太阳能热水器控制器研发设计

合集下载

基于单片机的太阳能热水器控制系统的设计

基于单片机的太阳能热水器控制系统的设计

基于单片机的太阳能热水器控制系统的设计太阳能热水器控制系统是一种利用太阳能来加热水并保温的设备。

基于单片机的太阳能热水器控制系统能够监测系统状态,并根据需要自动地调节工作参数,实现高效能的利用太阳能热水器。

该系统的设计涉及多个方面,包括传感器、执行元件、控制算法和人机交互界面等。

首先,传感器部分。

在太阳能热水器系统中,常用的传感器包括温度传感器、光照传感器和压力传感器。

温度传感器可以用来测量水温,光照传感器可以用来检测太阳光强度,压力传感器可以用来监测水流状态。

这些传感器的数据可以通过单片机进行采集和分析。

其次,执行元件部分。

太阳能热水器系统中常用的执行元件包括电磁阀和水泵。

电磁阀用于控制水的流动方向,水泵用于实现水的循环。

在系统的运行过程中,单片机可以根据采集到的数据来控制这些执行元件的开关状态,以实现对水的流动和供暖的控制。

第三,控制算法部分。

太阳能热水器控制系统需要进行一系列的控制算法设计,包括针对太阳能热水器的启动和停止控制,水的加热和供暖控制等。

通过合理的控制算法设计,可以最大限度地提高太阳能热水器的工作效率,提升整个系统的性能。

最后,人机交互界面部分。

太阳能热水器控制系统需要一个人机交互界面,使用户可以进行相关参数的设置和监控。

在设计上,可以采用液晶显示屏和按键来实现用户的交互操作。

通过人机交互界面,用户可以方便地设置系统的工作模式、温度设定等,同时可以实时地监测系统的运行状态和各项参数。

综上所述,基于单片机的太阳能热水器控制系统设计包括传感器的选择和布置、执行元件的控制和驱动、控制算法的设计和优化以及人机交互界面的设计等方面。

这些设计要求兼顾系统的可靠性、高效性和便利性,以实现对太阳能热水器的精确控制和高效利用。

通过优化设计,可以将太阳能热水器的效能最大化,提供可靠的热水供应。

太阳能热水器智能控制系统设计

太阳能热水器智能控制系统设计

太阳能热水器智能控制系统设计智能控制系统主要分为硬件部分和软件部分。

硬件部分包括传感器、执行器和控制模块;软件部分包括数据采集、数据处理和控制算法。

1.传感器通过安装在太阳能热水器上的不同类型的传感器,可以实时获取一些必要的参数信息,如太阳辐射强度、水温、水位等。

传感器的选择需要考虑到其精度、可靠性和成本等因素。

传感器可以通过模拟信号或数字信号的形式将收集到的数据传输给控制模块。

2.执行器执行器用于控制太阳能热水器的工作状态,如水泵的开关控制、阀门的开关控制等。

执行器通常由电磁阀、电机或电热器等组成,通过开关控制电源的通断来实现相应的操作。

3.控制模块控制模块是整个智能控制系统的核心部分,它接收传感器传输过来的数据,并根据一定的控制算法进行处理,最后控制执行器的工作。

控制模块通常由单片机或微处理器组成,具有数据处理能力,并能通过通信接口与其他设备进行数据传输和控制。

4.数据采集数据采集是指将从传感器采集到的数据进行收集和记录的过程,可以将数据存储在数据库或者内存中,供后续的数据处理和分析使用。

数据采集可以通过定时采集、事件触发采集或实时采集等方式进行。

5.数据处理数据处理是指对采集到的数据进行计算、分析和处理的过程,以提取有用的信息。

例如,可以通过计算太阳能辐射强度和水温的关系来预测水温的变化趋势,以及控制相应的工作状态。

6.控制算法控制算法是根据实际应用需求设计的,用于根据传感器数据和其他信息来控制太阳能热水器的工作状态。

例如,根据太阳辐射强度和水温的关系,可以设计一个算法来控制水泵的开关,以实现更高效的加热水温。

总结起来,太阳能热水器智能控制系统的设计可以通过传感器实时获取相关参数信息,经过数据采集和处理,最终通过控制算法控制执行器的工作状态。

