自卸车设计
高位自卸汽车设计(液压系统)-开题报告

毕业设计(论文)任务书(指导教师填写)设计(论文)题目:高位自卸汽车设计(液压系统)设计(论文)主要内容(包括主要技术参数):1、额定装载质量:9000 kg,2、车箱内部尺寸:5000×2200×1000,3、最大托举高度:2000mm,4、车箱最大后移量:600mm。
设计基本要求:1、具有一般自卸汽车的功能,2:能将满载货物的车箱在比较水平的状态下平稳地举升到一定高度,3、举升过程中,车箱能在任意高度停留卸货。
设计主要内容:1、设计图纸折合量为6张A1,含手工绘图A2或A1图一张。
2、整机布置,工作装置各机构设计,零件设计。
3、液压系统设计。
计算主要内容:1、工作装置各机构计算,2、零部件强度、刚度计算,3、液压系统计算,4、底盘选择及相关性能验算。
设计计算书正文内容不少于20000字;完成本专业外文资料翻译,翻译量不少于10000个字符;设计计算书、外文资料翻译、毕业设计手册格式应符合学校的相关规范;设计图纸应符合国家或行业的相关设计规范。
主要参考资料:[1]徐达陆锦容主编。
专用汽车工作装置原理与设计计算。
北京理工大学出版社2002[2]王望予主编. 汽车设计. 北京:机械工业出版社,2007.[3]成大先.机械设计手册(第1至5卷).北京:化学工业出版社,2002.[4]卞学良主编。
专用汽车结构与设计。
机械工业出版社2007.7[5] 张青,张瑞军,工程起重机结构与设计,化学工业出版社,2008.9指导教师签名________年月日────────────────────────────────毕业设计(论文)开题报告一、设计(论文)的研究目的及意义1 研究意义目前国内生产的自卸汽车,其卸货方式为散装货物沿汽车大梁卸下,卸货的高度都是固定,如果需要将货物卸到较高处或使货物堆积高些,目前的自卸车就难以满足要求。
如:石料厂、煤厂、建筑工地等,货物如果一堆堆得卸载货场,占地面积较大,如果想将货物堆积的更高些,还需要铲车等机械,这样将会延误工时,影响正常的工作、生产,为此需要设计一种高位自卸车,它能将车厢举升到一定的高度后再倾斜车厢卸货,以满足不同卸货高度要求。
重型自卸汽车设计(转向系及前桥设计)

重型自卸汽车设计(转向系及前桥设计)摘要汽车在行驶的过程中,需要按照驾驶员的意志经常改变其行驶方向,即所谓的汽车转向。
汽车的转向系统是一套用来改变或恢复汽车行驶方向的专用机构,本文的研究内容即是重型自卸汽车的转向系设计。
本文针对的是与非独立悬架相匹配的整体式两轮转向机构。
利用相关汽车设计和连杆机构运动学的知识,首先对汽车总体参数进行设计,在此基础上,对转向器,转向传动机构进行选择,接着再对转向器和转向传动机构(主要是转向梯形)进行设计,最后,利用软件AUTOCAD完成转向梯形和转向器的设计图纸。
转向器在设计中选用的是循环球式齿条齿扇转向器,在对转向器的设计中,包括了螺杆—钢球—螺母传动副的设计和齿条—齿扇传动副的设计,前者是基于参照同类汽车,确定出钢球中心距,设计出一系列的尺寸,而后者则是根据汽车前轴的载荷来确定出齿扇模数,再由此设计出所有参数的。
转向梯形的设计选用的是整体式转向梯形,本文在设计中借鉴同类汽车转向梯形设计的经验尺寸对转向梯形进行尺寸初选。
再通过对转向内轮实际达到的最大偏转角时与转向外轮理想最大偏转角度的差值的检验,和作为一个四杆机构对I其最小传动角的检验,来判定转向梯形的设计是否符合基本要求。
本文在消化,吸收,总结,归纳前人的成果上,系统、全面地对机械动力转向系进行理论分析,设计及优化。
为重型自卸汽车转向系的设计开发提供了一种步骤简单的设计方法。
关键词:转向系,转向器,转向梯形IITHE DESIGN OF HEAVY DUMP (THE DESIGN OF STEERING SYSTEM AND RRONT AXLE)ABSTRACTIn a moving vehicle, the driver will need to frequently change its traveling direction, the so-called steering. Vehicle steering system is used to change or restore a car in the direction of a dedicated agency, the contents of this paper is the study of light vehicle steering system design.This article is aimed at non-independent suspension and would like to match the overall style of the two steering. The use of the relevant vehicle design and kinematic linkage of knowledge, first of all, the overall parameters of the vehicle design, in this basis, the steering gear, steering transmission choice, and