨=-⎪⎩或3333xy⎧=-⎪⎨=+⎪⎩;则2236x y yxy++的最小值是11.故答案为:11.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:53【分析】作出可行域,令ytx=,OA OByk kx≤≤,所以7,313t⎡⎤∈⎢⎥⎣⎦,22111222x y x ytxy y x t⎛⎫+⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值.【详解】由43040x yx y-+=⎧⎨+-=⎩解得:13575xy⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A⎛⎫⎪⎝⎭,由140x x y =⎧⎨+-=⎩解得:13x y =⎧⎨=⎩,所以()1,3B , y x 表示可行域内的点与原点连线的斜率,所以OA OB y k k x≤≤, 7075131305OA k -==-,30310OB k -==-,令7,313y t x ⎡⎤=∈⎢⎥⎣⎦, 所以22111222x y x y t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 1y t t =+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增, 当3t =时,1713109213791y ⎛⎫=+= ⎪⎝⎭, 当75t =时,1153233y ⎛⎫=+= ⎪⎝⎭, 所以222x y xy +的最大值为53, 故答案为:53. 【点睛】思路点睛:非线性目标函数的常见类型及解题思路: 1.斜率型:()0by ay b a a z ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的a c 倍; 2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)z Ax By C =++=(),x y 到直线0Ax By C ++=倍.16.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得解析:12【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值.【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+,∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立,∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan C A C C A C C C A C C C-==++++-, 又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan C =等号成立, ∴ ()tan tan tan tan tan tan 1tan =21123A C A C C C A C -≤++-=.【点睛】 本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.17.2【分析】据题意由于MN 为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2【分析】据题意,由于M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MNa ⋅≤(当且仅当MN 与a 共线同向时等号成立)从而求得最大值.【详解】由0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图 由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立),即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离. 22(31)(11)2-+-=,故答案为:2【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题. 18.【分析】根据题意知不等式对应方程的实数根由此求出写出满足条件的一组有序实数对即可【详解】不等式的解集为方程的实数根为和2且即则满足条件的一组有序实数对的值可以是故答案为【点睛】本题考查了一元二次不等 解析:()2,1--【分析】根据题意知,不等式对应方程的实数根,由此求出20a b =<,写出满足条件的一组有序实数对即可.【详解】不等式()()20ax b x -->的解集为1{|2}2x x <<, ∴方程()()20ax b x --=的实数根为12和2,且012a b a <⎧⎪⎨=⎪⎩, 即20a b =<,则满足条件的一组有序实数对(),a b 的值可以是()2,1--.故答案为()2,1--.【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.19.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=, 2(2)2(2)26m n s t s t ∴+=-+-=+-, 而112223(2)()3(12)3(32)3(322)s ts t s t s t s t t s t s+=++=+++⨯+=+,当且仅当2s t t s=,即s =时,等号成立. 2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.20.16【分析】作出不等式组表示的平面区域由可得则表示直线在轴上的截距截距越大越大结合图象即可求解的最大值【详解】作出满足约束条件表示的平面区域如图所示:由可得则表示直线在轴上的截距截距越大越大作直线然 解析:16【分析】作出不等式组表示的平面区域,由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大,结合图象即可求解z 的最大值.【详解】作出x 、y 满足约束条件22010240x y x y x y +-⎧⎪-+⎨⎪--⎩表示的平面区域,如图所示:由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大作直线20x y +=,然后把该直线向可行域平移,当直线经过A 时,z 最大由10240x y x y -+=⎧⎨--=⎩可得(5,6)A ,此时16z =. 故答案为:16.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z 的几何意义.属于中档题.三、解答题21.(1)减区间为(],1-∞,增区间为[3,)+∞;(2)18.