这样的设计可以提高太阳能热水器的效率和节能性,实现智能化的控制和管理。

基于51单片机的太阳能热水器控制系统设计

基于51单片机的太阳能热水器控制系统设计

基于51单片机的太阳能热水器控制系统设计一、本文概述随着全球对可再生能源需求的日益增加,太阳能作为一种清洁、可持续的能源形式,已经引起了广泛的关注和应用。

太阳能热水器作为一种常见的太阳能应用产品,其在节能减排、提高生活质量等方面具有显著的优势。

然而,太阳能热水器在实际使用过程中,仍存在一些问题,如水温控制不稳定、能效利用率不高等。

为了解决这些问题,本文提出了一种基于51单片机的太阳能热水器控制系统设计方案。

该系统以51单片机为核心控制器,结合温度传感器、水位传感器、执行机构等硬件设备,实现了对太阳能热水器水温和水位的精确控制。

通过实时监测水温和水位信息,系统能够自动调整加热功率和补水流量,确保水温稳定在用户设定的范围内,同时避免了水资源的浪费。

系统还具有故障诊断功能,能够及时发现并处理潜在的故障问题,提高了系统的可靠性和稳定性。

本文首先介绍了太阳能热水器的工作原理和现状,分析了传统控制系统存在的问题和不足。

然后,详细阐述了基于51单片机的太阳能热水器控制系统的硬件组成和软件设计。

在硬件设计方面,本文介绍了各个硬件模块的功能和选型原则,包括温度传感器、水位传感器、执行机构等。

在软件设计方面,本文详细说明了系统的控制算法和程序流程,包括温度控制算法、水位控制算法、故障诊断算法等。

本文通过实验验证了系统的可行性和有效性,为太阳能热水器的智能化、高效化提供了有益的探索和实践。

本文的研究不仅有助于提升太阳能热水器的能效利用率和用户体验,还为其他可再生能源应用产品的智能化控制提供了有益的参考和借鉴。

本文的研究成果对于推动太阳能热水器行业的技术进步和产业发展具有重要的现实意义和应用价值。

二、太阳能热水器控制系统总体设计太阳能热水器控制系统的总体设计是确保整个系统高效、稳定运行的关键。

在设计过程中,我们充分考虑了太阳能热水器的实际应用场景和用户需求,以及51单片机的性能特点,从而构建了一个既实用又可靠的控制系统。

工作页太阳能热水器智能控制系统研发设计

工作页太阳能热水器智能控制系统研发设计

任务描述:太阳能热水器使用方便,节能,无污染,普及推广迅速。

目前市场上太阳能热水器的控制系统大部分都存在着或多或少的缺点:功能单一、操作复杂、控制不方便等。

随着人们生活水平的提高和电子技术的发展,这样的太阳能热水器控制系统越来越不适应人们的生活需求,开发一种控制方便,操作灵活的太阳能热水器的管理控制系统,有利于更好的使用太阳能热水器系统。

任务3 太阳能热水器智能控制系统设计一、任务描述在了解太阳能热水器智能管理控制系统的构成及特点的基础上,以单片机作为核心部件设计智能管理控制系统,实时采集温度和水位数据, 并设置报警系统,当水位不符合某一标准时发出报警信号(高、低水位报警控制),当水温不符合设定的温度时发出报警,还有定时提醒加水的功能,以及辅助能源加热功能。

二、知识获取学生通过教师教授、自主学习、小组讨论,获取本任务所学的知识点,了解常用的温度传感器,常用的压力传感器;掌握热水器智能控制系统硬件设计、软件设计的方法及步骤。

三、任务实施由小组长协调组织,在小组讨论、教师指导下完成下面的任务。

1、小组讨论,确定温度测量、水位测量的方法,选择相关元器件构建太阳能热水系统智能管理控制系统方案绘制系统原理框图。

残骛楼諍锩瀨濟溆塹籟。

答:系统组成 : 如图1所示,本系统主要由控制器、自动控制阀、手动控制阀、水位检测电极、水温检测传感器、电阻加热丝、储水箱等组成 控制器:主要通过里面的电磁阀控制YV1和YV2的通断,控制水温检测传感器检测水温、控制水位检测传感器检测水在水箱中的位置以及控制电阻加热丝加热。

