广西省柳州市2015届高中毕业班3月份模拟(梧州二模)考试数学(文)试卷 扫描版

合集下载

广西壮族自治区南宁市二中2024学年高三3月教学质量监测联考数学试题试卷

广西壮族自治区南宁市二中2024学年高三3月教学质量监测联考数学试题试卷

广西壮族自治区南宁市二中2024学年高三3月教学质量监测联考数学试题试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭2.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.A .5.45B .4.55C .4.2D .5.83.已知正项等比数列{}n a 的前n 项和为2317,,927n S S S ==,则12n a a a 的最小值为( ) A .24()27B .34()27C .44()27D .54()274.函数()2xx e f x x=的图像大致为( )A .B .C .D .5.已知双曲线2222:1(0)x y M b a a b-=>>的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,则双曲线M 的离心率的取值范围是( )A .(1,2]B .(2,3]C .(2,5]D .(3,5]6.已知函数f (x )=223,1ln ,1x x x x x ⎧--+≤⎨>⎩,若关于x 的方程f (x )=kx -12恰有4个不相等的实数根,则实数k 的取值范围是( )A .1,e 2⎛⎫⎪⎝⎭B .1,2e ⎡⎫⎪⎢⎣⎭C .1,2e e ⎛⎤⎥ ⎝⎦D .1,2e e ⎛⎫⎪⎝⎭7.已知函数()xe f x ax x=-,(0,)x ∈+∞,当21x x >时,不等式()()1221f x f x x x <恒成立,则实数a 的取值范围为( ) A .(,]e -∞B .(,)e -∞C .,2e ⎛⎫-∞ ⎪⎝⎭D .,2e ⎛⎤-∞ ⎥⎝⎦8.已知椭圆2222:1x y C a b+=的短轴长为2,焦距为1223F F ,、分别是椭圆的左、右焦点,若点P 为C 上的任意一点,则1211PF PF +的取值范围为( ) A .[]1,2B .2,3⎡⎤⎣⎦C .2,4⎡⎤⎣⎦D .[]1,49.函数()cos2xf x x =的图象可能为( )A .B .C .D .10.已知0x >,a x =,22xb x =-,ln(1)c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<11.已知函数13()4sin 2,0,63f x x x π⎛⎫⎡⎤=-∈π ⎪⎢⎥⎝⎭⎣⎦,若函数()()3F x f x =-的所有零点依次记为123,,,...,n x x x x ,且123...n x x x x <<<<,则123122...2n n x x x x x -+++++=( )A .503πB .21πC .1003πD .42π12.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:2n =及3n =时,如图:记n S 为每个序列中最后一列数之和,则6S 为( ) A .147B .294C .882D .1764二、填空题:本题共4小题,每小题5分,共20分。

广西南宁市第三中学2024届高三下学期校二模数学试题

广西南宁市第三中学2024届高三下学期校二模数学试题

广西南宁市第三中学2024届高三下学期校二模数学试题一、单选题1.已知集合{}20A xx =+>∣,{}220B x x x =--<∣,则A B =I ( ) A .{21}x x -<<∣ B .{22}x x -<<∣ C .{11}x x -<<∣ D .{12}xx -<<∣ 2.已知{}n a 为等差数列,23467,22a a a a +=+=,则8a 等于( ) A .21B .17C .23D .203.直线:2l x y +=,圆22:2220C x y x y +---=.则直线l 被圆C 所截得的弦长为( )A .2B .4C .D 4.若有2名女生和4名男生到“山东旅发”大会的两个志愿服务站参加服务活动,分配时每个服务站均要求既有女生又有男生,则不同的分配方案种数为( ) A .16B .20C .28D .405.已知函数()()sin 2f x x ϕ=+(π2ϕ<)图象的一个对称中心为π,06⎛⎫⎪⎝⎭,则( ) A .()f x 在区间ππ,83⎡⎤-⎢⎥⎣⎦上单调递增B .5π6x =是()f x 图象的一条对称轴C .()f x 在ππ,64⎡⎤-⎢⎥⎣⎦上的值域为⎡-⎢⎣⎦D .将()f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y 轴对称 6.设A ,B 是一个随机试验中的两个事件,且 ()()()111,,432P A P B P A B ==⋃=,则()|P B A =( )A .14B .13C .16D .1127.在ABC V 中,1202ACB BC AC ∠=︒=,,D 为ABC V 内一点,AD CD ⊥,120BDC ∠=︒,则tan ACD ∠=( )A .BCD 8.已知双曲线2222:100x y C a b a b-=>>(,)的右焦点为F ,c 是双曲线C 的半焦距,点A 是圆²²²x y c +=上一点,线段F A 与双曲线C 的右支交于点B .若 ,2FA a FA FB ==u u u r u u u r,则双曲线C 的离心率为( )A BC D二、多选题9.某次数学考试后,为分析学生的学习情况,某校从某年级中随机抽取了100名学生的成绩,整理得到如图所示的频率分布直方图.为进一步分析高分学生的成绩分布情况,计算得到这100名学生中,成绩位于[)80,90内的学生成绩方差为12,成绩位于[)90,100内的同学成绩方差为10.则( )参考公式:样本划分为2层,各层的容量、平均数和方差分别为:m 、x 、21s ;n 、y 、22s .记样本平均数为ω,样本方差为2s ,()()2222212m n s s x s y m n m n ωω⎡⎤⎡⎤=+-++-⎣⎦⎣⎦++.A .0.004a =B .估计该年级学生成绩的中位数约为77.14C .估计该年级成绩在80分及以上的学生成绩的平均数为87.50D .估计该年级成绩在80分及以上的学生成绩的方差为30.2510.如图,在直角三角形ABC 中,AB BC =AO OC =,点P 是以AC 为直径的半圆弧上的动点,若BP xBA yBC =+u u u r u u u r u u u r,则( )A .1122BO BA BC =+u u u r u u u r u u u rB .1CB BO ⋅=u u u r u u u rC .BP BC ⋅u u u r u u u r最大值为1D .B ,O ,P 三点共线时2x y +=11.如图,在直三棱柱111ABC A B C -中,2AB AB BC =⊥,,,P Q 分别为棱11,BC AC 上的动点,且BP BC λ=u u u r u u u r ,111C Q C A λ=u u uu r u u u u r ,()0,1λ∈,则( )A .存在λ使得1PQ AB ⊥ B .存在λ使得//PQ 平面11ABB AC .若111,BB B C 长度为定值,则12λ=时三棱锥1B A PQ -体积最大D .当12λ=时,直线PQ 与1A B三、填空题12.在(61的展开式中,x 的系数为(用数字作答)13.在ABC V 中,内角,,A B C 的对边分别为,,a b c )222sin a b c ab C +-=,且1c =,则ABC V 面积的最大值为.14.若直线1y ax =+与曲线ln y b x =+相切,则ab 的取值范围为.四、解答题15.已知数列{}n a 的前n 项和为n S ,且()112n S n n =+. (1)求{}n a 的通项公式;(2)若数列{}n b 满足21,2,n n n n a n a a b n +⎧⎪=⎨⎪⎩为奇数为偶数,求{}n b 的前2n 项和2n T .16.如图所示,圆台12O O 的轴截面11A ACC 为等腰梯形,111224,AC AA AC B ===为底面圆周上异于,A C 的点,且,AB BC P =是线段BC 的中点.(1)求证:1C P //平面1A AB .(2)求平面1A AB 与平面1C CB 夹角的余弦值.17.某学校组织游戏活动,规则是学生从盒子中有放回的摸球且每次只能摸取1个球,每次摸球结果相互独立,盒中有1分和2分的球若干,摸到1分球的概率为23,摸到2分球的概率为13.(1)若学生甲摸球2次,其总得分记为X ,求随机变量X 的分布列与期望;(2)学生甲、乙各摸5次球,最终得分若相同,则都不获得奖励;若不同,则得分多者获得奖励.已知甲前3次摸球得了6分,求乙获得奖励的概率. 18.已知函数()21sin 2f x x x ax =-+. (1)当1a =时,求()f x 的最小值; (2)①求证:()f x 有且仅有一个极值点;②当[]1π,1a ∈--时,设()f x 的极值点为0x ,若()212sin 22g x x x x =-+-.求证:()()00f x g x ≥19.已知双曲线2222:1(0,0)x y C a b a b -=>>的左,右焦点分别为12,F F ,双曲线C 的虚轴长为2,有一条渐近线方程为y x =.如图,点A 是双曲线C 上位于第一象限内的点,过点A 作直线l 与双曲线的右支交于另外一点B ,连接AO 并延长交双曲线左支于点P ,连接1PF 与2PF ,其中l 垂直于12F PF ∠的平分线m ,垂足为D .(1)求双曲线C 的标准方程;(2)求证:直线m 与直线OA 的斜率之积为定值; (3)求APBAPDS S △△的最小值.。