then to the steering gear and steering transmission (mainly trapezoidal steering ) design, and finally, the use of AUTOCAD software and the steering gear steering linkage to complete the design drawings.Steering the ball of choice is the cycle of fan-type steering gear rack teeth, in the design of steering gear, including a screw - Ball - Vice-nutIIIdrive the design and rack - fan drive gear pair design, the former is based on the reference to similar vehicles, to determine the center distance of the ball, the design of a series of size, while the latter is based on the vehicle front axle load to determine the fan module out of gear, and then all of the resulting design parameters.Steering linkage design is a whole selection of steering trapezoid, the paper design is used in car steering linkage from a similar experience in the design of the size of the steering linkage to the primary size. Through to the actual steering wheel in the maximum deflection angle with the steering wheel in the most ideal test of the difference of deflection angle, and four institutions, as a minimum transmission angle of its examination, to determine whether the design of steering trapezoid in line with the basic requirements.In this paper, digestion, absorption, and summing up, summing up the results of their predecessors, the systematic, comprehensive mechanical steering system to carry out theoretical analysis, design and optimization. For the light vehicle steering system design and development provides a simple design method steps.Key word: steering system,steering gear,steering trapezoidIV目录前言 (1)第一章从动桥结构方案的确定 (3)§1.1从动桥总体方案确定 (3)第二章转向系结构方案的确定 (5)§2.1转向系整体方案的分析 (5)§2.1.1转向器方案的分析 (5)§2.1.2 循环球式转向器结构及工作原理 (6)§2.1.2动力转向系统分类 (7)§2.2转向系整体方案的分析 (8)第三章从动桥的设计计算 (10)V§3.1从动桥主要零件尺寸的确定 (10)§3.2 从动桥主要零件工作应力的计算 (11)§3.2.1 制动工况下的前梁应力计算 (12)§3.2.2 在最大侧向力(侧滑)工况下的前梁应力计算 (16)§3.3 转向节在制动和侧滑工况下的应力计算 (17)§3.3.1 在制动工况下 (17)§3.3.2 在侧滑况下 (19)§3.4 主销与转向节衬套在制动和侧滑工况下的应力计算 (20)§3.4.1 在制动工况下 (20)§3.4.2 在侧滑工况下 (22)第四章转向系统的设计计算 (24)§4.1 转向系主要性能参数 (24)VI§4.1.1 转向器的效率 (24)§4.1.2 传动比的变化特性 (26)§4.1.3 给定的主要计算参数 (27)§4.1.4 转向盘回转总圈数n (28)§4.2 转向系计算载荷的确定 (29)§4.3 循环球式转向器的计算 (30)§4.3.1 循环球式转向器主要参数 (30)§4.3.2 螺杆、钢球和螺母传动副 (31)§4.3.3 齿条、齿扇传动副设计 (32)§4.4 循环球式转向器零件强度的校核 (35)§4.4.1 钢球与滚道间的接触应力σ (35)§4.4.2 齿的弯曲应力σ (37)VII§4.5 液压动力转向机构的计算 (38)§4.5.1 动力转向系统的工作原理 (38)§4.5.2 转向动力缸的工作分析 (39)§4.6 转向梯形机构确定、计算及优化 (45)§4.6.1 转向梯形结构方案分析 (45)§4.6.2 整体式转向梯形机构优化设计 (47)第六章结论 (57)参考文献 (58)致谢 (60)VIIIIX前言自卸车是利用发动机动力驱动液压举升机构,将车厢倾斜一定角度从而达到自动卸货,并依靠箱货自重使其复位的专用汽车。
