同构及同态(离散数学)
离散数学课本定义和定理

第1章集合集合的基本概念1. 集合、元元素、有限集、无限集、空集2. 表示集合的方法:列举法、描述法3. 定义子集:给定集合A和B,如果集合A的任何一个元都是集合B中的元,则称集合A包含于B或B包含A,记为或,并称A为B的一个子集;如果集合A和B满足,但B中有元不属于A,则称集合A真包含于B,记为,并且称A为B的一个真子集;4. 定义幂集:给定集合A,以A的所有子集为元构成的一个集合,这个集合称为A的幂集,记为或集合的运算定义并集:设A和B是两个集合,则包含A和B的所有元,但不包含其他元的集合,称为A和B 的并集,记为.定义交集:A和B是两个集合,包含A和B的所有公共元,但不包含其他元的集合,称为A和B 的交集,记为.定义不相交:A和B是两个集合,如果它们满足,则称集合A和B是不相交的;定义差集:A和B是两个集合,属于A而不属于B的所有元构成集合,称为A和B的差集,记为.定义补集:若A是空间E的集合,则E中所有不属于A的元构成的集合称为A的补集,记为. 定义对称差:A和B是两个集合,则定义A和B的对称差为包含排斥原理定理设为有限集,其元素个数分别为,则定理设为有限集,其元素个数分别为,则定理设为有限集,则重要例题P11 例第2章二元关系关系定义序偶:若和是两个元,将它们按前后顺序排列,记为,则成为一个序偶;※对于序偶和,当且仅当并且时,才称和相等,记为定义有序元组:若是个元,将它们按前后顺序排列,记为,则成为一个有序元组简称元组;定义直接积:和是两个集合,则所有序偶的集合,称为和的直接积或笛卡尔积,记为.定义直接积:设是个集合,,则所有元组的集合,称为的笛卡尔积或直接积,记为.定义二元关系若和是两个集合,则的任何子集都定义了一个二元关系,称为上的二元关系;如果,则称为上的二元关系;定义恒等关系:设是上的二元关系,,则称是上的恒等关系;定义定义域、值域:若是一个二元关系,则称为的定义域;为的值域;定义自反:设是集合上的关系,若对于任何..,都有即则称关系是自反的;定义反自反:设是集合上的关系,若对于任何,都满足,即对任何都不成立,则称关系是反自反的;定义对称:设是集合上的关系,若对于任何,只要,就有,那么称关系是对称的;定义反对称:设是集合上的关系,若对于任何,只要并且时,就有,那么称关系是对称的;定义传递设是集合上的关系,若对于任何,只要并且时,就有,则称关系是传递的;定理设是集合上的关系,若是反自反的和传递的,则是反对称的;关系矩阵和关系图定义无定理无关系的运算定义连接:设为上的关系,为上的关系,则定义关系称为关系和的连接或复合,有时也记为.定义逆关系:设为上的关系,则定义的逆关系为为上的关系:.定理设和都是上的二元关系,则下列各式成立12345定理设为上的关系,为上的关系,则闭包运算定义自反闭包:设是集合上的二元关系,如果是包含的最小自反关系,则称是关系的自反闭包,记为.定义对称闭包:设是集合上的二元关系,如果是包含的最小对称关系,则称是关系的对称闭包,记为.定义传递闭包:设是集合上的二元关系,如果是包含的最小传递关系,则称是关系的传递闭包,记为或.定理设是集合上的二元关系,则(1)是自反的,当且仅当.(2)是对称的,当且仅当.(3)是传递的,当且仅当.定理设是集合上的二元关系,则. “恒等关系”定理设是集合上的二元关系,则. “逆关系”定理设是集合上的二元关系,则. “幂集”定理设是一个元集,是上的二元关系,则存在一个正整数,使得.等价关系和相容关系定义覆盖、划分:是一个集合,,如果,则称是的一个覆盖;如果,并且,则称是的一个划分,中的元称为的划分块;定义等价关系:设是上的一个关系,如果具有自反性、对称性和传递性三个性质,则称是一个等价关系;设是等价关系,若成立,则称等价于.定义等价类:设是上的一个等价关系,则对任何,令,称为关于的等价类,简称为的等价类,也可以简记为.定义同余:对于整数和正整数,有关系式:如果,则称对于模同余的,记作定义商集:设是上的一个等价关系,由引出的等价类组成的集合称为集合上由关系产生的商集,记为. “等价类的集合”定理若是上的一个等价关系,则由可以产生唯一的一个对的划分; “商集”定义相容关系:设是上的一个关系,如果是自反的和对称的,则称是一个相容关系;相容关系可以记为.所有的等价关系都是相容关系,但相容关系却不一定是等价关系;定义最大相容块:设是一个集合,是定义在上的相容关系;如果,中的任何两个元都有关系,而的每一个元都不能和中所有元具有关系,则称是的一个最大相容块;偏序关系定义偏序关系:是定义在集合上的一个关系,如果它具有自反性、反对称性和传递性,则称是上的一个偏序关系,简称为一个偏序,记为.更一般地讲,若是一个集合,在上定义了一个偏序,则我们用符号来表示它,并称是一个偏序集;定义全序/链:是一个偏序集,对任何,如果或这两者中至少有一个必须成立,则称是一个全序集或链,而称是上的一个全序或线性序;定义盖住:是一个偏序集,,若,并且不存在,使并且,则称盖住. “紧挨着”定义最小元、最大元:是一个偏序集,如果中存在有元,对任何都满足,则称是的最小元;如果中存在有元,对任何都满足,则称是的最大元; 定义极小元、极大元:是一个偏序集,如果,而中不存在元,使,则称是的极小元;如果,而中不存在元,使,则称是的极大元;定义上界、下界、上确界、下确界:是一个偏序集,,如果对于所有的,都有,则称是的一个上界;如果对于所有的,都有,则称是的一个下界;如果是的一个上界,对于的任一上界,都有,则称是的最小上界上确界. 如果是的一个上界,对于的任一上界,都有,则称是的最大下界下确界.定义良序集:设是一个偏序集,对于偏序,如果的每个非空子集都具有最小元,则称是一个良序集,而称是上的一个良序;每个良序集都是全序集;第3章函数和运算函数定义映射、象:关系定义在上,如果对于每一个.....,使,...,都有唯一的一个则称是从到的一个函数或映射,记为.称为函数的变元,称为变元在下的值或象,记为.注意:(1)定义域,而不是.(2)每一个,有唯一的,使. 多值函数不符合定义(3)值域.定义受限、扩展:若是从到的一个函数,,则也是一个函数,它定义于到,我们称它是在上的受限;如果是函数的一个受限,则称是的一个扩展;★定义映上、映内、一对一、一一对应:若,则的值域时,称函数是映上的或满射;如果的值域时,则称函数是映内的;如果,则有,则称是一对一的单射即时,有.如果映上的,又是一对一的,则称是一一对应的或双射;定义复合运算:若,则定义和的复合运算为:即.注:逆函数若要存在需要满足以下条件:1函数是映上的2函数必须是一对一的定义恒等函数函数称为恒等函数;定理,则的充分必要条件是,并且运算定义二目运算:若是一个集合,是从到的一个映射函数,则称为一个二目运算;一般地,若是从到的一个映射是正整数,则称是一个目运算;运算的封闭:运算的结果总是集合中的一个元,因此这个定义保证了运算的施行,这种情况又称为集合对于该种运算是封闭的;定义可交换:若是一个运算,对于任何,都有,则称运算是可交换的或者说,服从交换律.定义可结合:若是一个运算,对于任何,都有,则称运算是可结合的或者说,服从结合律.定义可分配:若是一个运算,是一个运算,对于任何,都有,则称运算对于运算是可分配的或者说,对于服从分配律定义左单位元、右单位元:设是上的一个运算,如果中存在有一个元,对于任何,有,则称是运算的左单位元;如果中存在有一个元,对于任何,有,则称是运算的右单位元;定理若是上的一个运算,和分别是它的左、右单位元,则,并且是唯一的因此,称为运算的单位元.定义左零元、右零元:设是上的一个运算,如果中存在有一个元,对于任何,有,则称是运算的左零元;如果中存在有一个元,对于任何,有,则称是运算的右零元.定义等幂:若是上的一个运算,,对于运算,有,则称元对于运算是等幂的;定义左逆元、右逆元:若是上的一个运算,它具有单位元,对于任何一个,如果存在有元,使,则称是的左逆元;如果存在有元,使,则称是的右逆元;定理若是上的一个运算,它具有单位元,并且是可结合...的,则当元可逆时,它的左、右逆元相等,并且唯一的此时称之为的逆元,并且记为.定义可消去:若是上的一个运算,对于任何,如果元满足:则;或则,则称元对于运算是可消去的;第4章无限集合基数★定义等势:若和是两个集合,如果在和之间可以建立一个一一....对应关系,则称集合和等势,并记为;定理令是由若干个集合为元所组成的集合,则上定义的等势关系是一个等价关系;定义有限集、无限集:若是一个集合,它和某个自然数集等势,则称是一有限集,不是有限集的集合称为无限集;定理有限集的任何子集都是有限集定理有限集不与其任何真子集等势定理自然数集是无限集可列集定义可列集:若是一个集合,它和所有自然数的集合等势,则称是一个可列集;可列集的基数用符号表示;定理若是一个集合,可列的充分必要条件是可以将它的元排列为的序列形式;定理任何无限集必包含有可列子集;定理可列集的子集是有限集或可列集记为:定理若是可列集,是有限集,并且,则是可列集记为:.