柳州市重点中学2024学年下学期高三4月仿真数学试题试卷

柳州市重点中学2024学年下学期高三4月仿真数学试题试卷

柳州市重点中学2024学年下学期高三4月仿真数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A .13B .23C .33D .232.()6321x x x ⎛⎫-+ ⎪⎝⎭的展开式中的常数项为( ) A .-60B .240C .-80D .1803.如图,在ABC 中,,(,),2AD AB BD xAB yAC x y R AD ⊥=+∈=,且12AC AD ⋅=,则2x y +=( )A .1B .23-C .13-D .34-4.已知函数()()sin f x A x =+ωϕ(π0,0,2A >><ωϕ)的部分图象如图所示,且()()0f a x f a x ++-=,则a 的最小值为( )A .π12 B .π6 C .π3D .5π125.下列选项中,说法正确的是( )A .“20000x R x x ∃∈-≤,”的否定是“2000x R x x ∃∈->,”B .若向量a b ,满足0a b ⋅< ,则a 与b 的夹角为钝角C .若22am bm ≤,则a b ≤D .“()x AB ∈”是“()x A B ∈”的必要条件6.已知EF 为圆()()22111x y -++=的一条直径,点(),M x y 的坐标满足不等式组10,230,1.x y x y y -+≤⎧⎪++≥⎨⎪≤⎩则ME MF ⋅的取值范围为( ) A .9,132⎡⎤⎢⎥⎣⎦B .[]4,13C .[]4,12D .7,122⎡⎤⎢⎥⎣⎦7.已知函数2,()5,x x x af x x x a⎧-≤=⎨->⎩(0a >),若函数()()4g x f x x =-有三个零点,则a 的取值范围是( )A .(0,1)[5,)+∞B .6(0,)[5,)5+∞C .(1,5]D .6(,5]58.已知三棱柱111ABC A B C -的所有棱长均相等,侧棱1AA ⊥平面ABC ,过1AB 作平面α与1BC 平行,设平面α与平面11ACC A 的交线为l ,记直线l 与直线,,AB BC CA 所成锐角分别为αβγ,,,则这三个角的大小关系为( )A .αγβ>>B .αβγ=>C .γβα>>D .αβγ>=9.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( ) A .12m >B .12m ≥C .1mD .m 1≥10.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cos cos 4c a B b A -=,则2222a bc-=( ) A .32B .12C .14D .1811.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离12.已知{}n a 为等比数列,583a a +=-,4918a a =-,则211a a +=( ) A .9B .-9C .212D .214-二、填空题:本题共4小题,每小题5分,共20分。

广西壮族自治区梧州市苍梧中学2022-2023学年高二下学期3月月考数学试题(含答案解析)

广西壮族自治区梧州市苍梧中学2022-2023学年高二下学期3月月考数学试题(含答案解析)