重型自卸车设计(底盘设计)(有exb图)

重型自卸车设计(底盘设计)摘要此次设计的非公路自卸车适应于多种特定用途,是土方运输和各种露天矿剥岩、沙土运输的经济、高效、低耗的运输设备。
该车具有为适应重载工况而特殊设计的悬挂系统、加强型宽体驱动桥、14.00-20型宽大工程轮胎,使该车具有超强承载能力,同时提供了超强的附着能力,保证了车辆的制动稳定性和良好的通过性,采用了大速比工程驱动桥,其输出转矩比同功率公路车大30%以上,爬坡能力强劲,重载起步顺畅。
本说明书主要是对KD3400整车总体布置做了一个详细的说明,其中包括整车主要尺寸(长*宽*高),前后轴距,轮距,轴荷分配的选择和计算以及各总成(发动机,传动系)的主要参数的选择。
特别对整车的动力性和经济性做了比较全面而细致的分析和计算,对动力性分析时,分别作出了驱动力—行驶阻力平衡图,动力特性图,功率平衡图。
求出汽车的最大速度,另外也对汽车在不同的路面上行驶时,分别计算出了其最大爬坡度,并根据加速度倒数曲线求出汽车的加速时间,估算了该车的加速性能。
在计算汽车的经济性时,根据发动机万有特性曲线,作出了9挡时的燃油消耗曲线,同时计算得整车的百公里燃油消耗量。
通过计算结果显示,此汽车在动力性和经济性方面满足了设计任务书的要求。
另外本文也对汽车的稳定性和最小转弯半径做了计算和分析,并根据经验估算出了空载和满载时汽车的质心位置以及轴荷分配。
关键词:承载能力,附着能力,制动稳定性,通过性,动力性,经济性DESIGN OF HEA VE –DUTY DUMP (CHASSIS DESIGN)ABSTRACThe non –highway heavy-duty dump truck of this design can adapt many kinds of given purpose.It is an economical,efficient and low useful conveyance for hillock transport,sand transport and all kind of outdoor mineral.It has especially desingned suspension system,strengthen widen project driving axle and 14-20type big wide project tales,this cause the truck possess preeminent bearing,at the same time ,this kind of tale can cause big climbing force,assuring the truck has brake stability and good transition.It is counted high rate riving axle,its output torque is 30 point bigger than the road vehicle which are at the same power. This book mainly give an expatiation about the vehicle general layout of the heavy dumper KD3400,including the vehicle dimensions(long*wide*high),the distribution of axle load in front and back ,the choice and calculation about the main parameter of the vehicle’s main components(engine,transmission)and so on.Especially in the dynamic property and economic performance,we give an overall and meticulo us analysis and calculation .In the dynamic property ,we made the driving force-road resistance equilibrium diagram,the dynamic factor diagram and the power balance diagram.From those diagram,we can get the maximum speed.We also calculated the maximum grade ability at different