定理若和都是可列集,并且,则是可列集记为:推论设都是可列集,则是可列集记为:定理设都是可列集,并且,则是可列集记为:推论设都是可列集,则是可列集.定理所有有理数的集合是可列集;不可列集定理区间中所有实数构成的集合是不可列的;定义连续基数:开区间中所有数组成集合的基数记为,具有基数的集合称为连续统,称为连续基数;推论:集合的基数也是.定理所有实数的集合是不可列的,它的基数是.定理对于任何数,若,则区间,以及都具有连续基数定理一个无限集和一个可列集作并集时,并集的基数等于集的基数;推论一个无限集和一个有限集的并集,其基数等于集的基数;基数的比较定义设集合的基数是.如果与的真子集等势,而和不等势,则称的基数小于的基数,记为.定理:是两个集合,若与的某一子集等势,与的某一子集等势,则.定理:是任意两个集合,的基数为,的基数为,则下列三个关系:中必有一个且只有个成立;定理:若是有限集的基数,则.定理:若是无限集合,则定理:若是可列个互不相交的集合,它们的基数都是,则的基数是记为:定理:可列集的幂集,其基数是记为:定理:若是一个集合,是的幂集,则.此定理说明:不存在最大的基数;补充:第5章形式语言文法和语言定义产生式:一个产生式或重写规则是一个有序对,通常写成,其中,是一个符号,而是一个符号的非空有限串,是这个产生式的左部,而是产生式的右部.产生式将简称为规则;定义非终极符号、字母表、终极符号、开始符号:一个文法是一个四元组.其中,是元语言的语法类或变元的集合,它生成语言的串,这些语法类或变元成为非终极符号,是符号的非空有穷集合,称为字母表,的符号称为终极符号.是之一,是词汇表的一个识别元素,称为开始符号.是产生式的集合;定义直接产生、直接推导,直接规约:设是一个文法,如果,而中有规则,就称串直接产生串,或称是直接推导出来的,或直接规约到,记为.定义产生、规约到、推导:设是一个文法,如果存在产生式序列,使得,而,就说产生规约到,或是的推导,记为.定义句型:令是一个文法,如果串可从开始符号推导出来,即如果,则称为一个句型;补充:若,则,其中是空串,不含空串文法的类型定义0-型文法:在上的0-型文法由以下组成:(1)不在中的不同符号的非空集合,称为变量表,它包含一个纲符号,称为开始变量; (2)产生式的有限集合;由产生的所有字集称为由产生的语言;定义0-型语言:在上可由某一0-型文法产生的字集称为0-型语言;定义1-型文法:如果在0-型文法中,对于中的每个产生式,要求,则这文法称为1-型文法或上下文敏感文法.定义2-型文法:设文法,对于中的每一个产生式有且有的人要求,则此文法叫2-型文法或前后文无关文法;定义3-型文法:设为一文法,又设中的每一个产生式都是或,其中和都是变量,而为终极符号,而此文法为3-型文法或正规文法;第1章代数系统代数系统的实例和一般性质定义代数系统:若是序偶,是一个非空集合,是定义在上的某些运算的非空集合,则称是一个代数系统,或称代数;代数系统的类型:(1)代数系统的类型是,其中代表目运算符; (2),分别为目运算符,则的类型为.同态和同构定义同态象、同态映射:和是两个同类型的代数系统,映射和也构成一一对应.如果对于任意目运算,及其对应的运算,当时,都有,则称代数是的同态象,称是从到的一个同态映射;定义同态象、同态映射:若和是两个同类型的代数系统,和都是二目运算,映射.如果对于任何,都有,则称是的一个同态象,称是从到的一个同态映射;注:如果就是,则映射是从到它自身;当上述条件仍然满足时,我们就称是的一个自同态映射;定义同构、同构映射、自同构映射:如果和是同态的,映射不仅是同态映射,而且是一一对应....的,则称和同构,称是从到的一个同构映射;如果就是,则称是上的一个自同构映射定义同余关系:设是一个代数系统,是上的一个等价关系,如果存在,当时,成立,则称是上的一个同余关系;定理:设~是上的一个等价关系,如果存在同态映射,使得当时,当且仅当,则~是上的同余关系;商代数与积代数定义子代数:设是一个代数系统,在运算下封闭的,则称是的一个子代数;定义直接积:设到是两个同类型的代数系统,如果对任意的和,定义运算于,称是和的直接积,称和为的因子;第2章半群和群半群和有幺半群定义半群、有幺半群:是一个非空集合,如果中定义了一个二目运算,对于任何,都有,则称是一个半群.如果半群中具有单位元,使得对任何,都有,则称是一个有幺半群;1是一个由有限个符号组成的集合,其中的元称为字母;表示所有的字构成的集合,表示非空串组成的集合;2自由半群:半群的各元相互间没有任何关系;说明:半群是一个定义了二目运算,并且服从结合律的代数系统;有幺半群则是具有单位元的半群;群和循环群定义群:在代数系统中,如果二目运算满足1对于任何,有;2中存在单位元,对任何,有;3对于任何,存在有逆元,使则称是一个群;注:对于群来说,单位元是唯一的,每个元的逆元也是唯一的;“存在逆元的有幺半群叫做群”定义阶数:若是一个群,当是有限集时,则称中元的个数为群的阶数,记为.定理若是一个群,,则,其中即.定义幂:是一个群,,则记个的积为,称为幂,记为表示单位元;定理指数律:若和是整数,则.定理若则定义次数:若是一个群,,使的最小正整数,称为元的次数;定理若是一个群,,的次数为,则都是中不同的元;定义循环群、生成元:由一个单独元素的一切幂所组成的群称为循环群,称为这个群的生成元;定理在阶数为的循环群,由生成元所产生的元次数为,即是生成元的充分必要条件是和互质;定理若和不是互质的,则的次数是,其中的是和的最小公倍数;定义阿贝尔群:如果群中的元对于运算满足交换律,则称这个群是一个阿贝尔群; “满足交换律的群叫做阿贝尔群”循环群是一个阿贝尔群;定理若和都是有限的阿贝尔群,定义则是一个阿贝尔群;最简单的一个阿贝尔群是群,为按位加二面体群、置换群二面体群是从图形的变换中到处,这些图形都是比较正规的图形;定理更一般地讲,定义置换:若是一个非空的有限集合,则上任何一个到它自身的一一对应的映射,都称为上的置换;定理两个置换的乘积仍是一个置换,并且置换的乘积服从结合律;的恒等映射也是一个置换称为单位置换;上所有置换的集合,对于置换乘法构成一个群,这个群称为对称群,记为,是中元的个数;定义阶置换群若是非空有限集合,是上的个置换所构成的群,则称是一个阶置换群; 定理任何一个阶群都同构于一个阶置换群;子群、群的同态定义子群:是一个群,,如果1单位元2若,则的逆元3若,则则称是的一个子群;定理是一个群,,是一个子群的充分必要条件是:若,则定义同态象、群同态映射:和是群,.若对任何,有群的同态映射具有下列性质:1将单位元映射为单位元2将逆元映射为逆元3对运算封闭,即对任何,有定理若和是群,是一个群同态映射,则将的子群映射为的子群;定义同态核:若是一个群同态映射,是的单位元,则中所有满足的元的集合,称为同态核,记为.定理同态核是一个子群;定理若是群的子群,则定义了上的一个划分因而也定义了上一个等价关系. 群子集:假定都是群中的元构成的集合称之为群子集,定义特别地,当是一元集时,我们简记为,则定理若是群的子群都是群的子群,则是一个群的充分必要条件是.陪集、正规子群、商群定义左陪集:若是群的子群,对于,称称为的一个左陪集. 定理若是群的子群,则的所有左陪集构成的一个划分;定理拉格朗日定理每个左陪集的元和中的元都是一样多;推论子群中元的个数一定是群中元的个数的因子;定义正规子群:若是群的子群,对于任何,都满足,则称是群的一个正规子群.一个阿贝尔群的任何子群都是正规子群;当是群的正规子群时,对于关于的陪集.定义运算为考虑所有关于的陪集组成的集合和运算构成的系统为一个群;这个群称为关于的商群,记为.定理若是从群到群的映上的同态映射,则核是正规子群,商群同构于.群同态基本定理:商群是由陪集构成的群,也是同余类的集构成的群,所以它同构于象代数,即同构于.如果群没有真正的正规子群,则该群为单群;正规群的任何子群都是正规子群;第3章格和布尔代数格定义格:表示一个偏序集,如果对于中的任何两个元和,在中都存在一个元是它们的上确界,存在一个元是它们的下确界,则称是一个格;对于中的元,它们的上确界常常记为,它们的下确界常常记为,前者又称为和析取或和或,后者又称为和的合取或积或或;定理若是一个格,则对于任何,有(1)的充分必要条件是.(2)的充分必要条件是.