广西壮族自治区梧州市苍梧中学2022-2023学年高二下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A..C..二、多选题A D平面BEC A.11//AB⊥平面BECB.1AA B B⊥平面BEC C.平面11DD与平面BEC D.直线111.已知数列{}n a的前n A.{}n a是递减数列C .110S >D .当n S 最小时,5n =12.已知函数()()3220f x x bx cx b b =+++<在=1x -处有极值,且极值为8,则()A .()f x 有三个零点B .b c=C .曲线()y f x =在点()()22f ,处的切线方程为340x y ++=D .函数()2y f x =-为奇函数三、填空题四、解答题17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2cos 2b C c a +=.(1)求角B 的大小;(2)若5a =,7b =,求c 的长.18.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.19.如图,四棱锥P ABCD -中,底面ABCD 是正方形,PA ⊥底面ABCD ,且2,,PA AB M N ==分别,PC AB 为的中点.(1)证明:MN //平面PAD (2)求二面角M NB C --的余弦值20.已知函数()n e si xxf x =(1)求()f x 在点()()0,0f (2)求证:当[]0,πx ∈时,21.已知数列{}n a 的前n 项和为(1)求{}n a 的通项公式;(2)若()23n n n b n a =+,数列22.已知函数()12f x x =-(1)当1a =时,求曲线y =(2)求()f x 的单调区间;(3)若函数()f x 有两个极值点参考答案:11.BCD【分析】由数列前n 项和为【详解】210n S n n =-,当当2n ≥时,1n n n a S S -=-注意到1n =时也满足1a =则()220B ,,,()200A ,,,()020C ,,,()020AB = ,,,()220AC = -,,,1AD 设平面1D AC 的法向量()n x y z = ,,,则122020n AC x y n AD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,取1x =,得∴点B 到平面1D AC 的距离:AB d n = 故答案为:63.16.21,e ⎡⎫+∞⎪⎢⎣⎭【分析】()0f x ≤恒成立即ln 1x a x -≥数求导求单调性及最大值即可.【详解】解:由题知()0f x ≤恒成立,即ln 10x ax --≤在()0,∞+上恒成立,即ln 1x a x -≥在()0,∞+上恒成立,即a 记()ln 1x g x x -=,所以()(21ln x g x x -'=当()20,e x ∈时,()0g x '>,()g x 单调递增当()2e ,x ∈+∞时,()0g x '<,()g x 单调递减所以()()22max 1e e g x g ==,因为,M E 分别是,PC PD 的中点,在PCD 中,//ME CD ,ME 因为底面ABCD 是正方形,所以//AN CD ,12AN CD =所以//ME AN 且ME AN =所以//MN EA ,又因为MN 所以MN //平面PAD .方法二:因为底面ABCD 是正方形,由条件可知()(1,1,1,1,0,0M N 平面PAD 的一个法向量是AB 0AB MN ⋅= ,所以AB MN ⊥ 因为MN ⊄平面PAD ,所以(2)因为底面ABCD 是正方形,所以,,AB AD AP 两两垂直,以,,AB AD AP 方向分别为,,x y z 轴建立空间直角坐标系,如图(设二面角M NB C --的平面角为由条件可知()(1,1,1,1,0,0M N 00MN m y z NB m x ⎧⋅=--=⎪⎨⋅==⎪⎩ ,取y =平面NBC 的一个法向量为AP 2cos ,22m AP m AP m AP ⋅-=== 因为θ为锐角,故2cos 2θ=所以二面角M NB C --的余弦值为20.(1)0x y -=(2)证明见解析【分析】(1)根据导数的几何意义直接求解即可;。

广西梧州市2024高三冲刺(高考数学)人教版考试(巩固卷)完整试卷

广西梧州市2024高三冲刺(高考数学)人教版考试(巩固卷)完整试卷

广西梧州市2024高三冲刺(高考数学)人教版考试(巩固卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题复数在复平面内对应点的坐标为()A.B.C.D.第(2)题已知m,n是两条不重合的直线,是两个不重合的平面,下列命题正确的是()A.若,则B.若,则C.若,则D.若,则第(3)题已知函数设表示中的较大值,表示中的较小值,记得最小值为得最大值为,则A.B.C.D.第(4)题已知l,m为两条不同直线,,为两个不同平面,则下列命题中真命题的是()A.若,,则B.若,,则C.若,,则D.若,,则第(5)题在平面内,定点A,B,C,D满足==,===–2,动点P,M满足=1,=,则的最大值是A.B.C.D.第(6)题定义函数,若至少有3个不同的解,则实数的取值范围是()A.B.C.D.第(7)题已知直线与平面,,则下列命题中正确的是()A.若,则B.若,则C.若,则D.若,则第(8)题已知是圆上一个动点,且直线与直线相交于点P,则的取值范围是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题如图,正方体的棱长为3,点是侧面上的一个动点(含边界),点在棱上,且,则下列结论中正确的是()A.若,则点M的轨迹是线段B.若保持,则点M的运动轨迹长度为C.若点在平面内,点为的中点,且,则点Q的轨迹为一个椭圆D.若点到与的距离相等,则动点的轨迹是抛物线的一部分第(2)题在平面直角坐标系xOy中,角θ以坐标原点O为顶点,以x轴的非负半轴为始边,其终边经过点,,定义,,则()A.B.C.若,则D.是周期函数第(3)题已知矩形中,,,将沿折叠,形成二面角,设二面角的平面角为,若,则()A.B.异面直线与所成的角为C.四面体的体积为D.四面体外接球的体积为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在一次满分为160分的数学考试中,某班40名学生的考试成绩分布如下:成绩(分)80分以下[80,100)[100,120)[120,140)[140,160]人数8812102在该班随机抽取一名学生,则该生在这次考试中成绩在120分以上的概率为.第(2)题从5名女生和4名男生中任意挑选3名同学担任交通安全宣传志愿者,则男生、女生保证都要有的选派方法有______种.第(3)题抛物线E:与圆M:交于A,B两点,圆心,点P为劣弧上不同于A,B的一个动点,平行于y轴的直线PN交抛物线于点N,则的周长的取值范围是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在中,角A、B、C的对边分别是a、b、c,且.(1)求角C的大小;(2)若的平分线交AB于点D,且,,求的面积.第(2)题在直角坐标系xOy中,曲线C的参数方程为(为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)已知直线l与x轴的交点为P,l与C交于A,B两点,求的值.第(3)题已知动圆经过定点,且与圆:内切.(1)求动圆圆心的轨迹的方程;(2)设轨迹与轴从左到右的交点为,,点为轨迹上异于,的动点,设交直线于点,连接交轨迹于点,直线,的斜率分别为,.①求证:为定值;②证明:直线经过轴上的定点,并求出该定点的坐标.第(4)题一只不透明的袋中装有10个相同的小球,分别标有数字0~9,先后从袋中随机取两只小球.用事件A表示“第二次取出小球的标号是2”,事件B表示“两次取出小球的标号之和是m”.(1)若用不放回的方式取球,求;(2)若用有放回的方式取球,求证:事件A与事件B相互独立的充要条件是.第(5)题如图,已知椭圆与轴的一个交点为,离心率为,,为左、右焦点,M,N为椭圆上的两动点,且.(1)求椭圆的方程;(2)设,的斜率分别为,,求的值;(3)求△面积的最大值.。