road ,according the acceleration curve:we can get the accelerating ability.According to the engine-cross sectional characteristic diagram,we made the fule consumption of 100km. In fact,the vehicle’s main parameters all come to the misson book ‘request.Morever ,we made an anlysis and calculation of the stability and minimum turning radius and estimated the distribution of axle load when there is no load and full load and the position of the vehicle’s center of mass.Key words:carrying capacity, adhesive ability, braking stability, trafficability characteristic, power performance, economical efficiency.目录第一章前言 (4)第二章参考车型技术数据 (6)第三章汽车主要技术参数的确定 (7)§3.1 汽车主要尺寸的确定 (7)§3.2 汽车质量参数的确定 (8)§3.3 发动机主要参数 (9)§3.4 轮胎的选择 (10)§3.5 传动比的选取 (10)§3.6 最大传动比的选取 (11)§3.7 变速器各挡传动比 (12)第四章轴荷分配及质心位置的计算 (13)第五章稳定性计算 (15)§5.1 纵向稳定性 (15)§5.2 横向稳定性 (15)§5.3 最小转弯半径的计算 (16)§5.4 在横向坡上转向时的稳定性 (16)第六章汽车动力性计算 (17)§6.1 汽车各挡速度的计算 (17)§6.2 汽车各挡驱动力的计算 (17)§6.3 汽车空气阻力的计算 (18)§6.4 滚动阻力系数的计算.....................................................................19. §6.5 汽车行驶时动力因数D的计算 (19)§6.6 各挡牵引功率Pe的计算 (20)§6.7 阻力功率的计算 (21)§6.8 汽车加速度的计算 (21)§6.9 加速度倒数的计算 (22)§6.10 汽车爬坡度的计算 (23)第七章汽车的燃油经济性 (24)第八章结论 (26)参考文献 (27)致谢 (28)第一章前言从我国重型汽车发展来看,20世纪60年代至80年代是非常缓慢的。
自卸车制动系统设计方案

随着人们对安全性的关注不断提高,制动系统的安全性要 求也将越来越高。未来制动系统需要不断优化和完善,以 满足更高的安全标准。
市场竞争
市场竞争的加剧将促使制动系统制造商不断提高产品质量 和服务水平,同时需要加强技术研发和创新,以保持竞争 优势。
感谢您的观看
THANKS
尽管现有的自卸车制动系统设计取得了一定的成果,但仍存在一些问题 ,如制动距离过长、制动响应时间慢、制动力分配不均等,这些问题增
加了车辆在紧急情况下的风险,可能导致重大安全事故。
因此,设计一种新型的自卸车制动系统,旨在提高制动性能、增强安全 性和可靠性,对于减少工程事故、保障人员生命财产安全具有重要意义 。
制动系统组成
自卸车制动系统主要由制动器、 制动管路、制动踏板、制动液循 环系统等组成。
制动系统工作原理
通过制动踏板操作,将制动液压 力传递到制动管路,再传递到制 动器,从而对车轮进行制动。
制动器选型与设计
制动器类型选择
根据自卸车使用工况和载荷,选择合适的制动器类型,如鼓式、盘式等。
制动器设计要点
确定制动器摩擦衬片的材质和摩擦系数,以及制动器的热容量和耐久性。
制动管路设计
制动管路布局
合理布置制动管路,确保管路走向顺 畅,避免弯曲和干涉。
制动管路密封性
采用可靠的密封材料和密封技术,确 保制动管路密封性好,防止制动液泄 漏。
制动液循环系统设计
制动液型号选择
根据自卸车使用环境和性能要求,选择合适的制动液型号。
制动液循环系统设计
设计合理的制动液循环路径,确保制动液能够充分循环,提 高制动效果和散热性能。同时要考虑到制动液的过滤和净化 装置的设计。
设计范围
重型自卸车的车厢设计

重型自卸车的车厢设计
重型自卸车的车厢设计通常需要考虑以下几个方面:
1. 车厢容量:车厢容量应该足够大,以满足货物的装载要求。
一般情况下,重型自卸车的车厢容量可以达到20-30立方米。
2. 车厢底部:车厢底部应采用耐磨材料,以保证长时间使用不损坏。
常见的材料有铁板、硬质减震橡胶等。
3. 卸货方式:卸货方式可选择侧边翻斗式、后底倾式等。
侧边翻斗式可以便于卸货,但相对而言需要更大的堆载空间。
后底倾式需要更加平坦的卸货场地。
4. 卸货机构:卸货机构通常由液压、机械或电动驱动等方式实现。
液压卸货机构可以快速高效地卸货,但价格较贵。
机械卸货机构则操作简单、维护成本低,但卸货速度慢。