定理保序性若是一个格,则对于任何,当时,有引理若是一个格,,则定理分配不等式:若是一个格,则对于任何,定理模数不等式若是一个格,则对于任何,的充分必要条件是定理若是一个代数系统,和是上的二目运算,它服从交换律、结合律和吸收律.则是一个格.定义子格是一个格,,当且仅当对于运算和是封闭的,运算结果和在中相同时,则称代数系统是的一个子格;定义直接积若和是两个格,则称为这两个格的直接积,其中的运算和定义为:对于任何的,定义同态映射设和是两个格,.如果对任何,有则称是到的一个同态映射.特别地,当是一个一一对应时,称是一个同构映射,并且称格和同构的;如果是格上一个同态映射,则称是一个自同态映射.如果是一个同构映射,则称是一个自同构映射.定义完备:对于一个格,如果它的每一个非空子集在格中都具有一个上确界和下确界,则这个格称为完备的;显然每个有限的格都是完备的;对于一个格,它的上确界和下确界如果存在,我们称它们为这个格的边界,并分别记为1和0,因此有时这种格称为有界格;定义补元:是一个有界格,,如果存在元,使且,则称为的补元;定义补格:中的每个元都至少具有一个补元,则称这个格是一个补格;定义分配格:是一个格,如果对任何,有则称是一个分配格;定理任何两个分配格的直接积是分配格;定理若是一个分配格,则对于任何,如果,并且,则推论如果一个格是分配格,同时又是补格,则它的每一个元都具有唯一的一个补元;布尔代数定义布尔代数一个既是补格,又是分配格的格,称为布尔代数;定义对偶命题如果是一个布尔代数,是关于中变元的一个命题,它可以由中变元元通过运算来表示.如果对的表示式进行下列代换:代换为;代换为;代换0;0代换为1,则这样代换后也将得到一个命题,它成为命题的对偶命题,简称为对偶;定理对偶原理如果是一个命题,它在任何一个布尔代数中都成立,并且可以由运算来表示,则对它的对偶命题也在任何一个布尔代数中成立;定理对偶原理如果是一个命题,它在任何一个布尔代数中都成立,并且可以由运算和关系来表示,则将中的运算代换为;代换为;0代换为1,代换0;换为,换为,所得到的对偶命题也在任何一个布尔代数中成立;定理若和是两个布尔代数,是一个同态映射,则在中的同态象是的一个子布尔代数;定义基元:是一个布尔代数,,如果中不存在元,使,则称是的一个基元;如果对于任何都存在有基元,则称这个布尔代数是基元的; 定理若是一个布尔代数,,则下列命题是等价的;1是一个基元2对于所有的,若,则或3对于所有的,推论若和是不同的基元,定理是一个基元的布尔代数,是其基元的集合,对任一令,则,并且作为基元的析取式,这个表达式是唯一的;定理若是一个非空有限的布尔代数,是它的所有基元构成的集合,则同构.推论一个有限的布尔代数具有个元,其中的是它的基元的个数;推论对于任意正整数,具有个元的布尔代数是同构的;其他代数系统定义环若代数系统满足下列条件:1对于二目运算是一个可交换的加法群;2对于二目运算即乘法是封闭的;3乘法结合律成立,即对中任何三个元和,有4分配律成立,即对中任何元和,有则称是一个环;定义交换环一个环中的任何两个元,如果都满足,则称是一个交换环;定义逆元、零元一个环中如果存在有元,使得对中任何一个元都有,则称是的一个单位元;定义逆元、零元在一个有单位元的环里,如果和是环中的元,满足,则称是。
离散数学-同态和同构

离散算法设计
同态和同构可以用于设计高效的离散算法, 如通过同态映射将问题转化为易于处理的数
学形式,从而降低计算复杂度。
05
同态和同构的实例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
二次方程的同态和同构分析
要点一
总结词
要点二
详细描述
在二次方程中,同态和同构的概念主要应用于方程的变形 和等价分类。
拓扑同构映射保持了原拓扑空间中的拓扑性质,即如果映射$f: X rightarrow Y$是 拓扑空间$X, Y$之间的同构映射,那么对于任意子集$U subseteq X$,有$f(U)$是 $Y$中的开集当且仅当$U$是$X$中的开集。
保持连通性
拓扑同构映射保持了原拓扑空间中的连通性,即如果映射$f: X rightarrow Y$是拓 扑空间$X, Y$之间的同构映射,那么对于任意子集$A subseteq X, B subseteq Y$, 有$(A subseteq B) Leftrightarrow (f(A) subseteq f(B))$。
逻辑同构的性质
保持逻辑关系
逻辑同构映射保持了原逻辑系统中的逻辑关系,即如果映射$f: L_1 rightarrow L_2$是逻辑系统$L_1, L_2$之间的同构映射,那么对于任意命题$varphi in L_1, psi in L_2$,有$(L_1 models varphi) Leftrightarrow (L_2 models psi)$。
的。
同构的性质
同构是一种更强的相似性关系,它不仅保持了群的基本运算性质,还要求存在一个双射 的映射。这意味着原始群和目标群在某种程度上是完全相同的。
离散数学_第06章代数结构概念及性质

【例】(1)以实数集 R 为基集,加法运算" +"为二元,运算组成一代数系统,记为〈R, +〉。 (2)以全体n×n实数矩阵组成的集合 M为基集,矩阵加"+"为二元运算,组成一代 数系统,记为〈M,+〉。 (3)设 S A { | 是集合A上的关系}, “ ” 是求复合关系的运算。它们构成代数 系统S A , 。
有了集合上运算的概念后,便可定义代数结
构了。
定义6.1.2 设S是个非空集合且fi是S上的 ni元运算,其中i=1,2,…,m。由S及f1, f2,…,fm组成的结构,称为代数结构,记 作<S,f1,f2,…,fm>。
此外,集合S的基数即|S|定义代数结构 的基数。如果S是有限集合,则说代数结构 是有限代数结构;否则便说是无穷代数结构。
分配律,或者⊙对于○是可左分配的,即
(x)(y)(z)
(x,y,z∈S→x⊙(y○z))=(x⊙y)○(x⊙z))。
运算⊙对于○满足右分配律或⊙对于○是可 右分配的,即(x)(y)(z) (x,y,z∈S→(y○z)⊙x=(y⊙x)○(z⊙x)) 类似地可定义○对于⊙是满足左或右分配律。 若⊙对于○既满足左分配律又满足右分配律, 则称⊙对于○满足分配律或是可分配的。同样可 定义○对于⊙满足分配律。
x为关于⊙的右逆元:=(y)(y∈S∧y⊙x=e);
x为关于⊙可逆的:=(y)(y∈S∧y⊙x=x⊙y=e)
给定<S,⊙>及幺元e;x,y∈S,则 y为x的左逆元:=y⊙x=e
y为x的右逆元:=x⊙y=e
y为x的逆元:=y⊙x=x⊙y=e
显然,若y是x的逆元,则x也是y的逆元,
因此称x与y互为逆元。通常x的逆元表为x-1。
离散数学-同态和同构

(h(x1)*′h(x2))*′h(x3)=h(x1*x2)*′h(x3)=h((x1*x2)*x3) =h(x1*(x2*x3))=h(x1)*′h(x2*x3) =h(x1)*′(h(x2)*′h(x3))
所以, *′是可交换(或可结合的)。证毕。
二、同态代数的性质
例2:设S = {a, b, c, d}, S′={0, 1, 2, 3}, 代数A=<S, *>和B=<S′,* >由下表
(x)+f (y); (3) 常元运算保持。f(1)=log1=0。
所以<R+, ·, 1>与<R, +, 0>同构。
一、同态与同构
例1(b):集合A={1, 2, 3, 4}, 函数f∶A → A,
f ={<1, 2>, <2, 3>, <3, 4>, <4, 1>}, f 0表示A上的恒等函数;f 1表示f;f 2表示合成函数f·f;f 3表示f 2·f; f 4表 示f 3·f;则f 4=f 0。设F={f 0, f 1, f 2, f 3}, 则代数<F, ·, f 0>可以用左下方的运 算表给定, 这里f 0是么元。集合N4={0, 1, 2, 3},+4是模4加法,代数<N4,+4,0> 用右下方的运算表给定, 这里0是么元。试证明这两个代数同构。
(a) 若*可交换(可结合), 则在A″中, *′也是可交换(可结合) 。 (b) 对*, 若A有么元e (零元0), 则对*′, 代数A″中有么元h(e) (零元h(0))。 (此时h(e) 不一定是代数A′中的实际么元, 除非h是满同态。) (c) 对于*,若一个元素x∈S具有逆元x-1, 则对于*′, 在代数A″中, 元素h(x) 具有逆元h(x-1)。 (d) 若运算*对运算×是可分配的, 则在A″中运算*′ 对运算×′也是可分 配的。
离散数学-近世代数-代数结构

例:代数系统(N,+,×)。其中+,×分别代表通常数的加法和乘法。
添加标题
是否满足交换律?