【分析】(1)根据函数的解析式有意义,求得函数的定义域,再结合二次函数的性质和复合函数的单调性的判定方法,即可求解;(2)先求得函数()f x 的值域为233,b a b ⎡⎫+--+∞⎪⎢⎣⎭,利用基本不等式,求得函数()g x 的值域为116,)[a -+∞,根据题意,得到2331,[),[16)b a b a+--+∞⊆-+∞,结合基本不等式,即可求解.【详解】(1)由题意,函数233()1b f x b +=-有意义, 则满足2430x x -+≥,解得1x ≤或3x ≥,即定义域为{|1x x ≤或3}x ≥,又由函数243y x x =-+在减区间为(],1-∞,增区间为[3,)+∞,根据复合函数的单调性的判定方法,可得()f x 的减区间为(],1-∞,增区间为[3,)+∞.(2)由函数233()1b f x b +=--,可得()f x 的值域为233,b a b ⎡⎫+--+∞⎪⎢⎣⎭, 211111()||||20422016||2||2g x x x x a x a a ⎛⎫⎛⎫=+++-≥+⨯-=- ⎪ ⎪⎝⎭⎝⎭, 当且仅当1||||x x =时,即1x =±,等号成立, 所以()g x 的值域为116,)[a-+∞, 因为()f x 是()g x 的“子函数,所以2331,[),[16)b a b a+--+∞⊆-+∞, 所以233116b a b a+--≥-,即13316a b a b +++≤, 又13(3)()103()b a a b a b a b++=++,221331316(3)6422a b a b a b a b ⎛⎫+++ ⎪⎛⎫⎛⎫++≤≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭, 当且仅当1338a b a b+=+=时取“=”,即a =b =或a =,b = 所以103()64b a a b ++≤,即2218a b b a ab a b+=+≤ 所以22a b ab+的最大值为18. 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)见解析(2)0<p <0.3【解析】分析:(1)由题意可得随机变量X 1的分布列和期望;结合X ~B (2,p )可得随机变量X 2的分布列和期望.(2)由E (X 1)<E (X 2)可得关于p 的不等式,解不等式可得所求. 详解:(1)由题意得X 1的分布列为∴E (X 1)=1.2×6+1.18×2+1.17×3=1.18. 由题设得X ~B (2,p ),即X 的分布列为22=1.3×(1-2p +p 2)+2.5×(p -p 2)+0.2×p 2=-p 2-0.1p +1.3.(2)由E (X 1)<E (X 2),得-p 2-0.1p +1.3>1.18,整理得(p +0.4)(p -0.3)<0,解得-0.4<p <0.3.因为0<p <1,所以0<p <0.3.即当E (X 1)<E (X 2)时,p 的取值范围是()0,0.3.点睛:(1)求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.(2)求解离散型随机变量X 的均值与方差时,只要在求解分布列的前提下,根据均值、方差的定义求EX ,DX 即可.23.(1)3.(2)5.【解析】试题分析:(1)求出第年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; (2)利用利润=累计收入+销售收入-总支出,可得平均利润,利用基本不等式,可得结论.试题(1)设大货车运输到第年年底,该车运输累计收入与总支出的差为万元, 则由,可得 ∵,故从第3年,该车运输累计收入超过总支出;(2)∵利润=累计收入+销售收入−总支出,∴二手车出售后,小张的年平均利润为, 当且仅当时,等号成立 ∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大.考点:根据实际问题选择函数类型, 基本不等式24.(1)2638440,04040000167360,40x x x W x x x ⎧-+-<⎪=⎨--+>⎪⎩;(2)当x =32时,W 取得最大值为6104万美元.【分析】(1)利用利润等于收入减去成本,可得分段函数解析式;(2)分段求出函数的最大值,比较可得结论.【详解】(1)利用利润等于收入减去成本,可得当040x <时,2()(1640)638440W xR x x x x =-+=-+-;当40x >时,40000()(1640)167360W xR x x x x =-+=--+2638440,04040000167360,40x x x W x x x ⎧-+-<⎪∴=⎨--+>⎪⎩; (2)当040x <时,226384406(32)6104W x x x =-+-=--+,32x ∴=时,(32)6104max W W ==;当40x >时,400004000016736027360W x x x =--+-, 当且仅当4000016x x=,即50x =时,(50)5760max W W == 61045760>32x ∴=时,W 的最大值为6104万美元.【点睛】本题考查分段函数模型的构建,考查利用均值不等式求最值,考查学生分析问题解决问题的能力,属于中档题.25.(1)(,2)(5,)-∞⋃+∞;(2)[2,6]-.【分析】(1)当7a =是,解一元二次不等式求得不等式()0f x >的解集.(2)利用判别式列不等式,解不等式求得a 的取值范围.【详解】(1)当7a =时,不等式为27100x x -+>,即(2)(5)0x x -->,∴该不等式解集为(,2)(5,)-∞⋃+∞ .(2)由已知得,若x ∈R 时,230+++≥x ax a 恒成立,24(3)0a a ∴∆=-+≤,即(2)(6)0a a +-≤,∴a 的取值范围为[2,6]-.【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题. 26.见解析【分析】由题意,将不等式()2230x a a x a -++>变形为2(0)()x a x a -->,分三种情况讨论,分别求解不等式的解集,即可得到答案.【详解】将不等式()2230x a a x a -++>变形为()()20x a x a -->.当a <0或1a >时,有a < a 2,所以不等式的解集为{|x x a <或2}x a >;当a =0或1a =时,a = a 2=0,所以不等式的解集为{|,x x R ∈且}x a ≠;当0< a <1时,有a > a 2,所以不等式的解集为2{|x x a <或}x a >;【点睛】本题主要考查了含参数的一元二次不等式的求解问题,其中解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.。