2023届广西南宁二中高三第二次模拟考试数学试卷含解析

2023届广西南宁二中高三第二次模拟考试数学试卷含解析

2023年高考数学模拟试卷 注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知定义在R 上的偶函数()f x 满足(2)()f x f x +=-,且在区间[]1,2上是减函数,令12121ln 2,,log 24a b c -⎛⎫=== ⎪⎝⎭,则()()(),,f a f b f c 的大小关系为( )A .()()()f a f b f c << B .()()()f a f c f b << C .()()()f b f a f c <<D .()()()f c f a f b <<2.已知52i 12i a =+-(a ∈R ),i 为虚数单位,则a =( )A .3B .3C .1D .53.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )A .B .C .D .4.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )为( )A .163 B .6 C .203 D .2235.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到A 、B 、C 三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到A 县的分法有( ) A .6种 B .12种 C .24种 D .36种6.复数2(1)41i z i -+=+的虚部为( ) A .—1 B .—3 C .1D .27.已知1F 、2F 分别为双曲线C :22221x y a b -=(0a >,0b >)的左、右焦点,过1F 的直线l 交C 于A 、B 两点,O为坐标原点,若1OA BF ⊥,22||||AF BF =,则C 的离心率为( )A .2B .5C .6D .78.M 、N 是曲线y=πsinx 与曲线y=πcosx 的两个不同的交点,则|MN|的最小值为( ) A .πB .2πC .3πD .2π9.如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,148AB AA ==,.若E F ,分别是棱1BB CC,上的点,且1BE B E =,1114C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A .210B .2613 C .1313 D .131010.已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为()A .1B .1或12 C .32 D .3±11.若()()()32z i a i a R =-+∈为纯虚数,则z =( )A .163iB .6iC .203iD .2012.已知集合{}|1A x x =>-,集合(){}|20B x x x =+<,那么A B 等于( )A .{}|2x x >- B .{}1|0x x -<< C .{}|1x x >- D .{}|12x x -<<二、填空题:本题共4小题,每小题5分,共20分。

广西柳州市中考数学试卷(含答案解析)

广西柳州市中考数学试卷(含答案解析)