添加标题
单位元( 幺元)
一个代数系统(S,*), 若存在一个元素eU,使得对 xS,有:e * x =x * e = x,则称 e 为对于运算“ * ”的单位元,也称幺元 。 注意: 单位元是跟运算有关系的,不同的运算可能单位元是不一样的。
解: 作双射 f:A1A2,f(1)=b, f(2)=d, f(3)=c, f(4)=a
a
b
c
d
a
b
b
b
d
b
a
a
d
b
c
c
b
c
a
d
a
a
c
d
*
1
2
3
4
1
4
1
2
4
2
4
2
3
4
3
1
4
3
3
4
1
2
1
1
设代数系统V1=(A1,*),V2=(A2,º), 其中A1={1,2,3,4}, A2={a,b,c,d}, * 和 º 的运算分别如下表,V1 和 V2 是否同构?
等幂律
设 * 是定义在集合A上的一个二元运算,如果对于任意的xA,都有x * x = x,则称 * 运算是等幂的。 例: S={1,2,4},在集合 p(S) 定义两个二元运算,∩,∪,分别表示集合的“并”运算和集合的“交”运算,∩,∪是等幂的? 解:对于任意的A p(S) ,有A∩A=A;A∪A=A 因此运算∩,∪都满足等幂律。
性质、定理
定理 一个代数系统,其零元若存在,则唯一。 定理 一个代数系统(S,),若集合 A 中元素的个数大于1,且该代数系统存在幺元 e 和零元θ,则θe。 证明:用反证法,设θ=e,则对于任意的xA,必有 x = ex = θx =θ= e, 即对于A中所有元素都是相同的,这与A中含有多个元素相矛盾。
离散数学第十二章代数结构基本概念及性质

5.等幂律与等幂元 给定<S,⊙>,则
“⊙”是等幂的或“⊙”满足等幂律:=( x)(x∈S→x⊙x=x)
给定<S,⊙>且x∈S,则 x是关于“⊙”的等幂元:=x⊙x=x 于是,不难证明下面定理: 定理12.2.2 若x是<S,⊙>中关于⊙的等幂元, 对于任意正整数n,则xn=x。
例12.2.5 给定<P(S),∪,∩>,其中P(S)是 集合S的幂集,∪和∩分别为集合的并和交运算。 验证:∪和∩是等幂的。
有了集合上运算的概念后,便可定义代数 结构了。
定义12.1.2 设S是个非空集合且fi是S上的ni 元运算,其中i=1,2,…,m。由S及f1,f2,…, fm组成的结构,称为代数结构,记作<S,f1, f2 ,…,fm>。
例:设Z是整数集, “+”是Z上的普通加 法运算,则<Z,+>是一个代数结构。
10 1 00
4.吸收律 给定<S,⊙,○>,则 ⊙对于○满足左吸收律 :=( x)( y)(x,y∈S→x⊙(x○y)=x) ⊙对于○满足右吸收律 :=( x)( y)(x,y∈S→(x○y)⊙x=x)
若⊙对于○既满足左吸收律又满足右吸收律, 则称⊙对于○满足吸收律或可吸收的。
○对于和吸收律类似地定义。 若⊙对于○是可吸收的且○对于⊙也是可吸收 的,则⊙和○是互为吸收的或⊙和○同时满足吸收 律。
同样,并不是所有代数结构上运算均满 足交换律,如矩阵的乘法就不满足交换律。
易见,如果一代数结构中的运算⊙是可结 合和可交换的,那么,在计算a1⊙a2⊙···⊙am时 可按任意次序计算其值。
特别当a1=a2=···=am=a时,则a1⊙a2⊙· am。称am为a的m次幂,m称a的指数。
离散数学5.2代数系统及其子代数积代数
2
实例
1. <N,+>, <Z,+,· >, <R,+,· >是代数系统, + 和 ·分别表示普通加法和乘法. 2. <Mn(R),+,· >是代数系统, + 和 ·分别表示n 阶 (n≥2) 实矩阵的加法和乘法. 3. <Zn,,>是代数系统,Zn={0, 1, … , n-1}, 和 分别表示模 n 的加法和乘法,x,y∈Zn, xy = (x+y) mod n,xy = (xy) mod n 4. <P(S),∪,∩,~> 也是代数系统, ∪和∩为并和交,~为绝对补
例4 V1=<Z,+>,V2=<Zn, >,Zn={0,1, … , n-1}, 是模 n 加. 令 f:Z→Zn,f(x) = (x)mod n 则 f 是V1到 V2 的满同态. x, y∈Z有 f(x+y) = (x+y)mod n = (x)mod n (y)mod n = f(x) f(y)
9
更广泛的同态映射定义
定义 设 V1=<S1,∘, ∙ >和 V2=<S2,, ◊>是代数系统, 其中 ∘和 是二元运算. f: S1S2, 且x,yS1 f (x ∘ y) = f(x) f(y) , f (x ∙ y) = f(x) ◊ f(y) 则称 f 为V1到 V2 的同态映射,简称同态. 设 V1=<S1, ∘,∙, ∆>和 V2=<S2,, ◊, ∇>是代数系统, 其中∘ 和 是二元运算. ∆ 和 ∇是一元运算, f: S1S2, 且x,yS1 f (x∘y)=f(x)f(y), f (x∙y)=f(x)◊f(y), f (∆ x)=∇f(x) 则称 f 为V1到 V2 的同态映射,简称同态.
离散数学课件第六章第4讲
定理:在一个环中,加法的幺元必是对乘法的零元。
证明:对环<U,+, > ,a,b ,cU,有:
a(b +c)=a b +a c (b +c) a= b a+ c a ∵(U,+)是群,故必存在幺元,θU,使得 a (b+θ)=a b= a b +θ= a b + a θ 由于群满足消去律,故 θ=a θ (b+θ) a = b a =b a+θ= b a+θ a ∴θ=θ a ∴ a θ=θ a=θ 故加法幺元“θ”是乘法的零元,
注:两个代数系统是同构,他们之间的同构映射可以是不唯一的。
例: 设代数系统V1=<I,+>,V2=<2I,+>,其中I是整 数集合,+ 运算是一般的加运算,V1 和 V2 是否同构?