3.1不等关系与不等式(1)导学案

3.1不等关系与不等式(1)导学案

3.1《不等关系与不等式》(1)【学习目标】1、会用不等式(组)表示实际问题中的不等关系;2、理解不等式(组)对于刻画不等关系的意义和价值。

【重点】用不等式(组)表示实际问题中的不等关系;【难点】用不等式(组)正确表示不等关系。

【知识链接】大于用表示,小于用表示,不大于用表示,不小于用表示,正数用表示,负数用表示,非负数用表示,非正数用表示知识点1:现实世界和日常生活中常见的不等关系问题1:用不等式表示下列不等关系:(1)a与b的和是非正数;(2)某公路立交桥对通过车辆的高度h“限高 4m”;(3)右图是限速为40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度不超过40km/h,表示为 40(4) 设点A与平面的距离为d,B为平面上的任意一点,表示为问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。

若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?(1)根据题意,提价前杂志的定价为元,提价后杂志的定价为元,因此提高了元;(2)由(1)可知,价格提高了0.1元的倍,即个0.1元;(3)由(2)可知,销售量减少了2000本的倍,即本,因此,提价后的销售量为本;(4)提价后的销售总收入=销售量单价,因此可表示为,不低于用表示,所以可得到不等式为知识点2:现实世界和日常生活中常见的不等式组关系问题3:用不等式组表示下列不等关系:(1)中国“神州七号”宇宙飞船的飞行速度v不小于第一宇宙速度7.9km/s,且小于第二宇宙速度11.2km/s. 表示为(2)某品牌酸奶的质量检查规定,酸奶中脂肪f的含量应不少于2.5﹪,蛋白质p 的含量应不少于2.3﹪. 表示为(3)铁路旅行常识规定:旅客每人免费携带物品——杆状物长度w不超过200cm,重量m不超过20kg. 表示为问题4:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm的两种。

不等式的基本性质(原卷版)