广西柳州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的.每小题选对得3分,选错,不选或多选均得0分)1.(3分)(2015•柳州)如图是小李书桌上放的一本书,则这本书的俯视图是()考点:简单几何体的三视图.分析:根据几何体的俯视图的概念:俯视图是从上向下看得到的图形进行解答即可得到答案.解答:解:根据俯视图的概念可知,几何体的俯视图是A图形,故选:A.点评:本题考查的是几何体的三视图,掌握主视图、左视图和俯视图分别是从前向后、从左向右和从上向下看所得的图形是解题的关键,2.(3分)(2015•柳州)如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元B.143.17元C.144.23元D.136.83元考点:有理数的加减混合运算;有理数大小比较.专题:应用题.分析:根据存折中的数据进行解答.解答:解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.点评:本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.3.(3分)(2015•柳州)某学校小组5名同学的身高(单位:cm)分别为:147,151,152,156,159,则这组数据的中位数是()A.147 B.151 C.152 D.156考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:由于此数据已经按照从小到大的顺序排列了,发现152处在第3位.所以这组数据的中位数是152,故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.4.(3分)(2015•柳州)如图,图中∠α的度数等于()A.135°B.125°C.115°D.105°考点:对顶角、邻补角.分析:根据邻补角互补解答即可.解答:解:∠α的度数=180°﹣45°=135°.故选A.点评:此题考查邻补角定义,关键是根据邻补角互补分析.5.(3分)(2015•柳州)下列图象中是反比例函数y=﹣图象的是()考点:反比例函数的图象.分析:利用反比例函数图象是双曲线进而判断得出即可.解答:解:反比例函数y=﹣图象的是C.故选:C.点评:此题主要考查了反比例函数的图象,正确掌握反比例函数图象的形状是解题关键.6.(3分)(2015•柳州)如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为()A.60°B.70°C.80°D.90°考点:圆周角定理.专题:计算题.分析:利用直径所对的圆周角为直角判断即可.解答:解:∵BC是⊙O的直径,∴∠A=90°.故选D.点评:此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.7.(3分)(2015•柳州)小张抛一枚质地均匀的硬币,出现正面朝上的可能性是()A.25% B.50% C.75% D.85%考点:可能性的大小.分析:抛一枚质地均匀的硬币,有两种结果,正面朝上,每种结果等可能出现,从而可得出答案.解答:解:抛一枚质地均匀的硬币,有正面朝上、反面朝上两种结果,故正面朝上的概率=.故选:B.点评:本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(3分)(2015•柳州)如图,点A(﹣2,1)到y轴的距离为()A.﹣2 B.1C.2D.考点:点的坐标.分析:根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.解答:解:点A的坐标为(﹣2,1),则点A到y轴的距离为2.故选C.点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.9.(3分)(2015•柳州)在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.x y D.4x考点:同类项.分析:根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.解答:解:与2xy是同类项的是xy.故选C.点评:此题考查同类项,关键是根据同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.10.(3分)(2015•柳州)如图,图中∠1的大小等于()A.40°B.50°C.60°D.70°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:由三角形的外角性质得,∠1=130°﹣60°=70°.故选D.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质是解题的关键.11.(3分)(2015•柳州)如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0D.x>4考点:抛物线与x轴的交点.分析:利用当函数值y>0时,即对应图象在x轴上方部分,得出x的取值范围即可.解答:解:如图所示:当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选:B.点评:此题主要考查了抛物线与x轴的交点,利用数形结合得出是解题关键.12.(3分)(2015•柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.分析:根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.解答:解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.点评:本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2015•柳州)计算:a×a=a2.考点:同底数幂的乘法.分析:根据同底数幂的乘法计算即可.解答:解:a×a=a2.故答案为:a2.点评:此题考查同底数幂的乘法,关键是根据同底数幂的乘法法则计算.14.(3分)(2015•柳州)如图,△ABC≌△DEF,则EF=5.考点:全等三角形的性质.分析:利用全等三角形的性质得出BC=EF,进而求出即可.解答:解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.点评:此题主要考查了全等三角形的性质,得出对应边是解题关键.15.(3分)(2015•柳州)直线y=2x+1经过点(0,a),则a=1.考点:一次函数图象上点的坐标特征.分析:根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.解答:解:∵直线y=2x+1经过点(0,a),∴a=2×0+1,∴a=1.故答案为:1.点评:本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.16.(3分)(2015•柳州)如图,在Rt△ABC中,∠C=90°,AB=13,AC=7,则sinB=.考点:锐角三角函数的定义;勾股定理.分析:根据锐角三角函数定义直接进行解答.解答:解:∵在Rt△ABC中,∠C=90°,AB=13,AC=7,∴sinB==.故答案是:.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.17.(3分)(2015•柳州)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为﹣3.考点:一元二次方程的解.分析:将x=1代入方程得到关于m的方程,从而可求得m的值.解答:解:将x=1代入得:1+2+m=0,解得:m=﹣3.故答案为:﹣3.点评:本题主要考查的是方程的解(根)的定义,将方程的解(根)代入方程得到关于m的方程是解题的关键.18.(3分)(2015•柳州)如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为.考点:相似三角形的判定与性质;矩形的性质.专题:应用题.分析:设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.解答:解:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴=,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴=,解得:x=,则EH=.