综上,重型自卸车的车厢设计需要根据具体使用要求选择不同的材料和卸货机构,以提高装载效率和卸货速度。
重型自卸车设计范文

重型自卸车设计范文引言(Introduction)重型自卸车是一种用于运输和卸载建筑材料、矿石和其他大型物料的专用车辆。
在建筑和矿业行业,重型自卸车是一种必不可少的工具。
本文将讨论重型自卸车的设计,包括车身结构、底盘设计、悬挂系统、动力系统和卸料机构。
车身结构(Body Structure)重型自卸车的车身结构应具备高强度和刚性,以承受大量的载重和重复的冲击力。
车身主要由钢材制成,这种材料具有高强度和抗扭曲的特性。
车身应采用箱式结构,以提供最大的载重能力。
同时,车身顶部应设计成波浪形,在主卸料时可以避免材料溢出。
底盘设计(Chassis Design)底盘是重型自卸车的骨架,负责承载车身和动力系统。
底盘应采用高强度和轻量化的材料,以提高整车的载重能力和燃油效率。
底盘应具备足够的刚性和弯曲强度,以抵抗车辆在行驶过程中的扭矩和振动。
悬挂系统(Suspension System)重型自卸车的悬挂系统应能够提供良好的操控性和驾驶舒适性。
悬挂系统可以采用气囊悬挂或弹簧悬挂,以提供对不平路面的缓冲和减震。
在设计悬挂系统时,应考虑到整车的稳定性和平衡性,以确保在卸料时不会发生侧翻或失衡的情况。
动力系统(Powertrain)重型自卸车的动力系统应具备足够的动力和扭矩,以适应高强度工作环境。
动力系统可以采用柴油发动机,这种发动机具有较高的燃油效率和扭矩输出。
此外,动力系统应与车身和底盘紧密结合,以优化整车的性能和燃油经济性。
卸料机构(Unloading Mechanism)重型自卸车的卸料机构应具备高效率和稳定性。
常见的卸料机构有两种类型:侧翻和后倾。
侧翻式卸料机构可以将车身侧翻至一侧,倾倒物料。
后倾式卸料机构通过提升车身的后部,倾倒物料。
在选择卸料机构时,应考虑到物料的类型、重量和工作场景的需求。
结论(Conclusion)重型自卸车是建筑和矿业行业不可或缺的工具,其设计应注重车身结构、底盘设计、悬挂系统、动力系统和卸料机构的综合考虑。
自卸车的设计方案

内容简介
O1
汽车法规 简介
O2
部分自卸 车标准
O3
国内现有 的自卸车 专利
O4
自卸车方 案
汽车法规简介
• 1、外廓尺寸
• 总高<4000mm
总宽<2500mm
• 货车、牵引车、自卸车(设总长为X , 最大总质量G)
•
2轴
G≤3500kg
X<6000mm
•
3500<G≤8000 kg
X<7000mm
侧面防护装置应具有一定的刚度。
4.3 车辆后下部防护装置
• 4离.3大.1于1m汽时车,最必后须轴装中备心符与合车下辆列最要后求端的(车离辆地后面下高部度防超护过装15置0。0mm)距 • 4.3.2 空载时,车辆后下部防护装置离地高度不大于550mm。 • 4大.3于.3600空m载m时。,车辆后下部防护装置后平面距车辆最后端的水平距离不 • 4间侧护他.3的车装替.4距辆置代离后应件车(轴与上辆不车车。后包轮辆下括最纵部轮外向防胎端对护的的称装变横面置形向垂的量水直宽)平,度并距应不且离牢可后不固大下大、于部于对车防称10辆护的0后m任安轴m一装两。端在侧的车车车最架辆轮外的后最端纵下外与量部点这或防之一其 • 4安.3装.5在车车架辆的后纵下量部或防其护他装替置代应件与上车。辆纵向对称面垂直,应牢固、对称的 • 4横高.3梁度.6的不横小车向于辆端1后0部0下m成部m圆防。角护状装时置,端端部头不圆得角弯半向径汽不车小后于方2,.5尖m锐m部,分横不梁得的朝截后面。 • 车辆后下部防护装置应具有足够的抗弯强度。
≥0.55
N2
N3
3500<M≤12000
M< 3500
M≥350 0
课程设计-高位自卸车

/mm
A
4000x2000x640
1000
600
8000
250
650
尺寸单位:mm
三、
1)车厢举升机构设计;
2)车厢翻转机构设计;
3)后厢门打开机构及联动机构设计;
4)编写设计计算说明书,设计说明书中除了说明设计过程,还要求绘制下列几个部分结构图(1)车厢举升机构最低位置;(2)车厢举升机构最高位置;(3)翻转与开门机构30º位置;(4)翻转与开门机构55º位置。
平行四边形举升机构
如上图所示平行四边形举升机构,ABCD形成一平行四边形,杆AD在液压油缸的带动下绕A轴转动,从而完成车厢的举升和下降。该机构结构简单,水平,稳定性好。液压油缸较小的推程能够完成车厢较大的上移量。
4.2
翻转机构是自卸汽车的关键部分,其性能直接影响车辆的性能。利用连杆机构实现车厢的翻转,其安装空间不能超过车厢底部与大梁间的空间。结构尽量紧凑,可靠,具有良好的动力传递性能。
4.1
举升机构的的设计在首先必须满足比较水平的状态下,能将满载货物的车厢平稳地举升到一定的高度,最大升程Smax,为方便卸货,要求车厢在举升过程中逐步后移。车厢处于最大升程位置时,其后移量a见表。为保证车厢的稳定性,其最大后移量amax不得超过1.2a,并且在举升过程中可在任意高度停留卸货。利用连杆机构实现车厢的举升,其安装空间不能超过车厢底部与大梁间的空间。结构尽量紧凑,可靠,具有良好的动力传递性能。下面列举出几种方案以及它们的特点,进行比较选择恰当的机构:
液压杆推程s=2680-1045=1635
由GH=FS
F=
5.
