核辐射测量原理 (7)
核辐射测量

实验二 γ射线的吸收一、实验目的:1、了解γ射线在物质中的吸收规律;2、测量γ射线在不同介质中的吸收系数。
二、实验器材:1、KZG03C 辐射检测仪一台;2、Cs137点放射源一个;3、铅准直器一个;4、40×40×dcm3的水泥、铝、铁、铜、铅吸收屏若干块(附屏支架);5、手套、长钳夹子、尺子、绳子各一套。
三、实验原理:天然γ射线与物质相互作用的三种主要形式:光电效应、康普顿散射和形成电子对效应。
由于三种效应的结果,γ射线通过物质时发生衰减(吸收),其总衰减系数应为三者之和:实验证明,γ射线在介质中的衰减服从指数规律:de I I μ-=0,mm d e I I μ-=0μ=(- Ln(I/I O ))/d , μm =(- Ln(I/I O ))/d m式中:I 为射线经过某一介质厚度的仪器净读数(减去本底);I 0为起始射线未经过介质的仪器净读数(减去本底); d 为介质厚度,单位为cm; d m 为介质面密度,单位为g/cm 2;μ 为γ射线经过介质的线吸收系数,单位为cm -1; μm 为γ射线经过介质的质量吸收系数,单位为g/cm 2; 半吸收厚度:为使射线强度减少一半时物质的厚度,即021I I =时,μ2ln 21=d 或 212ln d =四、实验内容: 1. 选择良好的测量条件(窄束),测量Cs 137源的γ射线在同一组吸收屏(水泥、铝、铁、铜、铅)中的吸收曲线,并由半厚度定出吸收系数; 2. 用最小二乘拟合的方法计算出吸收系数与1中的结果进行比较; 3.测量不同散射介质时(同一角度,同一厚度)γ射线的强度。
五、实验步骤: 1. 吸收实验1) 调整装置,使放射源、准直孔、探测器的中心在一条直线上; 2) 测量本底I 0’;3) 将源放入准直器中,测量无吸收屏时γ射线强度I 0”;4) 逐渐增加吸收屏,并按相对误差在N ±δ的要求测出对应厚度计数I d ’,每个点测三次取平均植; 5)更换一种吸收屏,重复步骤4,测量时注意测量条件不变。
核辐射检测技术

3.核辐射检测的基本原理 根据粒子、射线与物质的相互作用原理,选择合适的辐
射源,使其射线与被测物质相互作用,由此产生的相应变化 由探测器检测出来,即可达到测量的目的。 如:β、X、γ射线穿过物质层后,由于物质的吸收作用,使射线的强度按
指数规律衰减,即:
I I0eh
式中 I、I0 —— 分别为出射和入射的辐射通量的强度; μ —— 吸收层的线性吸收系数; h —— 吸收层的厚度。
四、核辐射式物位计
在物位检测仪表中,一般都采用穿透能力强的γ射线, 其放射源采用Co60、Cs137等同位素。核辐射式物位计也是 基于物质对放射线的吸收特性设计的。
1.γ射线物位计的几种类型 γ射线物位计有许多种类型,如定点监视型、跟踪型、
度h 的关系为:
I I0emh
h 1 Ln I3.透射式γ射线测厚仪的应用----输煤量的测量
检测器安装位置示意图
为了使煤层保持一定形状以保证测量的准确性,输煤皮 带前方应安装一些刮板。测量用的三套放射源-核辐射探测 器输出的信号,经单片机的计算处理,可以求出煤层的截面 积,再测出传送皮带的速度,即可由单片机计算出煤的质量 流量并予以显示。如果把这个信号进行积分处理,还可以得 到总的耗煤量的信息。
147Pm 170Tm 192Ir 204Tl 210Po 288Pu 241Am
半衰期
5720 年 2.7 年 270 天 5.26 年 125 年 9.4 年 19.9 年 290 天 1.3 年 2.3 年 33.2 年 282 天