3.1 不等式的基本性质【知识点梳理】知识点一、符号法则与比较大小 实数的符号:任意x R ∈,则0x >(x 为正数)、0x =或0x <(x 为负数)三种情况有且只有一种成立.两实数的加、乘运算结果的符号具有以下符号性质: ①两个同号实数相加,和的符号不变 符号语言:0,00a b a b >>⇒+>;0,00a b a b <<⇒+<②两个同号实数相乘,积是正数 符号语言:0,00a b ab >>⇒>;0,00a b ab <<⇒>③两个异号实数相乘,积是负数 符号语言:0,00a b ab ><⇒<④任何实数的平方为非负数,0的平方为0 符号语言:20x R x ∈⇒≥,200x x =⇔=. 比较两个实数大小的法则: 对任意两个实数a 、b ①0b a b a ->⇔>; ②0b a b a -<⇔<; ③0b a b a -=⇔=.对于任意实数a 、b ,a b >,a b =,a b <三种关系有且只有一种成立.知识点诠释:这三个式子实质是运用实数运算来比较两个实数的大小关系.它是本章的基础,也是证明不等式与解不等式的主要依据.知识点二、不等式的性质不等式的性质可分为基本性质和运算性质两部分 基本性质有:(1)对称性:a b b a >⇔< (2)传递性:, a b b c a c >>⇒>(3)可加性:a b a c b c >⇔+>+(c ∈R ) (4)可乘性:a >b ,000c ac bc c ac bc c ac bc >⇒>⎧⎪=⇒=⎨⎪<⇒<⎩运算性质有:(1)可加法则:,.a b c d a c b d >>⇒+>+ (2)可乘法则:0,00a b c d a c b d >>>>⇒⋅>⋅> 知识点诠释:不等式的性质是不等式同解变形的依据. 知识点三、比较两代数式大小的方法 作差法:任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小.①0b a b a ->⇔>; ②0b a b a -<⇔<; ③0a b a b -=⇔=. 作商法:任意两个值为正的代数式a 、b ,可以作商a b ÷后比较ab与1的关系,进一步比较a 与b 的大小.①1aa b b>⇔>; ②1aa b b<⇔<;③1aa b b=⇔=. 中间量法:若a b >且b c >,则a c >(实质是不等式的传递性).一般选择0或1为中间量.【题型归纳目录】题型一:用不等式(组)表示不等关系 题型二:作差法比较两数(式)的大小 题型三:利用不等式的性质判断命题真假 题型四:利用不等式的性质证明不等式 题型五:利用不等式的性质比较大小题型六:利用不等式的基本性质求代数式的取值范围【典型例题】题型一:用不等式(组)表示不等关系例1.(2022·湖南·怀化五中高二期中)用不等式表示,某厂最低月生活费a 不低于300元 ( ). A .300a ≤ B .300a ≥ C .300a > D .300a <例2.(2022·全国·高一专题练习)某医院工作人员所需某种型号的口罩可以外购,也可以自己生产.其中外购的单价是每个1.2元,若自己生产,则每月需投资固定成本2000元,并且每生产一个口罩还需要材料费和劳务费共0.8元.设该医院每月所需口罩()n n *∈N 个,则自己生产口罩比外购口罩较合算的充要条件是( ) A .800n > B .5000n >C .800n <D .5000n <例3.(2022·湖北·华中科技大学附属中学高一阶段练习)如图两种广告牌,其中图(1)是由两个等腰直角三角形构成的,图(2)是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种关系用含字母(),a b a b ≠的不等式表示出来( )A .()2212a b ab +> B .()2212a b ab +< C .()2212a b ab +≥ D .()2212a b ab +≤例4.(2022·上海·上外附中高一期中)用锤子以均匀的力敲击铁钉钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的()*1N k k∈,已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,请从这个实例中提炼出一个不等式组:______.例5.(2022·全国·高一课时练习)某化工厂制定明年某产品的生产计划,受下面条件的制约:生产此产品的工人数不超过200人;每个工人年工作时间约计2100h ;预计此产品明年销售量至少80000袋;每袋需用4h ;每袋需用原料20kg ;年底库存原料600t ,明年可补充1200t .试根据这些数据预测明年的产量x (写出不等式(组)即可)为________.【方法技巧与总结】将不等关系表示成不等式(组)的思路 (1)读懂题意,找准不等式所联系的量. (2)用适当的不等号连接. (3)多个不等关系用不等式组表示. 题型二:作差法比较两数(式)的大小例6.(2022·江西·九江县第一中学高二期中(理))若0,01a b ><<,则2,,a ab ab 的大小关系为( ) A .2a ab ab >> B .2a ab ab << C .2ab a ab >>D .2ab ab a >>例7.(2022·江苏·高一)已知a b <,3x a b =-,2y a b a =-,则,x y 的大小关系为( ) A .x y > B .x y < C .x y =D .无法确定例8.(2022·河南河南·高二期末(文))若0a b >>,c 为实数,则下列不等关系不一定成立的是( ). A .22ac bc > B .11a b< C .22a b > D .a c b c +>+例9.(2022·全国·高一专题练习)下列四个代数式①4mn ,①224+m n ,①224m n +,①22m n +,若0m n >>,则代数式的值最大的是______.(填序号).例10.(2022·江苏·高一)(1)比较231x x -+与221x x +-的大小; (2)已知0c a b >>>,求证:a bc a c b>--.【方法技巧与总结】 作差法比较大小的步骤题型三:利用不等式的性质判断命题真假例11.(2022·上海崇明·二模)如果0,0a b <>,那么下列不等式中正确的是( ) A .22a b < B a b -<C .a b > D .11a b<例12.(2022·上海交大附中模拟预测)已知a b <,0c ≥,则下列不等式中恒成立的是( )A .ac bc <B .22a c b c ≤C .22a c b c +<+D .22ac bc ≤例13.(2022·山西师范大学实验中学高二阶段练习)若,,a b c ∈R ,且a b >,则下列不等式中一定成立的是( ) A .a b b c +≥- B .ac bc ≥C .20c a b>-D .2()0a b c -≥例14.