解:作映射 f:I2I,f(x) =2x, 则 f 是双射。 对任何a,bI, f(a+b)=2(a+b)=2a+2b=f(a)+f(b) 因此,V1 和 V2 同构
2、域的定义
对具有两个二元运算的代数系统(A,+,.>,如果 (1)<A, + >是交换群; (2)<A-{θ},.>是交换群;
(3)“ . ”对“+ ”满足分配律
则称<U, + , .>是域。
有理数、实数、复数集合对普通的加法及乘法运算 构成的代数系统是域。
<Q;+, . ><R;+, .>、 <C,+,.>都是域
(大学)离散数学:第四章代数系统 第二节 代数系统间的同构与同态
• h对 f 和 g保持运算的含义是指在 h 的作用下,元素运算结 果的象等于元素象的运算结果。
• 当 h 对 f 和 g 保持运算时,也称 h 满足同态公式。
2.2 代数系统间的同构关系
定义3 设 A= < X,f1,f2,···,fm > 和 B= < Y,g1,g2, ···,g m > 是两个同 类型的代数系统。若存在一双射函数 h:X→Y,对于A 和B 中的每一对相应的运算fi和gi(i=1,2,…,m)满足同态公式,则 称 h 是从 A 到 B 的同构函数,同时称 A 和 B 同构。
例2 设R是实数集合,+是实数加法,< R, +>是代数系统, 设R+是正实数集合,×是实数乘法,< R+,×>是代数系统。则
< R, +>和< R+,×>同构。 证:⑴ 这是两个同类型的代数系统,都只有一个二元运算;
⑵取函数 h:R → R+ ,h()= e。由初等数学知 h是双射 函数;
⑶ , R 有: h (+)= e + = e×e = h()×h()
定理1 代数系统间的同构关系R是X上的等价关系, 其中 X={A | A是代数系统}。 由等价关系的定义知要证R是 1)自反的; 2)对称的; 3)传递的。
2.3 代数系统间的同态
定义4 设A1= < X,f1,f2,···,fm> 和A2= < Y,g1,g2, ···,gm> 是两个同类 型的代数系统。若存在函数h:XY,对A1 和A2 中每一对相 应的运算满足同态公式,则称 h 是从 A1到 A2的同态函数,并 称< h(X),g1,g2, ···,gm> 是A1的同态象。
离散数学复习提纲
离散数学复习提纲一、基本内容数理逻辑部分1.理解命题概念,会判别语句是不是命题.理解五个联结词:否定、析取、合取、条件、和双条件及其真值表,会将简单命题符号化.具有确定真假意义的陈述句称为命题.命题必须具备:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2.了解公式的概念(公式、赋值、成真指派和成假指派)和公式真值表的构造方法.能熟练地作公式真值表.理解永真式和永假式概念,掌握其判别方法.判定命题公式类型的方法:其一是真值表法,其二是等价演算法.3.了解公式等价概念,掌握公式的重要等价式和判断两个公式是否等价的有效方法:等价演算法、列真值表法和主范式方法.4.理解析取范式和合取范式、极大项和极小项、主析取范式和主合取范式的概念,熟练掌握它们的求法.命题公式的范式不惟一,但主范式是惟一的.命题公式A 有n 个命题变元,A 的主析取范式有k 个极小项,有m 个极大项,则 n m k 2=+ 求命题公式A 的析取(合取)范式的步骤.求命题公式A 的主析取(合取)范式的步骤.5.要理解并掌握推理理论的规则、重言蕴含式和等价式,掌握命题公式的证明方法:真值表法、直接证法、间接证法.重点:命题与联结词,公式与解释,真值表,公式的类型及判定,主析取(合取)范式,命题演算的推理理论.6.理解谓词、量词、个体词、个体域,会将简单命题符号化.原子命题分成个体词和谓词,个体词可以是具体事物或抽象的概念,分个体常项和个体变项.谓词用来刻划个体词的性质或之间的关系.量词分全称量词,存在量词.命题符号化注意:使用全称量词,特性谓词后用;使用存在量词,特性谓词后用.7.了解原子公式、谓词公式、变元(约束变元和自由变元)与辖域等概念.掌握在有限个体域下消去公式的量词和求公式在给定解释下真值的方法.由原子公式、联结词和量词构成谓词公式.谓词公式具有真值时,才是命题. 在谓词公式中,会区分约束变元和自由变元.在非空集合D(个体域)上谓词公式A 的一个解释或赋值有3个条件.在任何解释下,谓词公式A 取真值1,A 为逻辑有效式(永真式);公式A 取真值0,A 为永假式;至少有一个解释使公式A 取真值1,A 称为可满足式.在有限个体域下,消除量词的规则为:设D ={n a a a ,...,21},则)(...)()()(21n a A a A a A x xA ∧∧∧⇔∀)(...)()()(21n a A a A a A x xA ∨∨∨⇔∃ 会求谓词公式的真值,量词的辖域,自由变元、约束变元,以及换名规则、代入规则等.掌握谓词演算的等价式和重言蕴含式.并进行谓词公式的等价演算.8.了解前束范式的概念,会求公式的前束范式的方法.若一个谓词公式F 等价地转化成B x Q x Q x Q k k ...2211,那么B x Q x Q x Q k k ...2211就是F 的前束范式.前束范式仍然是谓词公式.9.了解谓词逻辑推理的四个规则.会给出推理证明.谓词演算的推理是命题演算推理的推广和扩充,命题演算中基本等价式,重言蕴含式以及P ,T ,CP 规则在谓词演算中仍然使用.谓词逻辑的推理演算引入了US 规则(全称量词指定规则),UG 规则(全称量词推广规则),ES 规则(存在量词指定规则),EG 规则(存在量词推广规则)等.集合论部分1.理解集合、元素、集合的包含、子集、相等,以及全集、空集和幂集等概念,熟练掌握集合的表示方法.具有确定的,可以区分的若干事物的全体称为集合,其中的事物叫元素.集合的表示方法:列举法和描述法.注意:集合的表示中元素不能重复出现,集合中的元素无顺序之分.掌握集合包含(子集)、真子集、集合相等等概念.注意:元素与集合,集合与子集,子集与幂集,空集与所有集合的关系:空集是惟一的,它是任何集合的子集.集合A 的幂集P(A)=}{A x x ⊆, A 的所有子集构成的集合.若|A|=n ,则|P(A)|=2n .2.熟练掌握集合A 和B 的并、交,补集A 补集总相对于一个全集).差集A -B ,对称差等运算,并会用文氏图表示.掌握集合运算律(运算的性质).3.掌握用集合运算基本规律证明集合恒等式的方法.集合的运算问题:其一是进行集合运算;其二是运算式的化简;其三是恒等式证明. 证明方法有二:(1)要证明A =B ,只需证明A 是B 的子集,又B 是A 的子集;(2)通过运算律进行等式推导.4.了解有序对和笛卡儿积的概念,掌握笛卡儿积的运算.有序对就是有顺序二元组,如<x, y>,x, y 的位置是确定的,不能随意放置.注意:有序对<a ,b><b, a>,以a, b 为元素的集合{a, b}={b, a};有序对(a, a)有意义,而集合{a, a}是单元素集合,应记作{a}.集合A ,B 的笛卡儿积A ×B 是一个集合,规定A ×B ={<x,y>xA,yB},是有序对的集合.笛卡儿积也可以多个集合合成,A1×A2×…×An .5.理解关系的概念:二元关系、空关系、全关系、恒等关系.掌握关系的集合表示、关系矩阵和关系图,掌握关系的集合运算和求复合关系、逆关系的方法. 二元关系是一个有序对集合,},{B y A x y x R ∈∧∈><=,记作xRy .关系的表示方法有三种:集合表示法,关系矩阵:RA ×B ,R 的矩阵⎪⎪⎭⎫ ⎝⎛==⎪⎩⎪⎨⎧/==⨯n j m i b R a Rb a r r M j i j i ij n m ij R ,...,2,1,...,2,101,)(. 关系图:R 是集合上的二元关系,若<ai, bj>R ,由结点ai 画有向弧到bj 构成的图形.空关系是唯一、是任何关系的子集的关系; 全关系},,{A b a b a E A ∈><=A A ⨯≡; 恒等关系},{A a a a I A ∈><=,恒等关系的矩阵MI 是单位矩阵.关系的集合运算有并、交、补、差和对称差. 复合关系}),,(,{2121R c b R b a b c a R R R >∈<∧>∈<∃><=•=;复合关系矩阵:21R R R M M M ⨯=(按布尔运算);有结合律:(RS)T =R(ST),一般不可交换. 逆关系},,{1R y x x y R >∈<><=-;逆关系矩阵满足:T R R M M =-1;6.