自动控制阀:主要通过控制器控制,当水箱中的水的实际温度大于所设置的温度时,自动阀就自动打开往水箱中上水,直到上到上一个目标水位为止。

手动控制阀:当自动阀损坏时,可以通过手动阀进行上下水。

水位检测电极:主要用来检测水箱中水的位置,主要把水箱分成四等分,一共有五个电极,接地的电极放在最水箱的最底下,其余分别放在四等分点上,比如当水箱中的水在第一等分和第二等分之间,则显示水箱中有四分之一的水,当超过第二等分,则显示二分之一的水。

太阳能热水器控制系统设计(doc 62页)

太阳能热水器控制系统设计(doc 62页)

太阳能热水器控制系统设计(doc 62页)摘要众所周知,太阳能是取之不尽,用之不竭,没有污染的巨大能源。

随着世界上煤、油、气的储量日益减少,能源危机已日益增长,环境污染的危机已威胁着生态平衡。

随着日本9.0级地震,引起的海啸以及发生的核电站安全事故,让人们对核能有着很大的安全隐患担忧,因而太阳能开发利用的课题已提到人类的面前。

现有电热型热水器费用昂贵及燃气型的不安全性,且排放二氧化碳污染大气,北方用煤气取暖造成城市空气环境污染,这些都是太阳能热水器良好的外部生存环境。

目前,太阳能热水器控制器还一直处于研究与开发阶段,市面在售的控制器绝大部分只具备温度和水位显示功能,不具备温度、水位的自动控制,以及太阳光线自动跟踪功能。

本设计具有很强的实用性,用成本低廉的电阻式传感器以及电极配以单片机技术对生产实际中的太阳能热水器的水温的控制以及水位的显示。

本装置实用性强、性价比高、水温控制灵活,水位显示直观醒目、太阳光自动跟踪。

关键词:单片机、太阳能热水器、温控系统、水位控制、太阳光自动跟踪英文摘要:As is known to all, solar energy is inexhaustible, an inexhaustible, no pollution huge energy. With the world coal, oil and gas reserves are dwindling, already growing energy crisis, environmental pollution crisis has threatened the ecological balance.As Japan caused by the earthquake, 9.0 tsunami and the nuclear safety accidents happened, let people in nuclear energy has the very big safe hidden trouble, so solar energy concerns for the development and utilization of the already mentioned before the human subject.The existing electric heating type water heater is expensive and gas type of unsafe, and emissions of carbon dioxide, air pollution caused by gas heating northern city's air pollution, these are solar water heater a good external environment.At present, the solar energy water heater controller also has been in research and development phase, the controller sold in the market most have only temperature and water level display, do not have a temperature, water level automatic control, and the sun's rays automatic tracking function. This design has a strong practicability, with low-cost resistive sensor and electrode match with micro-controller technology to the production practice of the solar energy water heater temperature control and water level is displayed. This device has strong, cost-effective, water temperature control flexible, water show intuitional marked, sun automatic tracking.目录摘要.......................................... 错误!未定义书签。

太阳能热水器自动温度控制器设计

太阳能热水器自动温度控制器设计

太阳能热水器自动温度控制器设计
引言
目前,市场上销售的太阳能热水器大多没有自动控制功能,使用起来不
灵活方便,为此,为太阳能热水器加装自动控制功能,具有广泛的市场。

1 自动控制系统技术要求
(1)设定温度的范围为25℃至65℃。

(2)输入信号为水温传感器产生的温度信号;水位传感器产生的水量
信号。

(3)输出信号为控制水温电信号(控制加热电热管)和控制水流量
调节阀信号(控制加水电磁阀)。

(4)配有输入功能键盘:完成自动/手动、手动加水键、手动加热键、
温度设定键、水位档选择键。

(5)具有两位LED 数码显示电路,显示温度设定值、实际温度测量值,六个发光二极管指示六档水位(10%、30%、50%、70%、90%、100%)。

2 系统硬件设计及原理
太阳能热水器加装自动控制功能,主要是加装一个数据采集系统和一个
电脑控制板。

根据太阳能热水器的技术要求及经济方面的考虑,我们选用
89C51 单片机为核心控制器,组成热水器温度控制系统。

系统由89C51 单片机、数据采集系统、水位选择电路、温度显示系统、水位指示系统、加水电磁阀控
制电路、加热电热管控制电路、报警讯响电路、复位电路、晶振电路、键盘电
路组成。