(2022·江苏南京·模拟预测)设a 、b 均为非零实数且a b <,则下列结论中正确的是( ) A .11a b> B .22a b < C .2211a b< D .33a b <【方法技巧与总结】运用不等式的性质判断真假的技巧(1)首先要注意不等式成立的条件,不要弱化条件,尤其是不凭想当然随意捏造性质. (2)解决有关不等式选择题时,也可采用特值法进行排除,注意取值一定要遵循以下原则:一是满足题设条件;二是取值要简单,便于验证计算.题型四:利用不等式的性质证明不等式例15.(2022·全国·高一课时练习)(1)已知a b >,0ab >,求证:11a b<; (2)已知0a b >>,0c d <<,求证:a b c d>.例16.(2022·河南·濮阳市油田第二高级中学高二阶段练习(文))(1)33a x y =+,22b x y xy =+,其中x ,y 均为正实数,比较a ,b 的大小;(2)证明:已知a b c >>,且0a b c ++=,求证:c c a c b c>--.例17.(2022·湖南·高一课时练习)利用不等式的性质证明下列不等式: (1)若a b <,0c <,则()0a b c ->; (2)若0a <,10b -<<,则2a ab ab <<.例18.(2022·全国·高一专题练习)(1)若bc -ad ≥0,bd >0,求证:a b b +≤c dd+; (2)已知c >a >b >0,求证:a bc a c b>--例19.(2022·全国·高一专题练习)已知三个不等式:①0ab >;①c da b>;①bc ad >.若以其中两个作为条件,余下的一个作为结论,请写出一个真命题,并写出推理过程.例20.(2022·江苏·高一专题练习)(1)设0b a >>,0m >,证明:a a m b b m+<+; (2)设0x >,0y >,0z >,证明:12x y zx y y z z x<++<+++.例21.(2022·全国·高一专题练习)若0a b >>,0c d <<,||||b c > (1)求证:0b c +>; (2)求证:22()()b c a da cb d ++<--;(3)在(2)中的不等式中,能否找到一个代数式,满足2()b c a c +<-所求式2()a db d +<-?若能,请直接写出该代数式;若不能,请说明理由.【方法技巧与总结】对利用不等式的性质证明不等式的说明(1)不等式的性质是证明不等式的基础,对任意两个实数a ,b 有0a b a b ->⇒>;0a b a b -=⇒=;0a b a b -<⇒<.这是比较两个实数大小的依据,也是证明不等式的基础.(2)利用不等式的性质证明不等式,关键要对性质正确理解和运用,要弄清楚每一条性质的条件和结论,注意条件的加强和减弱、条件和结论之间的相互联系.(3)比较法是证明不等式的基本方法之一,是实数大小比较和实数运算性质的直接应用.题型五:利用不等式的性质比较大小例22.(2022·新疆·莎车县第一中学高二期中(文))设2a =73b =62c =则a ,b ,c 的大小关系__________.例23.(2022·江西赣州·高二期中(理))已知1t >,且1x t t =+1y t t =-则x ,y 的大小关系是______.例24.(2022·浙江·三模)已知,,,a b c d ∈R ,且,,()()()a b c c d a d b d c d c d <<≠---+=,则( ) A .d a < B .a d b <<C .b d c <<D .d c >例25.(2022·河南·夏邑第一高级中学高二期中(文))若a 是实数,210P a a +,2264Q a a ++P ,Q 的大小关系是( )A .Q P >B .P Q =C .P Q >D .由a 的取值确定例26.(多选题)(2022·湖南·长郡中学高二期中)若0a b <<,0c >,则下列不等式中一定成立的是( ) A .a c b c +<+ B .ac bc <C .c c a b <D .11a b a b->-例27.(多选题)(2022·山西运城·高二阶段练习)已知0b a <<,则下列选项正确的是( ) A .22a b > B .a b ab +< C .||||a b < D .2ab b >例28.(2022·江苏·高一课时练习)(1)已知x ≤1,比较3x 3与3x 2-x +1的大小. (2)已知a ,b ,c 是两两不等的实数,p =a 2+b 2+c 2,q =ab +bc +ca ,试比较p 与q 的大小.例29.(2022·江苏·高一课时练习)已知10x y -<<<,比较1x,1y ,2x ,2y 的大小关系.【方法技巧与总结】 注意点:①记准、记熟不等式的性质并注意在解题中灵活准确地加以应用;②应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则题型六:利用不等式的基本性质求代数式的取值范围例30.(2022·福建·厦门市国祺中学高一期中)若13a b -<+<,24a b <-<,23t a b =+,则t 的取值范围为______.例31.(2022·江苏·苏州大学附属中学高一阶段练习)若实数x ,y 满足121x y -≤+≤且131x y -≤+≤,则9x y +的取值范围是_____________.例32.(2022·全国·高一期中)已知0b >,且445b a c b a c b -≤-≤-≤-≤,则9a cb-的取值范围是___________.例33.(2022·河北·大名县第一中学高一阶段练习)若实数,αβ满足11αβ-≤+≤,123αβ≤+≤,则3αβ+的取值范围为________.例34.(2022·河南·西平县高级中学高一阶段练习)已知实数,x y 分别满足,15x <<,27y <<.(1)分别求23x y +与45x y -的取值范围; (2)若,x y <试分别求x y -及xy的取值范围.例35.(2022·江苏·高一专题练习)已知15a b ≤+≤,13a b -≤-≤,求32a b -的取值范围.例36.(2022·江苏·高一专题练习)实数,a b 满足32a b -≤+≤,14a b -≤-≤. (1)求实数,a b 的取值范围; (2)求32a b -的取值范围.例37.(2022·全国·高一专题练习)(1)若1260a ,1536b ,求2a b -,a b的取值范围;(2)已知x ,y 满足1122x y -<-<,01x y <+<,求3x y -的取值范围.例38.(2022·安徽·阜阳市耀云中学高二期中)已知122a b -<+<且34a b <-<,求5a b +的取值范围.例39.(2022·全国·高一课时练习)设实数x ,y 满足212xy ≤≤,223x y ≤≤,求47x y的取值范围.【方法技巧与总结】利用不等式的性质求取值范围的策略建立待求范围的整体与已知范围的整体的关系,最后利用一次不等式的性质进行运算,求得待求的范围.