理解关系的性质(自反性和反自反性、对称性和反对称性、传递性的定义以及矩阵表示或关系图表示),掌握其判别方法(利用定义、矩阵或图,充分条件),知道关系闭包的定义和求法.注:(1)关系性质的充分必要条件:① R 是自反的;②R 是反自反的;③R 是对称的 ;④R 是反对称的;⑤R 是传递的.(2)IA 具有自反性,对称性、反对称性和传递性.EA 具有自反性,对称性和传递性.故IA ,EA 是等价关系.具有反自反性、对称性、反对称性和传递性.IA 也是偏序关系.7.理解等价关系和偏序关系概念,掌握等价类的求法和作偏序集哈斯图的方法.知道极大(小)元,最大(小)元的概念,会求极大(小)元、最大(小)元、最小上界和最大下界. 等价关系和偏序关系是具有不同性质的两个关系.⎩⎨⎧==+⎭⎬⎫⎩⎨⎧+偏序关系等价关系传递性反对称性对称性自反性 知道等价关系图的特点和等价类定义,会求等价类.一个子集的极大(小)元可以有多个,而最大(小)元若有,则惟一.且极元、最元只在该子集内;而上界与下界可以在子集之外.由哈斯图便于确定任一子集的最大(小)元,极大(小)元.8.理解函数概念:函数(映射),函数相等,复合函数和反函数.理解单射、满射和双射等概念,掌握其判别方法.函数是一种特殊的关系.集合A ×B 的任何子集都是关系,但不一定是函数.函数要求对于定义域A 中每一个元素a ,B 中有且仅有一个元素与a 对应,而关系没有这个限制.二函数相等是指:定义域相同,对应关系相同,而且定义域内的每个元素的对应值都相同. 函数有:单射——若)()(2121a f a f a a ≠⇒≠;满射——f(A)=B 或,,A x B y ∈∃∈∀使得y=f(x);双射——单射且满射.复合函数,:,:,:C A f g C B g B A f →→→ 则 即))(()(x f g x f g = .复合成立的条件是:)(Dom )(Ran g f ⊆.一般g f f g ≠,但f g h f g h )()(=. 反函数——若f :AB 是双射,则有反函数f -1:BA ,},)(,,{1A a b a f B b a b f ∈=∈><=-,f f g f f g ==-----11111)(,)(重点:关系概念与其性质,等价关系和偏序关系,函数.图论部分1.理解图的概念:结点、边、有向图,无向图、简单图、完全图、结点的度数、边的重数和平行边等.理解握手定理.图是一个有序对<V ,E>,V 是结点集,E 是联结结点的边的集合.掌握无向边与无向图,有向边与有向图,混合图,零图,平凡图、自回路(环),无向平行边,有向平行边等概念.简单图,不含平行边和环(自回路)的图、在无向图中,与结点v(V)关联的边数为结点度数deg (v);在有向图中,以v(V)为终点的边的条数为入度deg -(v),以v(V)为起点的边的条数为出度deg +(v),deg(v)=deg+(v) +deg -(v).无向完全图Kn 以其边数)1(21-=n n E ;有向完全图以其边数)1(-=n n E . 了解子图、真子图、补图和生成子图的概念. 生成子图——设图G =<V, E>,若EE ,则图<V, E>是<V, E>的生成子图.知道图的同构概念,更应知道图同构的必要条件,用其判断图不同构.重要定理:(1) 握手定理 设G=<V ,E>,有∑∈=V v E v 2)deg(; (2) 在有向图D =<V, E>中,∑∑∈+∈-=V v V v v v )(deg )(deg ;(3) 奇数度结点的个数为偶数个.2.了解通路与回路概念:通路(简单通路、基本通路和复杂通路),回路(简单回路、基本回路和复杂回路).会求通路和回路的长度.基本通路(回路)必是简单通路(回路).了解无向图的连通性,会求无向图的连通分支.了解点割集、边割集、割点、割边等概念.了解有向图的强连通强性;会判别其类型.设图G =<V ,E>,结点与边的交替序列为通路.通路中边的数目就是通路的长度.起点和终点重合的通路为回路.边不重复的通路(回路)是简单通路(回路);结点不重复的通路(回路)是基本通路(回路).无向图G 中,结点u, v 存在通路,u, v 是连通的,G 中任意结点u, v 连通,G 是连通图.P(G)表示图G 连通分支的个数.在无向图中,结点集VV ,使得P(G -V)>P(G),而任意VV,有P (G -V )=P(G),V 为点割集. 若V 是单元集,该结点v 叫割点;边集EE ,使得P(G -V)>P(G),而任意EE ,有P (G -E )=P(G),E 为边割集.若E 是单元集,该边e 叫割边(桥).要知道:强连通−−→−必是单侧连通−−→−必是弱连通,反之不成立. 3.了解邻接矩阵和可达矩阵的概念,掌握其构造方法及其应用.重点:图的概念,握手定理,通路、回路以及图的矩阵表示.4.理解欧拉通路(回路)、欧拉图的概念,掌握欧拉图的判别方法.通过连通图G 的每条边一次且仅一次的通路(回路)是欧拉通路(回路).存在欧拉回路的图是欧拉图.欧拉回路要求边不能重复,结点可以重复.笔不离开纸,不重复地走完所有的边,走过所有结点,就是所谓的一笔画.欧拉图或通路的判定定理(1) 无向连通图G 是欧拉图G 不含奇数度结点(即G 的所有结点为偶数度);(2) 非平凡连通图G 含有欧拉通路G 最多有两个奇数度的结点;(3) 连通有向图D 含有有向欧拉回路D 中每个结点的入度=出度.连通有向图D 含有有向欧拉通路D 中除两个结点外,其余每个结点的入度=出度,且此两点满足deg -(u)-deg +(v)=1.5.理解汉密尔顿通路(回路)、汉密尔顿图的概念,会做简单判断.通过连通图G 的每个结点一次,且仅一次的通路(回路),是汉密尔顿通路(回路).存在汉密尔顿回路的图是汉密尔顿图.汉密尔顿图的充分条件和必要条件(1) 在无向简单图G=<V ,E>中,V3,任意不同结点V v u G v u ≥+∈)deg()deg(,,,则G 是汉密尔顿图.(充分条件)(2) 有向完全图D =<V ,E>, 若3≥V ,则图D 是汉密尔顿图. (充分条件)(3) 设无向图G=<V ,E>,任意V1V ,则W(G -V1)V1(必要条件)若此条件不满足,即存在V1V ,使得P(G -V!)>V1,则G 一定不是汉密尔顿图(非汉密尔顿图的充分条件).6.了解平面图概念,平面图、面、边界、面的次数和非平面图.掌握欧拉公式的应用. 平面图是指一个图能画在平面上,除结点之外,再没有边与边相交.面、边界和面的次数)deg(r 等概念.重要结论:(1)平面图e r e E v V E V G r i i2)deg(,,,,1===>=<∑=则. (2)欧拉公式:平面图,,,,e E v V E V G ==>=< 面数为r ,则2=+-r e v (结点数与面数之和=边数+2)(3)平面图633,,,,-≤≥==>=<v e v e E v V E V G ,则若.会用定义判定一个图是不是平面图.7.理解平面图与对偶图的关系、对偶图在图着色中的作用,掌握求对偶图的方法. 给定平面图G =〈V ,E 〉,它有面F1,F2,…,Fn ,若有图G*=〈V*,E*〉满足下述条件:⑴对于图G 的任一个面Fi ,内部有且仅有一个结点vi*∈V*;⑵对于图G的面Fi,Fj的公共边ek,存在且仅存在一条边ek*∈E*,使ek*=(vi*,vj*),且ek*和ek相交;⑶当且仅当ek只是一个面Fi的边界时,vi*存在一个环ek*和ek相交;则图G*是图G的对偶图.若G*是G的对偶图,则G也是G*的对偶图.一个连通平面图的对偶图也必是平面图.8.掌握图论中常用的证明方法.重点:欧拉图和哈密顿图、平面图的基本概念及判别.9.了解树、树叶、分支点、平凡树、生成树和最小生成树等概念,掌握求最小生成树的方法.连通无回路的无向图是树.树的判别可以用图T是树的充要条件(等价定义).注意:(1) 树T是连通图;(2)树T满足m=n-1(即边数=顶点数-1).图G的生成子图是树,该树就是生成树.每边指定一正数,称为权,每边带权的图称为带权图.G的生成树T的所有边的权之和是生成树T的权,记作W(T).最小生成树是带权最小的生成树.10.了解有向树、根树、有序树、二叉树、二叉完全树、正则二叉树和最优二叉树等概念.了解带权二叉树、最优二叉树的概念,掌握用哈夫曼算法求最优二叉树的方法.有向图删去边的方向为树,该图为有向树.对非平凡有向树,恰有一个结点的入度为0(该结点为树根),其余结点的入度为1,该树为根树.每个结点的出度小于或等于2的根树为二叉树;每个结点的出度等于0或2的根树为二叉完全树;每个结点的出度等于2的根树称为正则二叉树.