硬件系统组成粗略框架如数据采集系统是非常重要的一部分,它通过水。

太阳能热水器的智能控制器毕业设计

太阳能热水器的智能控制器毕业设计
汇报人:
,a click to unlimited possibilities
01
02
03
04
05
太阳能热水器主要由集热器、保温水箱、支架、控制系统等部分组成。
控制系统用于控制集热器、保温水箱、支架等部分的工作状态,实现自动控制。
支架用于固定集热器和保温水箱,使其能够稳定地接受太阳辐射。
集热器吸收太阳辐射能,将太阳能转化为热能,加热水箱中的水。
优点:使用寿命长,维护成本低
自动控制:根据水温、水量等参数自动调节加热功率
定时控制:用户可以设定加热时间,控制器自动执行
安全保护:过热、过压、漏电等异常情况自动报警并切断电源
远程监控:用户可以通过手机APP实时查看热水器运行状态,远程控制加热过程
电源模块:选择合适的电源模块,如太阳能电池板、蓄电池等
安全性测试:测试智能控制器的安全性,如防雷、防电磁干扰等
智能控制:自动调节水温、水量,提高使用舒适度
节能环保:减少能源消耗,降低碳排放
安全可靠:自动检测故障,提高安全性能
远程控制:通过手机APP远程控制热水器,方便快捷
提高水温稳定性:智能控制器可以实时监测水温,自动调节加热功率,使水温保持稳定。
保温水箱用于储存热水,保持水温稳定。
家庭使用:安装在屋顶,提供热水
商业使用:酒店、学校、医院等场所的热水供应
工业使用:工厂、企业等场所的热水供应
农业使用:温室大棚、养殖场等场所的热水供应
优点:节能环保,可再生能源,无污染
缺点:受天气影响较大,阴雨天无法使用
缺点:安装成本较高,需要专业人员进行安装
编程语言:C++或Java等高级语言
功能模块:温度控制、水位控制、安全保护等

智能家居中的太阳能热水器控制系统设计

智能家居中的太阳能热水器控制系统设计

智能家居中的太阳能热水器控制系统设计智能家居中的太阳能热水器控制系统设计随着科技的不断进步,智能家居正在逐渐普及和应用于人们的生活中。

其中,太阳能热水器作为绿色清洁能源的一种重要形式,也逐渐成为智能家居的一部分。

智能家居中的太阳能热水器控制系统设计的主要目的是提高家庭生活的舒适度,同时也达到节能环保的效果。

1. 引言太阳能热水器作为一种非常有前景的清洁能源形式,其广泛应用势必能够为节能减排做出重要贡献。

而智能家居是目前人们生活的一个热门话题,通过将各类设备与智能控制系统相连,能够实现家庭生活的自动化和智能化。

太阳能热水器控制系统的设计就是将这两种前景相结合,旨在提高人们的生活品质,并为环保事业做出贡献。

2. 系统概述智能家居中的太阳能热水器控制系统主要包括太阳能热水器、传感器、控制器、通信设备和用户界面。

太阳能热水器主要负责收集太阳能并将其转化为热水,传感器用于监测水温、水压、光照等参数,控制器负责根据传感器的反馈进行控制,通信设备用于实现与用户界面的互联。

3. 系统设计3.1 传感器设计太阳能热水器的控制系统需要实时监测一系列参数,如太阳能辐射强度、水温、水压等。

因此,传感器的设计是系统中的重要一环。

传感器可以选用温度传感器、压力传感器和光照传感器等。

这些传感器的安装位置需要合理确定,以保证其能够准确监测到所需参数。

3.2 控制器设计控制器是智能家居中的核心部件,负责根据传感器的反馈信息进行控制。

在太阳能热水器的控制系统中,可以采用PID控制算法进行温度和水压的控制。

即通过控制水泵的工作状态,调节系统中的循环速度,从而达到恰当的水温和水压。

3.3 通信设备设计通信设备可以选择无线通信模块,如WiFi、蓝牙等,以便与用户界面实现远程及时控制和监测。

用户可以通过手机App、智能家居控制面板等方式,远程监测和控制太阳能热水器的运行状态,实现智能化的管理。

3.4 用户界面设计用户界面是用户与智能家居系统进行交互和管理的入口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能热水器的通用控制器研制武汉工程大学刘增华李伟1、系统功能与指标1.1功能特点具有目前产品的一般功能:1)设置上限水位:设置水位上限,可选择50% ~99%之间(我们选取80%),并且在使用中,不得自动上水。