故答案为:.点评:此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.三、解答题(本大题共8小题,满分66分)19.(6分)(2015•柳州)计算:+.考点:分式的加减法.分析:根据分式的加法计算即可.解答:解:+==1.点评:此题考查分式的加减法,关键是根据同分母的分式相加减的运算分析.20.(6分)(2015•柳州)如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B点?考点:一元一次方程的应用;数轴.分析:设蜗牛还需要x分钟到达B点.根据路程=速度×时间列出方程并解答.解答:解:设蜗牛还需要x分钟到达B点.则(6+x)×=5,解得x=4.答:蜗牛还需要4分钟到达B点.点评:本题考查了数轴和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.(6分)(2015•柳州)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.考点:勾股定理;三角形中位线定理.分析:(1)直接利用勾股定理得出BD的长即可;(2)利用平行线分线段成比例定理得出BD=AE,进而求出即可.解答:解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3;(2)延长CB,过点A作AE⊥CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=AE,∴AE=6,即BC边上高的长为6.点评:此题主要考查了勾股定理以及平行线分线段成比例定理,得出BD=AE是解题关键.22.(8分)(2015•柳州)如图,这是某校初三年级同学们最喜爱的一项课外运动调查结果扇形图,但负责画此图的同学忘记了最喜爱篮球运动的人生.(1)请你求出图中的x值;(2)如果该年级最喜爱跳绳运动的同学有144人,那么这个年级共有多少人?考点:扇形统计图;用样本估计总体.分析:(1)根据有理数的减法,可得答案;(2)根据喜爱跳绳的同学除以跳绳的圆心角所占的比例,可得答案.解答:解:(1)x=360°﹣70°﹣65°﹣50°﹣96°=79°;(2)这个年级共有144÷=570人.点评:本题考查的是扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.(8分)(2015•柳州)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?考点:待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;二次函数的最值.分析:(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.解答:解:(1)∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=(k>0)的图象上,∴k=3,∴该函数的解析式为y=(x>0);(2)由题意知E,F两点坐标分别为E(,2),F(3,),∴S△EFA=AF•BE=×k(3﹣k),=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+当k=3时,S有最大值.S最大值=.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.24.(10分)(2015•柳州)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C 出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?考点:平行四边形的判定与性质;勾股定理的逆定理;直角梯形.专题:动点型.分析:(1)已知AD∥BC,添加PD=CQ即可判断以PQDC为顶点的四边形是平行四边形.(2)点P处可能为直角,点Q处也可能是直角,而后求解即可.解答:解:(1)当PQ∥CD时,四边形PDCB是平行四边形,此时PD=QC,∴12﹣2t=t,∴t=4.∴当t=4时,四边形PQDC是平行四边形.(2)过P点,作PE⊥BC于E,DF⊥BC,∴DF=AB=8.FC=BC﹣AD=18﹣12=6.①当P Q⊥BC,则BE+CE=18.即:2t+t=18,∴t=6;②当QP⊥PC,∴PE=4,CE=3+t,QE=12﹣2t﹣(3+t)=9﹣3t,∴16=(3+t)(9﹣3t),解得:t=,③情形:当PC⊥BC时,因∠DCB<90°,此种情形不存在.∴当t=3或时,△PQC是直角三角形.点评:此题主要考查了一组对边平行且相等的四边形是平行四边形以及圆与圆的位置关系等知识,注意分情况讨论和常见知识的应用.25.(10分)(2015•柳州)如图,已知四边形ABCD是平行四边形,AD与△ABC的外接圆⊙O恰好相切于点A,边CD与⊙O相交于点E,连接AE,BE.(1)求证:AB=AC;(2)若过点A作AH⊥BE于H,求证:BH=CE+EH.考点:切线的性质;平行四边形的性质.分析:(1)根据弦切角定理和圆周角定理证明∠ABC=∠ACB,得到答案;(2)作AF⊥CD于F,证明△AEH≌△AEF,得到EH=EF,根据△ABH≌△ACF,得到答案.解答:证明:(1)∵AD与△ABC的外接圆⊙O恰好相切于点A,∴∠ABE=∠DAE,又∠EAC=∠EBC,∴∠DAC=∠ABC,∵AD∥BC,∴∠DAC=∠ACB,∴∠ABC=∠ACB,∴AB=AC;(2)作AF⊥CD于F,∵四边形ABCE是圆内接四边形,∴∠ABC=∠AEF,又∠ABC=∠ACB,∴∠AEF=∠ACB,又∠AEB=∠ACB,∴∠AEH=∠AEF,在△AEH和△AEF中,,∴△AEH≌△AEF,∴EH=EF,∴CE+EH=CF,在△ABH和△ACF中,,∴△ABH≌△ACF,∴BH=CF=CE+EH.点评:本题考查的是切线的性质和平行四边形的性质以及全等三角形的判定和性质,运用性质证明相关的三角形全等是解题的关键,注意圆周角定理和圆内接四边形的性质的运用.26.(12分)(2015•柳州)如图,已知抛物线y=﹣(x2﹣7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:y=a(x﹣h)2+k(a≠0),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.考点:二次函数综合题.专题:综合题.分析:(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,﹣x2+x﹣3).根据NP=AB=列出方程(x﹣)2+(﹣x2+x﹣3)2=()2,解方程得到点P坐标,再计算得出PM2+PN2=MN2,根据勾股定理的逆定理得出∠MPN=90°,然后利用切线的判定定理即可证明直线MP是⊙N的切线.解答:(1)解:∵y=﹣(x2﹣7x+6)=﹣(x2﹣7x)﹣3=﹣(x﹣)2+,∴抛物线的解析式化为顶点式为:y=﹣(x﹣)2+,顶点M的坐标是(,);(2)解:∵y=﹣(x2﹣7x+6),∴当y=0时,﹣(x2﹣7x+6)=0,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=﹣3,∴C(0,﹣3).连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC==3.设直线BC的解析式为y=kx+b,∵B(6,0),C(0,﹣3),∴,解得,∴直线BC的解析式为:y=x﹣3,令x=,得y=×﹣3=﹣,∴R点坐标为(,﹣);(3)证明:设点P坐标为(x,﹣x2+x﹣3).∵A(1,0),B(6,0),∴N(,0),∴以AB为直径的⊙N的半径为AB=,∴NP=,即(x﹣)2+(﹣x2+x﹣3)2=()2,化简整理得,x4﹣14x3+65x2﹣112x+60=0,(x﹣1)(x﹣2)(x﹣5)(x﹣6)=0,解得x1=1(与A重合,舍去),x2=2,x3=5(在对称轴的右侧,舍去),x4=6(与B重合,舍去),∴点P坐标为(2,2).∵M(,),N(,0),∴PM2=(2﹣)2+(2﹣)2=,PN2=(2﹣)2+22==,MN2=()2=,∴PM2+PN2=MN2,∴∠MPN=90°,∵点P在⊙N上,∴直线MP是⊙N的切线.点评:本题是二次函数的综合题,其中涉及到二次函数的图象与性质、待定系数法求一次函数的解析式、轴对称﹣最短路线问题以及切线的判定等知识,综合性较强,难度适中.第(3)问求出点P 的坐标是解题的关键.。