翻转原理:在车厢翻转后,后厢门在重力的作用下自动打开,开始卸货,卸货完成后,货车恢复水平位置,后厢门随之自动关闭,易于实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1——液压倾卸操纵机构 2——三角臂
4——拉臂
5——车箱
7——安全支架
8——储油箱
10——备胎
11——挡泥板
13——副车架
14——防护栏
3——油缸 6——翻转轴支座 9——油泵 12——锁启机构
车箱的结构形式 车厢是用于装载和倾卸货物。它一般是由前板、左右边板、 后板和底板组成。
一类属非公路运输用的重型和超重型(装载质量在20t以上 )自卸汽车。主要承担大型矿山、水利工地等运输任务,通常 是与挖掘机配套使用。这类汽车也称为矿用自卸汽车。它的 长度、宽度、高度以及轴荷等不受公路法规的限制,但它只 能在矿山、工地上使用。
另一类用于公路运输用的轻、中、重型(装载质量在2~20 t) 普通自卸汽车。它主要承担砂石、泥土、煤炭等松散货物运 输,通常是与装载机配套使用。 普通自卸汽车技装载质量 分为:轻型自卸汽车 、中型自 卸汽车 和重型自卸汽车 ;按运载货物倾卸方向分为:后倾式 、侧倾式、三开、五开倾式和底板倾卸卸式自卸汽车;按车 厢栏板结构分为:栏板一面开启式、栏板三面开启式和簸箕 式(即无后栏板)自卸汽车。 随着国内基础设施建设需要不断增加,自卸车产量近年 来一直保持较高产销量,在专用车综合产量中保持第一位置 ,但在种类、型式、材料运用方面与国外还有一定的差距。 自卸汽车继续快速增长,销量超过载货汽车上升到第一位。 主要原因是固定资产投资强劲增长,巨大的投资规模奠定了 自卸车市场需求基础;自卸汽车品种增加,不仅适应和满足 施工需求,同时向运输市场发展;牵引汽车保持较快发展, 已成为长距离公路运输的主力车型。
4、自卸车设计应考虑产品的系列化,以便根据不同用户 的需要而能很快的进行产品变型。
5、自卸车设计应满足有关机动车辆公路交通安全法规的 要求。
6、 某些专用自卸车可能会在很恶劣的环境下工作,其使 用条件复杂,要了解和掌握国家及行业相应的规范和标准, 使专用自卸车有良好的适应性,工作可靠。
普通自卸车的结构
自卸车在土木工程中,经常与挖掘机、装载机、带式输送机 等工程机械联合作业,构成装、运、卸生产线,进行土方、 砂石、散料的装卸运输工作。 由于装载车厢能自动倾翻一定角度卸料,大大节省卸料时间 和劳动力,缩短运输周期,提高生产效率,降低运输成本, 是常用的运输专用车辆。
自卸汽车按其用途可分为两大类:
油缸直推式举升机构
连杆组合式举升机构 油缸与车厢底板之间通过连杆机构相连接, 此种举升结构称 之为连杆组合式举升机构。根据油缸的安装特点, 连杆组合 式举升机构又可分为油缸前推(后推) 连杆放大式、油缸前推 (后推) 杠杆平衡式、油缸浮动等多种结构型式。
油缸前推连杆放大式(马勒里式) 举升机构 该种举升机构通过三角板与车厢底板相连, 车厢的举升支
按货物倾卸方式分类的自卸车图片
后 倾 式
侧 倾 式
底
五
板
开
开
式
式
自卸车设计特点