矚慫润厲钐瘗睞枥庑赖。

2)设置水箱水温:设置电加热的温度上限,可选择0°C~80°C(我们选取60°C),自动加热。

3)水位指示:LED五段显示。

4)水温指示:LCD液晶数字显示。

5) 自动上水:为防止空晒,当水位低于10%时,系统强制上水;当水位低于30%时,提示报警,若没有使用,启动自动上水,若使用,则报警提示先上水,再使用。

聞創沟燴鐺險爱氇谴净。

6)辅助加热:当出现阴雨天气,水温达不到要求,启动辅助电加热,电加热温度上限设置为60°C。

同时还具有新加功能:1)智能模式:检测淋浴水温,自动调节凉水的流量,自动调节,使水温保持在设定温度的2°C范围内,并保持有足够的流量。

残骛楼諍锩瀨濟溆塹籟。

1.2技术指标1)设置上限水位:设置水位上限,可选择50% ~99%之间(我们选取80%),并且在使用中,不得自动上水。

酽锕极額閉镇桧猪訣锥。

2)设置水箱水温:设置电加热的温度上限,可选择60°C,自动加热。

3)水位指示:分段显示(5段显示)。

4)水温指示:数字显示(精度为1度)。

5)自动上水:为防止空晒,当水位低于30%时,提示报警,若没有使用,启动自动上水。

若使用,则报警提示先上水,再使用。

彈贸摄尔霁毙攬砖卤庑。

6)智能模式:检测淋浴水温,自动调节热水、凉水的流量,自动调节,使水温保持在设定温度的2°C范围内,并保持有足够的流量。

謀荞抟箧飆鐸怼类蒋薔。

2、系统结构设计2.1系统的工作原理太阳能热水器辅助控制系统结构如图1所示。

在太阳能热水器的储水箱内增加一个电加器,采用220V市电加热,由辅助控制系统的继电器控制通断电,用来在温度达不到要求的时候进行辅助加热来保证热水温度。

水位、水温探测器从保温储水箱顶部安装在水箱中,通过电缆线接入用户室内控制器。

流量控制阀用通过步进电机来精确控制冷水即自来水的流量,来保证热水与冷水混合后的温度达到用户的要求。

当水位不足报警时,通过电磁阀启动上水,上水的过程中,不允许淋浴,且放水电磁阀关闭。

当需要淋浴时,放水电磁阀打开,通过自动控制冷水电磁阀的开度来保证冷水与热水混合后的温度与用户设定值基本一致(水温保持在设定温度的2°C范围内),淋浴过程中,系统禁止上水和辅助加热。

当淋浴完后按下”淋浴完键”,系统停止放水并且电机要复位。

系统的总体结构图如下。

厦礴恳蹒骈時盡继價骚。

自来水淋浴器图1 太阳能热水器辅助控制系统结构图温度传感器上水电磁阀放水电磁阀阀门电动节流截至阀热水器储水箱电加热器温度传感器液位传感器三通三通三通2.2 控制系统与电路结构组成控制系统采用FPGA 内部构建Core8051单片机来控制水温水位等,其内部接线图如图2所示。

整个系统采用Fusion StartKit 开发平台,嵌入8051内核为核心,对水温、水位等参数进行智能检测和显示,读取电磁阀的状态,经键盘操作和单片机内部运算比较,控制相应得执行机构进行通、断电及报警提示,其控制系统组成如图3。