2.2 年 120 天 74.7 天 2.7 年 138 天 86 年 470 天
此关系式是设计穿透式厚度计和物位计的理论基础。
若引入质量吸收系数μm=μ/ρ(其中ρ为密度),则上 式可改写为:
核辐射测量原理课后习题解析

第一章 辐射源1、实验室常用辐射源有哪几类?按产生机制每一类又可细分为哪几种?2、选择放射性同位素辐射源时,需要考虑的几个因素是什么? 答题要点:射线能量、放射性活度、半衰期。
3、252Cf 可作哪些辐射源?答题要点:重带电粒子源(α衰变和自发裂变均可)、中子源。
4、137Cs 和60Co 是什么辐射源?能量分别为多少? 答题要点:γ辐射源;137Cs :0.662MeV 或0.661MeV ; 60Co :1.17MeV 和1.33MeV ;第二章 射线与物质的相互作用1、某一能量的γ射线在铅中的线性吸收系数是0.6cm -1,它的质量吸收系数和原 子的吸收截面是多少?按防护要求,源放在容器中,要用多少厚度的铅容器才能 使容器外的γ强度减为源强的1/1000? 解:已知μ=0.6cm -1,ρ=11.34g/cm 3,则由μm =μ/ρ得质量吸收系数μm =0.6/11.34cm 2/g=0.0529 cm 2/g 由 得原子的吸收截面: A m N Aγμμσρ==232322070.0529 6.02101.8191018.19m A A N cm bγσμ-⎛⎫==⨯ ⎪⨯⎝⎭≈⨯=由 得:()000111000ln ln 33ln 10 2.311.50.60.6I I t I I cm μμ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭==⨯=或由 得01()1000I t I =时铅容器的质量厚度t m 为: ()()()000332111000ln ln11ln 10ln 100.052933 2.3ln 100.05290.0529130.435/m m m m I I t I I g cm μμμ--⎛⎫⎛⎫ ⎪=-=- ⎪ ⎪⎝⎭ ⎪⎝⎭=-=-⨯==≈10、如果已知质子在某一物质中的射程和能量关系曲线,能否从这一曲线求得d (氘核)与t (氚核)在物质中的射程值?如果能够求得,请说明如何计算? 答题要点:方式一:若已知能量损失率,从原理上可以求出射程: 整理后可得:在非相对论情况下:()m m t I t I e μ-=0()t I t I e μ-=0001(/)RE E dE R dx dxdE dE dE dx ===-⎰⎰⎰0202404πE m v R dEz e NB=⎰22E v M =0024'02πE m E R dE z e NM B=⎰212E Mv =则在能量相同的情况下:从而得:方式二:若已知能量损失率,从原理上可以求出射程: 整理后可得:在非相对论情况下:从而得: 在速度v 相同的情况下,上式积分项相同,则12、当10MeV 氘核与10MeV 电子穿过铅时,请估算他们的辐射损失之比是多少?当20MeV 电子穿过铅时,辐射损失与电离损失之比是多少? 