如已知2030,1518x y x y <+<<-<,要求23x y +的范围,不能分别求出,x y 的范围,再求23x y +的范围,应把已知的“x y +”“x y -”视为整体,即5123()()22x y x y x y +=+--,所以需分别求出51(),()22x y x y +--的范围,两范围相加可得23x y +的范围.“范围”必须对应某个字母变量或代数式,一旦变化出其他的范围问题,则不能再间接得出,必须“直来直去”,即直接找到要求的量与已知的量间的数量关系,然后去求.注意同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.【同步练习】一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2022·四川·成都外国语学校高一阶段练习(理))如果实数,a b 满足0a b <<,那么( ). A .0a b ->B .11a b> C .ac bc < D .22a b <2.(2022·浙江衢州·高一阶段练习)随着社会的发展,小汽车逐渐成了人们日常的交通工具.小王在某段时间共加92号汽油两次,两次加油单价不同.现在他有两种加油方式:第一种方式是每次加油200元,第二种方式是每次加油30升.我们规定这两次加油哪种加油方式的平均单价低,哪种就更经济,则更经济的加油方式为( ) A .第一种B .第二种C .两种一样D .不确定3.(2022·宁夏·银川二中高二期中(文))已知0ab >,且()()332a b a b ++=,则下列不等式一定成立的是( ) A .222a b +≤B .222a b +C .2a b +D .2a b +>4.(2022·四川省泸县第二中学模拟预测(文))已知,a b ∈R 且满足1311a b a b ≤+≤⎧⎨-≤-≤⎩,则42a b +的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8]5.(2022·黑龙江·鹤岗一中高二阶段练习)下列命题中,正确的是( )A .若a b >,c d >, 则 a c b d +>+B .若a b >, 则ac bc >C .若0a b >>,0c d >>, 则a b c d >D .若a b >,则22a b >6.(2022·河南·高二期中(文))已知a ,b ,c ∈R ,a b >,且0ab ≠,则下列不等式中一定成立的是( )A .2a b ab +≥B .2ab b >C .22ac bc >D .33a b > 7.(2022·江西·赣州市赣县第三中学高二阶段练习(文))已知a ,b ∈R ,0a b >>,则下列不等式中一定成立的是( )A .11a a b b ->- B .11a b b >- C .11a a b b +>+ D .11a b b a->- 8.(2022·浙江金华·高三阶段练习)若非负实数x 、y 、z 满足约束条件3135x y z x y z -+≤⎧⎨+-≥⎩,则3S x y z =++的最小值为( )A .1B .3C .5D .7二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2022·重庆巴蜀中学高三阶段练习)下列命题正确的是( )A .若c c a b >,则a b <B .若a b <且0ab >,则11a b> C .若0a b <<,则22a ab b << D .若0,0a b c d >><<,则ac bd < 10.(2022·浙江·温州市第八高级中学高二期中)已知实数x ,y 满足16x <<,23y <<,则( )A .39x y <+<B .13x y -<-<C .218xy <<D .122x y<< 11.(2022·广西·高一阶段练习)若a ,b 为非零实数,则以下不等式中恒成立的是( ).A .222a b ab +≥ B .()22242a b a b ++≤ C .2a b ab a b +≥+ D .2b a a b+≥ 12.(2022·浙江·台州市书生中学高二开学考试)已知0x y z ++=,x y z >>,则下列不等式一定成立的是( )A .xy xz >B .xy yz >C .222x z y +>D .y y z z >三、填空题:本题共4小题,每小题5分,共20分.13.(2022·辽宁·高二阶段练习)已知13a -<<且24b <<,则2a b -的取值范围___________. 14.(2022·广西壮族自治区北流市高级中学高二阶段练习(文))若7,34(0)P a a Q a a a =+=++≥.则P ,Q 的大小关系__________(用“<”,“≤”,“=”连接两者的大小关系)15.(2022·全国·高三专题练习)能够说明“设a ,b ,c 是任意实数.若222a b c >>,则a b c +>”是假命题的一组整数a ,b ,c 的值依次为___________.16.(2022·全国·高一课时练习)设,a b ∈R ,则22222a b a b ++≥+中等号成立的充要条件是_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步棸. 17.(10分)(2022·上海市大同中学高一期中)设x 、y 是不全为零的实数,试比较222x y +与2x xy +的大小,并说明理由.18.(12分)(2022·全国·高一课时练习)设实数a 、b 、c 满足2234644b c a a c b a a ⎧+=-+⎨-=-+⎩试确定a 、b 、c 的大小关系,并说明理由.19.(12分)(2022·广东广雅中学高一阶段练习)一般认为,民用住宅的窗户面积必须小于地板面积,但窗户面积与地板面积的比应不小于10%,而且这个比值越大,采光效果越好.设某所公寓的窗户面积为2m a ,地板面积为2m b ,(1)若这所公寓窗户面积与地板面积的总和为2330m ,则这所公寓的窗户面积至少为多少平方米?(2)若同时增加相同的窗户面积和地板面积,设增加的面积为2m t ,则公寓的采光效果是变好了还是变坏了?请说明理由.20.(12分)(2022·福建·福州三中高一阶段练习)证明下列不等式 (1)若bc -ad ≥0,bd >0,求证:a b c d b d++≤ (2)已知a >0,b >0,求证:22a b a b b a++≥21.(12分)(2022·湖北·武汉市钢城第四中学高一阶段练习)已知:实数12,(0,1)x x ∈,求证:不等式121211x x x x +>+ 成立的充分条件是12x x <.22.(12分)(2022·辽宁·建平县实验中学高一阶段练习)(1)比较3x 与21x x -+的大小; (2)已知a b c >>,且0a b c ++=,①求证:c c a c b c >--. ①求ca 的取值范围.。