茕桢广鳓鯡选块网羈泪。

F PG A Fusion StartKitCore8051CPU P0LCD1602模块DB0-DB7P2.0P2.1P2.2RS RWEPLED 模块LED1-LED5P3.0-P3.4P1.0P1.1D0D1D2P1.2BUZZERP1.3K2K3K4K5P1.4P1.5P1.6P1.7P2.3P2.4P2.5P2.6P2.7D3D4D5D6D7Mini ISA 接口图2 FPGA 内部Core8051引脚分配图P0口DB0-DB7P2.0P2.1P2.2RSRWEP1602液晶显示器CP-U/D-FREE P2.3P2.4P2.5步进电机步进电机驱动器P2.6P2.7+5V1820水箱温度检测+5V1820喷头水温检测光耦放水电磁阀P1.0上水电磁阀P1.1光耦P1.2P1.3-P1.7光耦加热继电器按键K1,K2,K3,K4,K5P3.0-P3.4Core8051K1:加温度键K2:减温度键K3:确认键K4:淋浴完成键图3 太阳能热水器控制系统的组成+5V+5VT0555液位检测装置指示灯水位显示LED1-5K5:上水键复位键K6P3.5K6:复位键蜂鸣器P3.6Core8051的P0口作液晶的数据口,P2.0-P2.2为液晶的使能控制口,P2.3-P2.5分别接步进电机驱动器CP-,u/d-,FREE-, CP 为脉冲信号输入端;U/D 为电机正、反转控制端;FREE 为电机脱机控制端,通过不断的对淋浴水温进行智能检测和显示,经单片机内部运算与设定温度进行比较,控制输入步进电机的脉冲信号及正反转状态,来调节流量控制阀的开度,从而来保证喷头水温与用户设定水温的相一致。

P2.6接数字温度传感器ds1820,用来检测水箱温度并通过芯片及单片机内部处理后显示在液晶上,P2.7也接温度传感器用来检测淋浴喷头的水温。

如果水箱温度不足时(达设置水温下限),则加热继电器动作,启动辅助加热装置,当水温达加热温度上限时加热继电器断开,辅助加热装置关闭。

水位用5段led 灯显示,如果水位不足则报警蜂鸣器响,若没使用则上水继电器动作,电磁阀开通,自动上水至水位上限后关闭。

鹅娅尽損鹌惨歷茏鴛賴。

3、单元电路设计3.1水位检测图4 由555定时器构成的液位测量电图水位检测原理如下:由两块铝板组成电容构成介质变化型电容传感器,电容大小为:lS C ε= 式中:ε为介质,S 为对应的面积,l 为长度。

假设电容器为两平极结构,作绝缘处理后的电容器两极间浸入不同的界质中,由于电容器中的介质相对介电系数不同,电容量是不同的,即检测电容传感器在水位变化导致电容器的电容C 变化情况。

籟丛妈羥为贍偾蛏练淨。

电容传感器处在大气中、浸入水中不同深度,其电容量的变化,可反映出水位的变化。

在大气中相对介电常数为1,电容传感器的电容量为C1,在水中相对介电常数更大,达到80,电容传感器的电容量将随着浸入深度加大而变大。

預頌圣鉉儐歲龈讶骅籴。

由于上下两部分的介质不同,则总电容有两个电容并联组成: 设铝板总高度为H ,液位高度为h ,则上下两部的介质分别为空气和水。

h H bh l S C -∙==11εb hbh l S C 80802=∙==ε式中:空气的介电常数为1,b 为铝板的宽度。

本传感器采用NE555制作为脉冲波发生器,输出的频率反映液位的变化,根据实际测试:uF C 1.0min =、uF C 2.2max =取中心工作频率为1KHz ,确定电阻值。

当水箱里无水时(水位最低),最小。

将水位划分为五段:0.1-0.2m 、0.2-0.3m,、0.3-0.4m 、0.4-0.5m 、0.5-0.6m ,分别对应于显示灯LED1、LED2、LED3、LED4、LED5。

当水位发生C1C2变化引起电容的变化,经多谐振荡器输出周期性方波的频率f也随之发生变化[f=1.43/(R1+2R2)C],根据单片机的计数器T0扑捉到的时钟的个数,再经单片机内部比较处理来决定点亮的LED灯。