答题要点:已知辐射能量损失率理论表达式为:对于氘核而言,m d =1875.6139MeV ;对于电子而言,m e =0.511MeV ,而它们的电荷数均为1,则10MeV 的氘核与10MeV 的电子穿过铅时,它们的辐射损失率之比为:22222228222220.5117.42101857.6139d e d e de e d Z Z Z m Z NE Z NE m m Z m -==≈⨯222NZm E z dx dE S radrad∝⎪⎭⎫ ⎝⎛-=00001(/)R E E dE R dx dx dEdEdE dx ===-⎰⎰⎰0202404πE m v R dEz e NB =⎰212E Mv =dE Mvdv =21222211R M z R M z =0302404πv m Mv R dv z e N B=⎰222222aa ab ab b b ab a ba bb aM R M z z M R M z z M z R R M z ==⋅=⋅⋅22212211M z R R M z =E e =20MeV 时,在相对论区,辐射损失和电离损失之比有如下表达式:()()700re ZE dE dx dE dx -=-则 20MeV 的电子穿过铅时,辐射损失和电离损失之比为:20822.34700⨯≈第三章 核辐射测量的统计误差和数据处理3 本底计数率是10±1s -1,样品计数率是50±2s -1, 求净计数率及误差。
核辐射的检测方法

核辐射的检测方法,指标,仪器,原理和相关的环境标准核辐射与物质间的相互作用是核辐射检测方法的物理基础。
核辐射与物质间的相互作用包括电离作用、核辐射的散射与吸收,利用物质衰变辐射后的电离、吸收和反射作用并结合α、β和γ射线的特点可以完成多种检测工作。
核辐射检测仪器核辐射监测原理及方法能够指示、记录和测量核辐射的材料或装置。
辐射和核辐射探测器内的物质相互作用而产生某种信息(如电、光脉冲或材料结构的变化),经放大后被记录、分析,以确定粒子的数目、位置、能量、动量、飞行时间、速度、质量等物理量。
核辐射探测器是核物理、粒子物理研究及辐射应用中不可缺少的工具和手段。
按照记录方式,核辐射探测器大体上分为计数器和径迹室两大类。
计数器以电脉冲的形式记录、分析辐射产生的某种信息。
计数器的种类有气体电离探测器、多丝室和漂移室、半导体探测器、闪烁计数器和切伦科夫计数器等。
气体电离探测器通过收集射线在气体中产生的电离电荷来测量核辐射。
主要类型有电离室、正比计数器和盖革计数器。
它们的结构相似,一般都是具有两个电极的圆筒状容器,充有某种气体,电极间加电压,差别是工作电压范围不同。
电离室工作电压较低,直接收集射线在气体中原始产生的离子对。
其输出脉冲幅度较小,上升时间较快,可用于辐射剂量测量和能谱测量。
正比计数器的工作电压较高,能使在电场中高速运动的原始离子产生更多的离子对,在电极上收集到比原始离子对要多得多的离子对(即气体放大作用),从而得到较高的输出脉冲。
脉冲幅度正比于入射粒子损失的能量,适于作能谱测量。
盖革计数器又称盖革-弥勒计数器或G-M计数器,它的工作电压更高,出现多次电离过程,因此输出脉冲的幅度很高,已不再正比于原始电离的离子对数,可以不经放大直接被记录。
它只能测量粒子数目而不能测量能量,完成一次脉冲计数的时间较长。
多丝室和漂移室这是正比计数器的变型。
既有计数功能,还可以分辨带电粒子经过的区域。
多丝室有许多平行的电极丝,处于正比计数器的工作状态。
核辐射探测的原理

核辐射探测的原理核辐射探测是一种用于探测和测量核辐射的技术,它在核能、医学、环境保护等领域具有重要的应用价值。
核辐射是指放射性物质在衰变过程中释放出的能量和粒子,包括α粒子、β粒子和γ射线。
核辐射探测的原理是基于核辐射与物质的相互作用。
核辐射与物质相互作用的方式有多种,其中包括电离作用、激发作用和散射作用。
电离作用是指核辐射与物质中的原子或分子相互作用,将电子从原子或分子中脱离出来;激发作用是指核辐射与物质中的原子或分子相互作用,使其电子跃迁到较高的能级;散射作用是指核辐射与物质中的原子或分子相互作用,改变其传播方向。