专题14 不等式选讲解答题30题 学生版--高考数学专题训练

专题14 不等式选讲解答题30题 学生版--高考数学专题训练

专题14不等式选讲解答题30题1.(2022-2023学年高三上学期一轮复习联考(五)理科数学试题(全国卷))已知函数() 2 1f x x a x =-++,() 21g x x =-+.(1)当a =2时画出函数()f x 的图象,并求出其值域;(2)若()()f x g x ≥恒成立,求a 的取值范围.2.(陕西省榆林市2023届高三上学期一模文科数学试题)已知函数()23f x x a x =+-++.(1)当0a =时,求不等式()9f x ≥的解集;(2)若()2f x >,求a 的取值范围.3.(陕西省渭南市富平县2022-2023学年高三下学期期末文科数学试题)已知函数()|1||2|f x x x =++-的最小值为m .(1)求不等式()5f x ≤的解集;(2)若a ,b 都是正数且ab m =,求2a b +的最小值.4.(江西省吉安市2023届高三上学期1月期末质量检测数学(文)试题)已知a ,b 均为正数,且2226a b +=,证明:(1)2a b +≤(2)12a b +≥5.(河南省郑州市2023届高三第一次质量预测理科数学试题)已知()223f x x x =++-.(1)求不等式()5f x ≤的解集;(2)若()f x 的最小值为m ,正实数a ,b ,c 满足a b c m ++=,求证:11192a b b c a c m++≥+++.6.(河南省洛平许济联考2022-2023学年高三上学期第一次质量检测理科数学试题)已知函数()121f x x x =++-.(1)求不等式()8f x <的解集;(2)设函数()()1g x f x x =--的最小值为m ,且正实数a ,b ,c 满足a b c m ++=,求证:2222a b c b c a++≥.7.(河南省部分名校2022-2023学年高三下学期学业质量联合检测理科数学试题)已知函数()12f x x x a =--+.(1)当12a =时,求不等式()0f x 的解集;(2)当1a -时,若函数()12g x x b =+的图象恒在()f x 图象的上方,证明:232b a ->.8.(河南省洛阳市第八高级中学2023届高三下学期开学摸底考试理科数学试题)已知函数()|||4|f x x a x =-++.(1)当2a =时,求不等式()8f x ≥的解集;(2)若()21>+f x a 恒成立,求a 的取值范围.9.(青海省西宁市大通回族土族自治县2022-2023学年高三下学期开学摸底考试数学(文)试题)已知函数()|2||22|(0,0)f x x a x b a b =++->>.(1)若2a =,2b =,求不等式()8f x >的解集;(2)若()f x 的最小值为1,求1123a b b++的最小值.10.(2023届甘肃省高考理科数学模拟试卷(四))已知函数()223f x x a x =-++,()12g x x =-+.(1)解不等式()5g x <.(2)若对任意1x R ∈,都有2x R ∈,使得()()12f x g x =成立,求实数a 的取值范围.11.(甘肃省兰州市第五十七中学2022-2023学年第一次模拟考试数学(文科)试题)已知函数()|21|,()||f x x g x x a=+=+(1)当0a =时,解不等式()()f x g x ≥;(2)若存在x ∈R ,使得()()f x g x ≤成立,求实数a 的取值范围.12.(安徽省江淮名校2022届高三下学期5月联考理科数学试题)已知函数()22212f x x m x m =-++-.(1)当3m =时,求不等式()10f x 的解集;(2)若()4f x 恒成立,求实数m 的取值范围.13.(河南省商开大联考2022-2023学年高三下学期考试文科数学试题)设函数()1f x x a x a =-+++.(1)当0a =时,求不等式()21f x x <+的解集;(2)若关于x 的不等式()2f x <有解,求实数a 的取值范围.14.(山西省太原市第五中学2022届高三下学期二模文科数学试题)(1)解不等式217x x -+-;(2)若正实数,a b 满足1a b +=,求2211a b b a +++的最小值.15.(山西省太原市2022届高三下学期模拟三理科数学试题)已知函数()2R f x x m m =+-∈,,且()0f x <的解集为[3,1]--.(1)求m 的值;(2)设a ,b ,c 为正数,且a b c m ++=,的最大值.16.(山西省吕梁市2022届高三三模理科数学试题)已知函数()22f x x a a x =---.(1)当1a =-时,求不等式()8f x <的解集;(2)当[]1,2x ∈时,()0f x ≥,求a 的取值范围.17.(内蒙古自治区包头市2022-2023学年高三上学期期末数学试题)已知()()4f x x m x x x m =-+--(1)当2m =时,求不等式()0f x ≥的解集;(2)若(),2x ∈-∞时,()0f x <,求m 的取值范围.18.(内蒙古自治区赤峰市2022-2023学年高三上学期10月月考数学文科试题)已知函数()|||2|f x x a x =++-,其中a 为实常数.(1)若函数()f x 的最小值为3,求a 的值;(2)若当[]1,2x ∈时,不等式()|4|f x x ≤-恒成立,求a 的取值范围.19.(内蒙古自治区呼和浩特市2023届高三上学期质量普查调研考试理科数学试题)已知m ≥0,函数()212f x x x m =--+的最大值为4,(1)求实数m 的值;(2)若实数a ,b ,c 满足2a b c m -+=,求222a b c ++的最小值.20.(宁夏石嘴山市第三中学2023届高三上学期期未考试数学(理)试题)已知函数f (x )=2|x +1|+|x -3|.(1)求不等式f (x )>10的解集;(2)若函数()()3g x f x x =+-的最小值为M ,正数a ,b ,c 满足a +b +c =M ,证明2228a b c c a b++≥.21.(河南省名校联盟2021-2022学年高三下学期2月大联考理科数学试卷)已知函数()1f x x =+.(1)求不等式()52f x x ≥--的解集;(2)记()1y f x x =+-的最小值为m ,若0a >,0b >,20a b m +-=,证明:189a b+≥.22.(新疆部分学校2023届高三下学期2月大联考(全国乙卷)数学(理)试题)已知函数()()22R f x ax x a =---∈.(1)当2a =时,求不等式()2f x >的解集;(2)若存在[]2,4x ∈,使得()0f x ≤,求a 的取值范围.23.(江西省部分学校2023届高三上学期1月联考数学(理)试题)已知函数()31f x x =-+.(1)求不等式()82f x x ≤-+的解集;(2)若对任意的0x >,关于x 的不等式()f x ax ≥恒成立,求a 的取值范围.24.(江西省赣州市2023届高三上学期1月期末考试数学(理)试题)已知函数()212f x x x =+++的最小值为m .(1)求m 的值;(2)设,,a b c 为正数,且a b c m ++=,求证:2222222a b c a b c c b a+++++≥.25.(2020届广西柳州市高三毕业班4月模拟(三模)文科数学试题)已知函数()11f x x x =-++.(1)求不等式()3f x <的解集;(2)若二次函数22y x x m =--+与函数()y f x =的图象恒有公共点,求实数m 的取值范围.26.(广西玉林、贵港、贺州市2023届高三联合调研考试(一模)数学(文)试题)已知函数()21,R f x x a a =-+∈,(1)当3a =时,求()f x 的最小值;(2)若对()0,6,R,m x ∀∈∀∈,不等式()f x >a 的取值范围.27.(贵州省贵阳市普通中学2023届高三上学期期末监测考试数学(文)试题)已知0,0a b >>,函数()|2||2|1f x x a x b =++-+的最小值为3.(1)求a b +的值;(2)求证:3221log 42b a ab ⎛⎫++≥- ⎪⎝⎭.28.(贵州省毕节市2023届高三年级诊断性考试(一)数学(文)试题)已知函数()2f x a x x =-++.(1)当1a =付,求不等式()4f x ≤的解集;(2)若()2f x a >-恒成立,求实数a 的取值范围.29.(贵州省铜仁市2023届高三上学期期末质量监测数学(文)试题)设不等式|21||21|4x x ++-<的解集为,,M a b M ∈.(1)求证:115236a b -<;(2)试比较|2|a b -与|2|ab -的大小,并说明理由.30.(广西柳州市、梧州市2023届高中毕业班2月大联考数学(文)试题)已知函数()|21||1|f x x ax =++-.