譬如当水位处于h1位段时,输出的频率满足点亮LED1的条件,则LED1亮,指示水位位于0.1-0.2m处,由此来实现水位的显示。

LED灯显示采用动态扫描方式,即在某一时刻,只有一个灯被点亮。

当水位低于h2时,启动蜂鸣器报警,提示需加水,若无人使用则自动启动加水。

实验表明,为能很好的满足电路的要求,R1用可调电阻,R2应选取阻值较大一点的电阻,这里我们选R2=8.1KΩ,R1阻值范围为0-30 KΩ。

渗釤呛俨匀谔鱉调硯錦。

3.2 温度检测对水温信号的检测采用一线式数字温度传感器DS1820,它以9 位数字量的形式反映器件的温度值。

通过使用连接到VDD 引脚的外部电源来向ds1820供电,如图5 所示,这种方法的优点是在I/O 线上不要求强的上拉,总线上主机不需向上连接便在温度变换期间使线保持高电平。

这就允许在变换时间内其它数据在单线上传送。

铙誅卧泻噦圣骋贶頂廡。

图5 温度传感器接线图3.3步进电机控制电路的设计为了能调控水温,需要节流阀控制冷水的流量,由于商品化的电动阀价格太高,本方案选用节流阀+步进电机的组合控制。

擁締凤袜备訊顎轮烂蔷。

步进电机,选用的二相四拍步进,步距角为1.8°。

同时,采用BY-2HB03M的驱动器来驱动,控制二相四拍步进电机的步进及正反转。

通过单片机控制步进电机即可控制节流阀,达到控制淋浴水温的目的。

步进电机控制电路连接图如图6所示。

贓熱俣阃歲匱阊邺镓騷。

A A  ̄B B  ̄A A  ̄B B  ̄步进电机CP-U/D-FREE-步进电机驱动器(BY-2HB03M)P2.3P2.4P2.5VHGND电源24vdc步进电机用于控制冷水控制阀的流量图6 步进电机控制连线图R1120Ω1K Vcc 5V C9013R2Vcc 5V R2R1C90133.4 光电隔离与辅助加热电路设计下图7为太阳能热水器辅助加热电路设计,当室外光照不足(阴天,雨天)时,对水箱的水提前加热是非常有必要的,而这一电路恰好能完成该功能。

工作原理为:当Core8051的P1.2口输出高电平时,三极管T1导通,使得继电器线圈通电闭合,电阻丝R1’-R4’发热,从而完成加热任务。

坛摶乡囂忏蒌鍥铃氈淚。

R2GNDVcc图7 辅助加热电路图加热电阻丝继电器T1VccGND5V5V220VACR1120ΩR3R4光耦P1.2K14N293.5继电器驱动电路电路如图8所示,三极管Q为NPN驱动三极管,工作在开关状态;二极管D为继电器线圈在由吸合变为断开时提供续流,以免产生高压,从而保护三极管Q。

蜡變黲癟報伥铉锚鈰赘。

R1120ΩC9013 VCC 5VP1.0继电器电磁阀+24v-图8 继电器驱动电路因为硬件设计中要用到两个电磁阀,淋浴时的放水电磁阀和向水箱上水的电磁阀,故需要两个继电器来控制。

4、控制器的软件设计控制器软件设计采用模块化结构,包括主程序,键盘扫描子程序,显示子程序,步进电机控制程序,液位比较子程序及温度计算子程序。

買鲷鴯譖昙膚遙闫撷凄。

系统主程序主要完成水箱及喷头温度和水位的检测,温度的设置,水位不足报警,自动上水及一些初始化功能。

系统主程序流程图如图8所示。

綾镝鯛駕櫬鹕踪韦辚糴。

开始系统初始化显示液位和温度液位是否最低液位是否次低是否有人用液位是否最高否报警提示上水是是打开上水阀否关闭上水阀是扫描按键否K2按下?K1按下?Set+1Set-1是是K3按下?打开放水阀打开上水阀是液位是否最高否关闭上水阀是否温度是否合适调节电机是K4按下?电机复位关闭放水否是否否否是否显示温度水位打开上水阀关闭上水阀K5按下?液位是否最高是是否图9 软件设计流程图5、测试结果该控制器的设计主要采用Actel公司Fusion系列60万门的AFS600芯片,通过嵌入8051内核来实现,充分利用该平台提供的资源,来完成本次设计任务。

相关文档
最新文档