3.1不等式与不等关系(第二课时)

设2x+3y=m(x+y)+n(x-y)
则2x+3y=(m+n)x+(m-n)y
5 m+n = 2 m = 2 即 m − n = 3 得 n = − 1 2 5 1 ∴2x+3y= (x+y)+(- )(x-y) 2 2
待定系数法
Q −1 ≤ x + y ≤ 2, 2 ≤ x − y ≤ 4 5 5 ∴− ≤ (x+y) ≤ 5 2 2 1 -2 ≤ - (x-y) ≤ -1 2 9 5 1 ∴− ≤ (x+y)+(- )(x-y) ≤ 4 2 2 2
复习回顾 1.了解不等式(组)的实际背景,会用 了解不等式( 了解不等式 的实际背景, 不等式表示不等关系。 不等式表示不等关系。 2. 掌握大小比较的原理,学会大小比较 掌握大小比较的原理, 的方法。 的方法。
作差法的步骤
作差 变形 定号 结论
3.1
不等关系与不等式(第二课时) 不等关系与不等式(第二课时)
e e 已知:a > b > 0, c < d < 0, e < 0 求证: > a−c b−d 解: e e e(Q− d< − e<a0 c) e[(b − a ) + (c − d )] b c )d ( − − = = a−c b−d (a c )( − d ) (a − c)(b − d ) ∴−− c> b − d> 0
题型四. 题型四.利用不等式的性质求取值范围 a 例4 已知1 < a < 4, 2 < b < 8, 试求a - b与 的取值范围 b
解:Q 2 < b < 8