核辐射探测的常用方法包括计数法、能谱法和图像法。
计数法是通过对核辐射进行计数来测量辐射剂量率或活度水平。
计数器是核辐射探测中常用的仪器,它可以对核辐射进行计数和测量。
能谱法是通过分析核辐射的能量分布来确定其成分和能量水平。
能谱仪是能谱分析的主要工具,它可以将核辐射的能量分布转化为能谱图,从而得到核辐射的详细信息。
图像法是通过核辐射与物质相互作用的位置分布来获取核辐射的空间分布信息。
放射性显像仪是图像法的主要工具,它可以将核辐射的位置分布转化为图像,从而实现对核辐射的图像化显示。
核辐射探测的应用非常广泛。
在核能领域,核辐射探测可以用于核电站的辐射监测和核燃料的检验;在医学领域,核辐射探测可以用于放射治疗的剂量监控和核医学诊断;在环境保护领域,核辐射探测可以用于核废料的处理和环境辐射监测。
此外,核辐射探测还可以应用于核安全、核材料检测和核辐射防护等方面。
为了确保核辐射探测的准确性和可靠性,需要进行仪器校准和质量控制。
仪器校准是通过与标准源进行比对,确定仪器的灵敏度和响应特性;质量控制是通过定期检查和维护仪器,确保其性能和工作状态处于良好的状态。
此外,还需要进行辐射防护措施,保护操作人员和周围环境不受核辐射的伤害。
核辐射探测是一种重要的技术手段,可以用于核能、医学、环境保护等领域的辐射监测和剂量测量。
核辐射探测仪器基本原理及及指标

核辐射探测仪器基本原理及及指标1.光电效应探测:当γ射线入射到闪烁晶体或闪烁闪耀液体中时,会产生光电效应,即γ射线与物质相互作用,产生能量沉积,并使物质中的电子跃迁到高能级。
高能级的电子会向下跃迁,释放出能量,产生光子。
通过光电倍增管放大光信号,可以得到γ射线的能量和强度信息。
2.离子化室探测:当粒子入射到离子化室中时,会引起气体分子的电离,产生正离子和电子。
正离子在电场的作用下向阳极漂移,电子则向阴极漂移。
通过测量电离室中的电荷量,可以得到电离室中的粒子辐射强度。
3.闪烁探测:当粒子入射到闪烁晶体或液体中时,会产生能量沉积,激发晶体中的原子或分子。
激发态的原子或分子会向基态跃迁,释放出能量,产生光子。
通过光电倍增管或光电乘成功能,可以放大闪烁光信号,得到探测粒子的能量和强度信息。
1.探测效率:指探测器对入射辐射的探测能力。
即单位时间内探测器能探测到的辐射事件数与实际入射辐射事件数的比值。
探测效率高表示探测器对辐射事件的敏感度高。
2.清除时间:指探测器上的靶核或电子由高激发态跃迁回稳定态的时间,也即探测器释放出的光子停止闪烁的时间。
清除时间短表示探测器能快速恢复可探测状态。
3.能量分辨率:指探测器对不同能量辐射的分辨能力。
当辐射能量变化时,能量分辨率低会导致探测器无法准确测量。
4.阈值:指探测器开始探测辐射的最小能量。
低阈值可使探测器对低能辐射更敏感。
5.线性范围:指探测器能够准确测量的辐射强度范围。
超出线性范围可能导致读数不准确。
6.响应时间:指探测器从辐射入射到输出响应的时间。
响应时间短表示探测器对短脉冲辐射的探测能力强。
7.选择性:指探测器对不同类型辐射的选择能力。
选择性好意味着探测器能够区分不同类型的辐射。
综上所述,核辐射探测仪器的基本原理是根据辐射粒子与物质相互作用的方式来进行探测和测量,主要包括光电效应、离子化室和闪烁探测。
其指标主要有探测效率、清除时间、能量分辨率、阈值、线性范围、响应时间和选择性。
《核辐射测量方法》课件

《核辐射测量方法》课件一、课件概述本课件旨在介绍核辐射的基本概念、测量方法及其应用。