(1)当2a =时,求不等式()3f x ≥的解集;(2)若0a >时,存在x ∈R ,使得()12a f x <+成立,求实数a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柳州市2015届高中毕业班3月份模拟考试题文科数学参考答案3.A 【解析】若采用系统抽样方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人,若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,……,所以编号落入区间[1,400]的有20人,编号落入区间[401,750]的有18人,所以做问卷C 的有12人.4.B 【解析】第一次循环:x =2x +1=7,n =n +1=2,此时满足条件,继续循环; 第二次循环:x =2x +1=15,n =n +1=3,此时满足条件,继续循环;第三次循环:x =2x +1=31,n =n +1=4,此时不满足条件,结束循环,所以输出的x 的值为31.5.D 【解析】由f (x )=cos 2x 向左平移π3个单位得到的是g (x )=cos 2⎝⎛⎭⎫x +π3, 则g ⎝⎛⎭⎫π6=cos 2⎝⎛⎭⎫π6+π3=cos π=-1.故D 正确.8.B 【解析】如图,设OA →=a ,OB →=b ,OC →=c ,由∠AOB =90°,∠ACB =90°,则点C 在△OAB 的外接圆上,则|c |max =△OAB 的外接圆直径2,故选B.9.D 【解析】当x 为最大边时,⎩⎪⎨⎪⎧3<x <5x 2>32+22,∴13<x <5, 当3为最大边时,⎩⎪⎨⎪⎧1<x <332>x 2+22解得1<x <5综上:x 的取值范围1<x <5或13<x <5,所以答案为D.10.A 【解析】因为三棱锥S -ABC 的三条侧棱两两垂直,所以该三棱锥的外接球就是以三棱锥S -ABC 的三条侧棱为棱的长方体的外接球;长方体的外接球的直径等于长方体对角线;所以外接球的半径为1222+42+42=3.故选A. 11.A 【解析】设2x 2+x =t ,则f (t )=a ,a >3时,f (t )=a 产生两个根t 1,t 2,且t 1>0,t 2>0,这样有四个根;当t 1=-18时;产生5个根;当-18<t 1<0时,产生6个根,故选A.12.B 【解析】由y =1-x 2,得x 2+y 2=1(y ≥0),∴曲线y =1-x 2表示单位圆在x 轴上方的部分(含与x 轴的交点).由题知,直线斜率存在,设直线l 的斜率为k , 若直线与曲线有两个交点,且直线不与x 轴重合, 则-1<k <0,∴直线l 的方程为:y -0=k (x -2),即kx -y -2k =0, 则圆心O 到直线l 的距离d =||-2k 1+k 2=-2k1+k 2. 直线l 被半圆所截得的弦长为||AB =2r 2-d 2=21-(-2k 1+k 2)2=21-k 21+k 2, S △AOB =12d ·||AB =12·-2k1+k 2·21-k 21+k 2=2k 2(1-k 2)(1+k 2)2=-4(1+k 2)2+61+k 2-2. 令11+k 2=t , 则S △AOB =-4t 2+6t -2=-4(t -34)2+14,所以当t =34,即11+k 2=34,亦即k =±33时,S ΔAOB 有最大值为12, 再注意到-1<k <0, 所以k =-33,故选B. 二、填空题13.()-∞,-2 14.6 15.y =±x 16.e 2+1【解析】设t =f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e +1, 令x =t ,则f (t )=e t +t =e +1, ∵函数f (x )为单调递增函数,∴函数为一对一函数,解得t =1, ∴f (x )=e x +1, 即f (2)=e 2+1. 三、解答题 17.【解析】(1)由2S n =n 2+n .n ≥2时2S n -1=(n -1)2+(n -1)2分 ∴2a n =2S n -2S n -1=2n ,∴a n =n (n ≥2)4分 又n =1时,a 1=1适合上式.∴a n =n 6分(2)∵b n =1a n a n +1+2a n -1=1n (n +1)+2n -1=⎝⎛⎭⎫1n -1n +1+(2n -1)8分∴S n =⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎫12-13+⎝⎛⎫13-14+…+⎝⎛⎭⎫1n -1n +1+(1+3+…+2n -1)10分 =1-1n +1+n 2=n 2+1-1n +112分18.【解析】(1)依题意可得x +5250=0.32,3分解得x =75.5分(2)∵学生人数为80,退休人员人数为90,∴在职人员人数为:250-80-90=80,7分 由y ≥70,z ≥2,且y +z =80, 则基本事件(y ,z )为(70,10),(71,9),(72,8),(73,7),(74,6),(75,5),(76,4),(77,3),(78,2). 共有9组.9分 由75+y +78250≥0.9,得y ≥72, 所以满足条件的基本事件共有7组,11分 故所求的概率P =79.12分19.【解析】证明:(1)设BD 交AC 于M ,连结ME . ∵ABCD 为正方形,所以M 为AC 中点, 又∵E 为A ′A 的中点∴ME 为△A ′AC 的中位线∴ME ∥A ′C .又∵ME ⊂平面BDE ,A ′C ⊄平面BDE ∴A ′C ∥平面BDE .6分(2)V A ′-ABCD ∶V E -ABD =4∶112分 20.【解析】(1) f ′(x )=2ax -bx(x >0),1分依题意可得⎩⎪⎨⎪⎧f (1)=a =2,f ′(1)=2a -b =0,3分解得a =2,b =4.5分(2)∵g (x )=f (x )-2x 2+m (x -1)=m (x -1)-4ln x ,x ∈(0,1], ∴g ′(x )=m -4x =mx -4x,7分①当m ≤0时,g ′(x )<0,∴g (x )在(0,1]上单调递减,∴g (x )min =g (1)=0.9分②当0<m ≤4时,g ′(x )=m ⎝⎛⎭⎫x -4m x ≤0,∴g (x )在(0,1]上单调递减,∴g (x )min =g (1)=0.10分③当m >4时,g ′(x )<0在⎝⎛⎭⎫0,4m 上恒成立,g ′(x )>0在⎝⎛⎦⎤4m ,1上恒成立, ∴g (x )在⎝⎛⎭⎫0,4m 上单调递减,在⎝⎛⎦⎤4m ,1上单调递增, ∴g ⎝⎛⎭⎫4m <g (1)=0,∴g (x )min ≠0.综上所述,存在m 满足题意,其范围为(-∞,4].12分21.【解析】(1)依题意有c =2,c a =63,可得a 2=6,b 2=2.所以所求椭圆的方程为x 26+y 22=1.4分(2)直线l 的方程为y =k (x -2).联立方程组⎩⎪⎨⎪⎧y =k (x -2),x 26+y 22=1.消去y 并整理得(3k 2+1)x 2-12k 2x +12k 2-6=0.设A (x 1,y 1),B (x 2,y 2),得x 1+x 2=12k 23k 2+1,x 1x 2=12k 2-63k 2+1,所以|AB |=1+k 2|x 1-x 2|=26(k 2+1)3k 2+1.设AB 的中点M (x 0,y 0),得x 0=6k 23k 2+1,y 0=-2k 3k 2+1.得直线MP 的斜率为-1k ,又x P =3,所以|MP |=1+1k2·|x 0-x P |=k 2+1k 2·3(k 2+1)(3k 2+1).当△ABP 为正三角形时,|MP |=32|AB |,即k 2+1k 2·3(k 2+1)(3k 2+1)=32·26(k 2+1)3k 2+1.解得k =±1.即直线l 的方程为x -y -2=0或x +y -2=0.12分 22.【解析】(1)解:由A ,B ,C ,D 四点共圆,得∠CDE =∠ABE , 又∠DEC =∠BEA ,∴△ABE ∽△CDE ,于是AB CD =BE DE =AE CE .①设DE =a ,CE =b ,则由BE DE =AE CE ,得3b 2=2a 2,即b =23a代入①,得AB CD =3ba= 6.5分(2)证明:由EF ∥CD ,得∠AEF =∠CDE .∵∠CDE =∠ABE ,∴∠AEF =∠EBF .又∠BFE =∠EF A ,∴△BEF ∽△EAF ,于是F A FE =FEFB ,故F A ,FE ,FB 成等比数列.10分23.【解析】(1)由曲线C :ρ2cos 2θ=ρ2(cos 2θ-sin 2θ)=1, 得x 2-y 2=1 ①5分(2)把直线参数方程化为标准参数方程得:⎩⎨⎧x =2+12ty =32t(t 为参数) ② 把②代入①得:⎝⎛⎭⎫2+12t 2-⎝⎛⎭⎫32t 2=1整理,得t 2-4t -6=0设其两根为t 1,t 2,则t 1+t 2=4,t 1·t 2=-68分从而弦长为|t 1-t 2|=(t 1+t 2)2-4t 1t 2=42-4(-6)=40=210.10分 24.【解析】(1)当a =4时,|2x +1|-|x -1|≤2, x <-12时,-x -2≤2,得-4≤x <-12-12≤x ≤1时,3x ≤2,得-12≤x ≤233分 x >1时,x ≤0,此时x 不存在 ∴不等式的解集为⎩⎨⎧⎭⎬⎫x |-4≤x ≤235分(2)设f (x )=|2x +1|-|x -1|=⎩⎪⎨⎪⎧-x -2,x <-123x ,-12≤x ≤1x +2,x >1故f (x )∈⎣⎡⎭⎫-32,+∞,即f (x )的最小值为-328分 故a ≥2410分。

相关文档
最新文档