人教版必修5第三章第一节5.3.1不等关系与不等式3


1 1 解析:∵ < <0,∴a<0,b<0. a b ∴a+b<0,ab>0,∴a+b<ab,①正确. 1 1 1 1 b-a 由 < <0,得 - = <0. a b a b ab ∵ab>0,∴b-a<0,即 b<a,∴③错误. 由 b<a<0,知|b|>|a|,∴②错误.
b a b2+a2-2ab a-b2 由 + -2= = , ab ab a b
【思路启迪】 可利用不等式的性质判断一个命题为真命 题,要说明一个命题为假,可通过举反例说明.
【解】
(1)因未知 c 的正负或是否为零,无法确定 ac 与
bc 的大小,所以是假命题. (2)因为 c2≥0,所以只有 c≠0 时才能正确.c=0 时,ac2 =bc2,所以是假命题. 变式:若 ac2>bc2,则 a>b,命题是真命题. (3)a<b,a<0⇒a2>ab;a<b,b<0⇒ab>b2,命题的真命题. 1 1 (4)由性质定理 a<b<0⇒ > ,命题是真命题. a b
(3)乘法单调性: a>b,c>0⇒ a>b,c<0⇒ a>b>0,c>d>0⇒ a>b>0(n∈N*)⇒an>bn; a>b>0(n∈N ,n≥2)⇒ a> b. 双向性:a>b⇔ .
*
; ; ;
n
n
问题探究 1:两个不同向不等式的两边可以分别相减或相 除吗?
提示:不可以.两个不同向不等式的两边不能分别相减, 也不能分别相除,在需要求差或求商时,可利用不等式的性质 转化为同向不等式相加或相乘.

(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)

一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 3 页
3. 1不等关系与不等式 同步测试
【基础练习】
1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原
计划至少提前两天完成任务,则以后几天平均每天至少要完成的土方数x应满足的不等
式为 。
2.限速40km∕h 的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过
40km∕h,写成不等式就是 。
3.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t、
硝酸盐18t。生产1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐15t。现库存磷酸
盐10t、硝酸盐66t,在此基础上生产这两种混合肥料,列出满足生产条件的数学关系
式。

【巩固练习】
1.某次数学测验,共有16道题,答对一题得6分,答错一题倒扣2分,不答则不扣
分,某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?
列出其中的不等关系。

2.将若干只鸡放入若干个笼,若每个笼里放4只,则有一鸡无笼可放:若每个笼里放5
只,则有一笼无鸡可放。设现有笼x个,试列出x满足的不等关系,并说明至少有多少
只鸡多少个笼?至多有多少只鸡多少个笼?

3.某车间有20名工人,每人每天可加工甲种零件5件或乙种零件4件。在这20名工人
中,派x人加工乙种零件,其余的加工甲种零件,已知每加工一个甲种零件可获利16
元,每加工一个乙种零件可获利24元,若要使车间每天获利不低于1800元,写出x
所要满足的不等关系.

4.某旅游公司年初以98万元购进一辆豪华旅游车,第一年各种费用为12万元,以后每年
都增加4万元,该车每年的旅游效益为50万元,设第n年开始获利,列出关于n的不
等关系.
第 2 页 共 3 页

5.某蔬菜收购点租用车辆,将100t新鲜辣椒运往某市销售,可租用的大卡车和农用车分
别为10辆和20辆,若每辆卡车载重8t,运费960元,每辆农用车载重2.5t,运费360元,
据此,安排两种车型,应满足那些不等关系,请列出来.

6.某同学要把自己的计算机接入因特网,现有两家ISP公司可供选择,公司A每小时受费
1.5元;公司B的收费规则如下:在用户上网的第1小时内收费1.7元,第2小时内收费
1.6元,以后每小时减少0.1元(若超过17小时,按17小时计算)如图所示.
假设一次上网时间总小于17小时,那么,一次上网在多长时间以内能够保证选择公司
A比选择公司B所需费用少?请写出其中的不等关系.
第 3 页 共 3 页

3.1不等关系参考答案
【基础练习】

1.3x≥300-60 2.v≤40 3.设生产甲乙两种混合肥料各x,yt则
4101815660,0xy
xy
xy









【巩固练习】

1.设至少答对x题,则16x-2(15-x)≥60
2.,至少6个笼,25只鸡;至多10个笼, 41只鸡。

5214151xxx

3.16×5×(20-x)+24×4x≥1800
4.98+12+(12+4)+(12+4×2)+…+[12+(n-1)×4]<50n
5.设租用大卡车x辆,农用车y辆

82.5100010020,xy
x
y
xZyZ












6.设一次上网时间为xh,选择A公司,费用1.5x(元);选择B公司,x<17时费用为
元,x≥17时为15.3元,所以>1.5x (0(35)20xx(35)20xx

相关文档
最新文档