有关树的求法:(1)生成树的破圈法和避圈法求法;(2)最小生成树的克鲁斯克尔求法;(3) 最优二叉树的哈夫曼求法重点:树与根树的基本概念,最小生成树与最优二叉树的求法.代数结构部分1. 二元运算(定义,封闭性)、运算表2.各种定律(交换、结合、幂等、分配、吸收、消去、幺元、零元、逆元)3·代数系统、子代数、积代数(定义、特殊元素、代数常数)4·同态与同构(同态等式、证明)5·半群、独异点6·群、子群、阿贝尔群、生成子群、元素的阶(周期)、循环群(定义与证明)·环、含幺环、零因子、无零因子环、整环、除环与域7·格(两种定义)、分配格、有界格、布尔格(判断)练习题数理逻辑部分(一)1.填空题(1) 公式(p∧⌝q)∨(⌝p∧q)的成真赋值为__________________;(2) 设p, r为真命题,q, s为假命题,则复合命题(p→q)↔(⌝r→s)的真值为________;(3) 设p, q均为命题,在_________________________条件下,p与q的排斥或也可以写成p与q的相容或;(4) 公式⌝(p↔q)与(p∧⌝q)∨(⌝p∧q)共同的成真赋值为____________;(5) 设A为任意的公式,B为重言式,则A∨B的类型为______________.2.将下列命题或语句符号化(1) 7不是无理数是不对的;(2) 小刘既不怕吃苦,又很钻研;(3) 只有不怕困难,才能战胜困难;(4) 只要别人有困难,老王就帮助别人,除非困难解决了;(5) 整数n是偶数当且仅当n能被2整除.3.求复合命题的真值p:2能整除5,q:旧金山是美国的首都,r:一年分四季.(1) ((p∨q)→r)∧(r→(p∧q));(2) ((⌝q↔p)→(r∨p))∨((⌝p∧⌝q)∧r).4.判断推理是否正确设y=2|x|,x为实数. 推理如下:若y在x=0可导,则y在x=0连续. y在x=0连续. 所以,y在x=0可导.5.判断公式的类型(1) (⌝(p↔q)→((p∧⌝q)∨(⌝p∧q)))∨r;(2) (p∧⌝(q→p))∧(r∧q);(3) (p↔⌝r)→(q↔r).(二)1.填空题.(1)设A为含命题变项p、q、r的重言式,则公式A∨ ((p∧q)→r)的类型为___________;(2)设B为含命题变项p、q、r的矛盾式,则公式B∧((p↔q)→r)的类型为___________;(3)设p、q为命题变项,则(⌝p↔q)的成真赋值为________________;(4)设p、q为真命题,r、s为假命题,则复合命题(p↔r)↔(⌝q→s)的真值为___________;(5)矛盾式的主析取范式为_________________;(6)设公式A含命题变项p、q、r,又已知A的主合取范式为M0∧M2∧M3 ∧M5,则A的主析取范式为_______________________________.2.用等值演算法求公式的主析取范式或主合取范式(1)求公式p→((q∧r)∧(p∨(⌝q∧⌝r)))的主析取范式;(2)求公式⌝(⌝(p→q))∨(⌝q→⌝p)的主合取范式;(3)求公式((p∨q)∧(p→q))↔(q→p)的主析取范式,再由主析取范式求出主合取范式.3.用真值表求公式(p→q)↔r的主析取范式4.将公式p→(q→r)化成与之等值且仅含{⌝, ∧}中联结词的公式.5.用主析取范式判断⌝ (p↔q) 与((p∨q)∧(⌝(p∧q))是否等值.6. 用消解原理证明p∧(⌝p∨q)∧(⌝r) ∧(⌝p∨⌝q∨r)是矛盾式.(三)1.填空题(1)(A→B)∧⌝B⇒_____________为拒取式推理定律;(2) (A∨⌝B)∧B⇒______________为析取三段论推理定律;(3) (⌝A→B)∧(B→⌝C)⇒_________________为假言三段论推理定律;(4) (⌝A→⌝B)∧⌝A⇒________________为假言推理定律.2.判断推理是否正确,并证明之(方法不限)(1)如果王红学过英语和法语,则她也学过日语.可她没有过日语,但学过法语. 所以,她也没学过英语;(2)若小李是文科学生,则他爱看电影.小李不是文科学生. 所以, 他不爱看电影.(3)设y=2|x|,x为实数. 推理如下:若y在x=0可导,则y在x=0连续. y在x=0连续. 所以,y在x=0可导.3.在自然推理系统P中,用直接证明法构造下面推理的证明(1)前提:⌝(p∧⌝q), q→⌝r, r结论:⌝p(2)前提:p→r, q→s, p,q结论:r∧s4.在自然推理系统P中,用附加前提证明法证明下面推理.(1)前提:⌝p∨ (q→r), s→p, q结论:⌝r→⌝s(2)前提:⌝p→q, ⌝p∨r, q→s结论:⌝s→r5.在自然推理系统P中,用归谬法证明下面推理.前提:p→(q→r), p∧q结论:r∨s6.在自然推理系统P中,构造下面用自然语言给出的推理.若小张喜欢数学,则小李或小赵也喜欢数学.若小李喜欢数学,则他也喜欢物理.小张确实喜欢数学,可小李不喜欢物理. 所以, 小赵喜欢数学.(四)1.填空题2.(1) 设F(x):x具有性质F,G(x):x具有性质G. 命题“对所有的x而言,若x有性质F,则x就有性质G”的符号化形式为__________________________;(2) 设F(x):x具有性质F,G(x):x具有性质G. 命题“有的x既有性质F、又有性质G”的符号化形式为__________________________;(3) 设F(x):x具有性质F,G(y):y具有性质G. 命题“若所有的x都有性质F,则所有的y都有性质G”的符号化形式为__________________________;(4) 设F(x):x具有性质F,G(y):y具有性质G. 命题“若存在x具有性质F,则所有的y都没有性质G”的符号化性质为__________________________;(5) 设A为任意的一阶逻辑公式,若A中_________________,则称A为封闭的公式;(6) 在一阶逻辑中将命题符号化时,若没指明个体域,则使用________________个体域.2. 用0元谓词将下列命题符号化(1) 只要4不是素数,3就是素数;(2) 只有2是偶数,4才是偶数;(3) 5是奇数当且仅当5不能被2整除.3. 在一阶逻辑中将下列命题符号化(1) 所有的整数,不是负整数,就是正整数,或者是0;(2) 有的实数是有理数,有的实数是无理数;(3) 发明家都是聪明的并且是勤劳的.王前进是发明家. 所以, 王前进是聪明的并且是勤劳的.4.在一阶逻辑中,将下列命题符号化(1) 实数不都是有理数;(2) 不存在能表示成分数的无理数.5.在一阶逻辑中,将下列命题符号化(1) 若x与y都是实数且x>y,则x+2>y+2;(2) 不存在最大的自然数.6.证明题(1) 证明∀x(F(x)→G(x))∧∃y(H(y)∧⌝R(y))为可满足式、但不是永真式;(2) 证明(∀xF(x)∨∃yG(y))∧⌝∃yG(y) →∀xF(x)为永真式.(五)1.填空题.(1) ⌝∃x∀yF(x,y)的前束范式为_______________________;(2)由量词量词分配等值式,∃x(A(x)∨B(x))⇔________________;(3) 缩小量词的辖域, ∀x(F(x)→B)⇔ ________________;(4)公式((∀y⌝G(x)∧∀xF(x))∧∃yG(y))→∀xF(x)的类型为_____________________;(5)取解释I为:个体域为D={a},F(x):x具有性质F,在I下∀xF(x)↔∃xF(x)的真值为_________;(6)前提:∀x∃yF(x,y)结论:∃yF(y,y)以上推理是错误的,某学生却给出了如下证明:①∀x∃yF(x,y) 前提引入②∃yF(y,y) ①∀-此证明错在_____________________.2.在有限个体域内消去量词.(1)个体域D={1,2,3},公式为∀x∀y(F(x)→G(y))(2)个体域D={a,b},公式为∀x∃y(F(x,y)→G(y,x))3.求前束范式.(1)∀x(F(x,y)→∀y(G(x,y)→∃zH(x,y,z)));(2) (∃xF(x,y)→∀yG(x,y,z))→∃zH(z).4.在自然推理系统N L中,构造下面推理的证明.(1)前提:∀x∀y(F(x)→G(y)), F(a)结论:∃xG(x)(2)前提:∀x(F(x)→∀y(G(y)∧H(x))), ∃xF(x)结论:∃x(F(x)∧G(x)∧H(x))5.在自然推理系统F中,构造下面用自然语言描述的推理.火车都比汽车快,汽车都比轮船快,a是火车,b是汽车,c是轮船.