1、自卸车设计多选用定型的基本型汽车底盘进行改装设计 。
2、 对于不能直接采用二类底盘或三类底盘进行改装的专 用自卸车,也应尽量选用定型的汽车总成和部件进行设计, 以缩短产品的开发周期和提高产品的可靠性。
3、 自卸车设计的主要工作是总体布置和专用工作装置匹 配,设计时既要保证专用功能满足其性能要求,也要考虑汽 车底盘的基本性能不受到影响。
1——前板 2——左右边板 3——后板 4——底板
举升机构结构与性能
举升机构结构型式的分类
自卸汽车上, 现在广泛采用液压举升机构。根据油缸与车厢底 板的连接方式, 常用的举升机构可以分为直接推动式和连杆组 合式两大类。
直接推动式举升机构
油缸直接作用在车厢底板上的举升机构称为直接推动式举升 机构, 简称直推式举升机构。按举升点在车厢底板下表面的位 置, 该类举升机构又可分为油缸中置(图a) 和油缸前置(图b) 两 种型式。前者油缸支在车厢中部, 油缸行程较小, 油缸的举升 力较大, 多采用双缸双柱式油缸。后者的油缸支在车厢前部, 油缸的举升力较小, 油缸行程较大, 一般用于重型自卸汽车上, 油缸则通常采用多级伸缩油缸。
油缸前推杠杆平衡式举升机构
油缸后推杠杆平衡式举升机构
该种举升机构的油缸下铰点、三角板的固定铰点、车厢翻转 铰点几乎均匀分布在副车架上, 减少了车架后部的集中载荷; 同时, 这种三点支承方式有利于改善机构的整体横向刚性。举 升过程中油缸摆角小, 机构的工作效率也较高, 但机构举升力 系数较大, 使相同举升质量所需举升力较其他举升机构大。
油缸浮动式举升机构
直推式与连杆组合式举升机构的综合比较
自卸车设计方案书
主要内容
1.自卸车介绍 2.自卸车设计特点 3.普通自卸车结构 4.自卸车设计参数 5.自卸车标准 6.中国自卸车品牌及其参数 7.几种新型自卸车结构分析 8.自卸车设计方案
自卸车的介绍
自卸车是指通过液压或机械举升而自行卸货载货的车辆,又 称翻斗车。由汽车底盘、液压举升机构、货厢和取力装置等 部件组成。
点较靠近车厢的前部, 故车厢受力状况较好; 当达到最大举升 角度时, 油缸几乎处于垂直状态, 车厢上升到最高位置不易倾 下,稳定性好; 油缸最大推力较小, 油压特性好。但整个机构较 庞大, 油缸在举升过程中的摆角较大, 工作行程也较大。
油缸前推连杆放大式举升机构
油缸前ห้องสมุดไป่ตู้杠杆平衡式举升机构
该种举升机构通过拉杆与车厢底板相连, 举升支点较靠近车厢 的前部, 故车厢受力状况较好; 初始时拉杆几乎是垂直顶起车 厢, 因此机构启动性能好。但该机构三角形连杆的几何尺寸较 大, 结构不紧凑; 油缸摆角较大, 工作行程较大,液压管路不易 布置。
油缸后推杠杆平衡式举升机构
油缸浮动式举升机构
该种机构油缸的一端直接与车厢底板相连, 另一端不是固定在 车架上, 而是可以随着车厢的翻转而运动, 故称为油缸浮动式 举升机构。该机构的拉杆也与车厢底板直接相连, 举升支点较 靠近车厢的前部, 故车厢受力状况较好, 工作效率较高。但该 机构几何尺寸较大, 结构不紧凑; 举升过程中油缸摆角较大, 使 得液压管路难于布置。