通过本课件的学习,使学员掌握核辐射的性质、测量原理和常用的测量方法,为核辐射防护和核事故应急处理提供技术支持。
二、课件内容1. 核辐射的基本概念1.1 辐射1.2 核辐射1.3 辐射剂量2. 核辐射的性质2.1 辐射类型2.2 辐射能量2.3 辐射穿透性3. 核辐射测量原理3.1 辐射与物质的相互作用3.2 辐射探测原理3.3 辐射测量仪器4. 核辐射测量方法4.1 放射性核素测量4.1.1 活度测量4.1.2 核素识别4.2 射线辐射测量4.2.1 剂量率测量4.2.2 射线成像4.3 辐射环境监测4.3.1 环境辐射水平监测4.3.2 放射性废物监测5. 核辐射测量技术应用5.1 核能利用5.2 医学诊断与治疗5.3 地质勘探5.4 生物示踪6. 核辐射防护与应急处理6.1 辐射防护原则6.2 辐射防护措施6.3 核事故应急处理三、课件结构1. 课件首页:核辐射测量方法简介2. 章节页面:核辐射的基本概念、性质、测量原理、测量方法、应用、防护与应急处理3. 图片及动画:生动展示核辐射测量过程和防护措施4. 练习题:巩固所学知识四、课件制作要求1. 文字:清晰、简洁、易懂,符合学员阅读习惯2. 图片:选用高质量的图片,具有代表性,便于学员理解3. 动画:生动形象,展示核辐射测量过程和防护措施4. 练习题:具有针对性,帮助学员巩固所学知识五、课件使用建议1. 结合课程安排,合理安排课件内容的学习顺序2. 充分利用课件中的图片、动画等多媒体元素,提高学习兴趣3. 针对课件中的练习题,进行自我测试,巩固所学知识4. 如有疑问,及时与讲师或其他学员沟通交流,提高学习效果核辐射测量方法是核能利用、医学诊断与治疗、地质勘探等领域的重要技术手段。
通过本课件的学习,希望学员能够掌握核辐射的基本概念、性质、测量原理和应用,提高核辐射防护和应急处理能力。
核辐射探测原理pdf

核辐射探测原理pdf全文共四篇示例,供读者参考第一篇示例:核辐射是一种高能辐射,常见的核辐射包括α、β、γ射线以及中子辐射。
核辐射对人体健康有较大危害,因此在核辐射探测方面起着非常重要的作用。
本文将探讨核辐射探测原理以及其在实际应用中的重要性。
一、核辐射探测原理核辐射探测原理是利用辐射入射到某些物质中,通过测量辐射对物质的作用产生的电离效应,来探测并测定核辐射的性质、强度和能量分布。
核辐射探测的基本原理可以分为以下几种方法:1. 光电探测技术光电探测技术是通过光电倍增管等光电器件,将入射的γ射线能量转化为光子,并经过电子乘法器件,使得原始的能量能够被测量出来。
光电探测技术具有高分辨率、高灵敏度和较好的线性响应等优点,是目前较为常用的核辐射探测方法之一。
2. 闪烁探测技术闪烁探测技术利用某些晶体或液闪材料,当核辐射入射到其表面时,会产生闪烁光,通过测量闪烁光的强度和时间等参数,来确定核辐射的性质。
闪烁探测技术具有高抗干扰能力和高能量分辨率等优点,被广泛应用于核辐射测量。
3. 半导体探测器技术二、核辐射探测在实际应用中的重要性核辐射探测在核工业、医疗诊断、环境监测等领域都有着重要应用。
下面将分别探讨核辐射探测在不同领域中的应用重要性:1. 核工业核工业是核能应用的主要领域之一,核辐射探测在核电站、核燃料生产及辐射监测等方面发挥着重要作用。
通过核辐射探测可以对核反应堆进行状态监测和辐射剂量测量,确保核电站的运转安全。
核辐射探测还可以用于核燃料的检测、测定和辐射保护等工作。
2. 医疗诊断核辐射在医疗领域的应用主要是核医学,如正电子发射断层扫描(PET)和单光子发射计算机断层摄影(SPECT)等。
核辐射探测可以用于医学显像和诊断,帮助医生准确判断患者的病情和疾病发展的情况,提高医疗治疗的准确性。