所以,a比b快,b比c快.(六)1. 填空题(1) 设A={2,a,{3},4}, B={∅, 4,{a},3},则A⊕B=______________________________;(2) 设A={{{1,2}},{1}},则P(A)=__________________________________________;(3) 设X,Y,Z为任意集合,且X⊕Y={1,2,3}, X⊕Z={2,3,4},若2∈Y, 则一定有_______;A. 1∈ZB. 2∈ZC. 3∈ZD. 4∈Z(4) 下列命题中为真的是________________________________________________;A. {a,{b}}∈{{a,{b}}}B. ∅∈P(⋃{∅,{∅}})C.{a}⊆X⇔a∈XD. X⋃Y=Y⇔X=∅E. X-Y=X⇔X⊆~Y(5) 设[0,1]和(0,1)分别表示实数集上的闭区间和开区间,则下列命题中为真的是_____________________________________;A. {0,1}⊆ (0,1)B. {0,1}⊆ [0,1]C. (0,1)⊆[0,1]D. [0,1]⊆QE. {0,1}⊆Z(6) 设[a,b], (c,d)代表实数区间,那么([0,4]⋂[2,6])-(1,3)=_________________________.2. 简答题(1) 设E={1,2,...,12},A={1,3,5,7,9,11}, B={2,3,5,7,11},C={2,3,6,12}, D={2,4,8},计算:A⋃B, A⋂C, C-(A⋃B), A-B, C-D, B⊕D.(2) 设A={{a},{a,b}}, 求⋃A, ⋂A, ⋃⋃A-⋂⋃A.(3) 设A, B, C为集合,判断下列集合等式是否为恒等式,并说明理由.(A⋃B⋃C)-(A⋃B) = C, A-(B-C) = (A-B) - (A-C)(4) 找出下列集合等式成立的充分必要条件, 并简单说明理由.(A-B)⊕(A-C)=∅3. 证明题(1) A⊆B⇒C-B⊆C-A;(2) A⋃B=E⇔~A⊆B⇔~B⊆A.4. 应用题(1)一个学校有507, 292, 312和344个学生分别选了微积分、离散数学、数据结构或程序设计语言课,且有14人选了微积分和数据结构课,213人选了微积分和程序设计语言课,211人选了离散数学和数据结构课,43人选了离散数学和程序设计语言课,没有学生同时选微积分和离散数学课,也没有学生同时选数据结构和程序设计语言课。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例. 群(R,+)和 (R+, · )是同态的,
因为若令σ:x ex , x∈R , 则σ是R到R+的1-1映射,且对 任意x1, x2 ∈R , 有 σ(x1+x2)=ex1+x2= ex1·ex2 =σ(x1) ·σ(x2), σ是(R,+)到(R+, · )的满同态映射。
证明
(1) 因为群G非空,至少1∈G,故至少 σ(1)∈G′,即G′非空。 (2) 任取a’∈G′,b’∈G′, 往证a’b’∈G′。 因有a,b∈G, 使得 a’=σ(a), b’=σ(b), 故按σ的同态性, a’b’= σ(a)σ(b)=σ(ab), 而ab ∈G, 因而a’b’ =σ(ab) ∈σ(G), 即 a’b’ ∈G′。
综上,G’做成一个群, G’的壹1’=σ (1),G’中σ(a)的逆是σ (a-1)。
6.5.2 同 构 映 射
定义. 设G是一个群,K是一个乘法系统,
σ 是G到K内的一个同态映射,如果σ 是G 到σ (G)上的1-1映射,则称σ 是同构映射。 称G与σ (G)同构,记成G σ (G)。
例. 群(R+,· )和(R,+)是同构的。因为若 令 σ:xlogx,x∈R+, 则σ是R+到R上的1-1映射,且对任意a,b∈R+, σ(a·b)=log(a·b)=log a + log b=σ(a)+σ(b)。 故σ是(R+,· )到(R,+)上的同构映射。
例. 无限循环群同构于整数加法群。 证明: 设G=(g)是无限循环群,Z为整数 加法群,则对a∈G,n∈ Z,使得 a=gn, 令 f: a n 。 不难验证 f 是G到Z上的1-1映射;任取 a,b∈G,则存在i,j∈Z,使得a=gi, b=gj, f(gi gj)= f(gi+j )=i+j=f(gi )+ f(gj), 因此, f 是G到Z上的同构映射,即G Z。
定理6.5.1
设G是一个群, K是一个乘法系统, σ是G 到K中的一个同态映射, G’=σ(G) ,则 G’是一个群, G’的单位元1’就是G的单位元1的映像 σ(1) ,即,1’= σ(1); 对任意a ∈G, (σ(a))-1 = σ(a-1) 。 称G和G′同态,记为G~G′。
例. 对群(Z,+)和(C*,· ) ,若令 σ:n in, n ∈ Z, 其中i是C的虚数单位。 则σ是Z到C*内的一个映射,且对m,n∈Z, 有 σ(m+n)=im+n= im· in=σ(m)·σ(n)。 即,σ是(Z,+)到(C*,· )的同态映射, Z~σ(Z)。 σ(Z)={1,-1,i,-i}是C*的一个子群。
例. 设(G,*),(K,+)是两个群,令
σ:x e, x∈G, 其中e是K的单位元。 则σ是G到K内的映射,且对任意a,b∈G, 有 σ(a*b)=e=e+e=σ(a)+σ(b)。 即,σ是G到K的同态映射。 σ(G)={e}是K的一个子群, 记G~σ(G)。
例.设G1是整数加法群,G2是模n的整数加
(4) 往证G′有左壹而且就是σ(1), 即证对于任意的a’∈G’,有σ(1)a’=a’。 因有a∈G,使得 a’ =σ(a) ,按σ的同态性 σ(1)a’ = σ(1)σ(a)=σ(1a)=σ(a)=a’。 (5) 往证G’中任意元素σ(a) 有左逆且就是σ(a-1)。 由a∈G,且G是群,知a-1∈G,故σ( a-1 ) ∈G’。 由σ的同态性 σ(a-1)σ(a)=σ(a-1a)=σ(1)。
Log x是以e为底的x的对数,若取σ(x)=log2 x,或 若取σ(x)=log10 x,则得到R+到R上的不同的同构 映射。 由此可见,群间可存在好多个甚至是无限多个同 构映射。
例. (R*,· )与(R,+)不可能同构。 证明:用反证法。假设(R*,· )与(R,+) 同构,可设映射 σ为 R*到 R 上的一个同构映 射,于是必有 σ:1 0, -1 a, a ≠ 0。 从而, σ (1)=σ ((-1)· (-1)) =σ (-1)+σ (-1)=a+a=2a。 则有2a=0,a=0,与a ≠ 0矛盾。故,原假 设不对,(R*,· )与(R,+)不可能同构。
§6.5 同构及同态
6.5.1 同 态 映 射 6.5.2 同 构 映 射 6.5.3 同 态 核
6.5.1 同 态 映 射Байду номын сангаас
定义. 设G是一个群,其运算是* ;K是一
个乘法系统,其运算为• ,称G到K的一个 映射σ是一个同态映射,如果对G中任意元 素a,b ,有 σ(a * b)=σ(a) • σ(b) 注意:这个映射既不一定是单射也不一定 是满射。
法群,G2上的运算⊕如下: a ⊕ b= a b, 当a b n,
a b n, 当a b n
令σ:x x(mod n), x∈G1, 则σ是G1到G2的满射,且对任意a,b∈G1, 有 σ(a+b)=a+b(mod n) =a(mod n) ⊕ b(mod n) =σ(a) ⊕ σ(b) 。 σ是G1到G2的满同态映射。
(3) 往证G’中有结合律成立: 任取a’ ,b’,c’∈G’,往证 a’ (b’c’)=(a’b’)c’。 因有a,b,c∈G,使得 a’ =σ(a), b’=σ(b), c’=σ(c), 故按σ的同态性, a’ (b’ c’) = σ(a)(σ(b)σ(c)) = σ(a(bc)) (a’b’)c’= (σ(a)σ(b))σ(c) = σ((ab)c) 因群 G 中有结合律成立 ,所以 a(bc)=(ab)c。 于是 σ(a(bc))=σ((ab)c)。 因此, a’ (b’ c’)=(a’b’)c’。
例. 设G为整数加群,G’ 为实数加群,
令 σ:x -x, x∈G, 则σ是G到G’内的映射, 且对任意x1, x2 ∈G, 有 σ(x1+x2)=-(x1+x2)=(-x1)+(-x2)=σ(x1)+σ(x2), 所以σ是G到 G’的同态映射,显然是单射 但不是满射,σ(G)=Z 是G’的子群。