3. 环境监测核辐射探测在环境监测中的应用主要是通过辐射监测站测定环境中的核辐射水平,对环境的辐射水平进行监测和评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)低能X射线及中子的剂量监测;
一般物质大都具有热释光的特性,在事故现场 可就地取材进行热释光测量,估算出事故剂量;
在日本,有人利用广岛、长崎屋顶上的砖瓦(含 有石英和长石)所具有的热释光特性,测出了1945 年原子弹爆炸时的γ射线的剂量分布;
13
个人剂量计用的热释光探测器
各种个人剂量计
热释光个人剂量计佩戴示意图
材料内局部陷阱能级的位置具有深浅不同的 分布,因此,TLD样品被加热到不同的温度所发 出的光子数将不同。
6
在实际测量中的一种方法是测量光子产额随 温度的变化,称为“生长曲线”;
“生长曲线”上的各个峰相应于陷阱能级的 位 置,生长曲线下的面积就是发射光子的总数,代 表了辐照剂量。
7
优点:可反复循环使用
第七章 其它探测器
1
本章仅对应用较广(主要在剂量监测、 高能物理,入射带电粒子径迹方面)的几 种探测器的原理、性能与应用等作一简明 的介绍,为以后进一步的深入了解提供一 些基础.
2
7.1 热释光探测器(TLD)
Thermoluminescence dosimeter
上世纪60年代初以来得到发展和应用; 主要应用于剂量测量,又称作热释光剂量计; 优点:
9
10
7.1.2、测量装置
1)加热盘 通常由厚度为0.2mm左右
的不锈钢片按一定形状冲压而 成;
2)温度传感器 常用热电偶,通常点焊
在加热盘下面的中心处;
3)滤光片 具有各自特定的透射光谱曲
线,基本上与所用TLD材料磷光 光谱相一致,使磷光能大部分通过,其它光谱则被滤去;
4)光导
5)光电倍增管
11
7.1.3、应用
1)剂量监测
可用来测量较长时间的积累照射量,线性较好,可 从几十μR测到104R;
热释光元件可以做的很小,佩戴在人的各个部位, 可以分别测定各器官的受照剂量;现已成为国际上主 要的个人剂量监测仪;
2)考古、地质方面
一般陶瓷都具有热释光的特性,通过热释光测量可 以推算出陶瓷的年代;
体积小,灵敏度高,可重复使用, 测量对象广(α,β,γ,d,n,p)。
3
7.1.1、工作原理
当辐射粒子入射到无机晶体,将有相当数量 的电子从满带激发到导带,产生一系列的电子与 空穴,如果陷阱密度足够大,相当一部分电子与 空穴将被陷在陷阱的局部能级之中;
经过照射后的材料内被陷住的电子和空穴的 数量就代表了射线与材料作用的累计效果;
4
在测量时,将被照射过的TLD样品放在一定 的装置上加热,使样品的温度逐步上升;当达到 与陷阱能级位置相应的某一温度时,在陷阱上的 电子与空穴就会被释放出来,并且在复合时发出 光子(磷光);
至于电子和空穴哪种先释放,取决于电子与 空穴所在陷阱各自与导带底部及满带顶部的距离;
5
理论上,每一对被俘获的电子、空穴在加热 复合时都将发出一个光子,因此,加热发出的总 光子数就代表TLD样品在辐照过程中被陷住的总 电子、空穴对数,而这个数量是决定于辐照剂量 的;因此,测量TLD样品加热后发出的总光子 数,就可以测出它所接受的辐照剂量;
个
个
人
人
剂
剂
量
量
计
计
位
位
置
置
17
如果把TLD样品的温度升到足够高,所有 陷阱上的电子或空穴都将被释放,那么样品受过 辐照的“记录”也被抹去了。
8
挑选TLD材料的要求:
必须考虑材料的陷阱深度和原子序数; 俘获在较浅陷阱中的电子,在室温下,将有
较大的概率逸出陷阱,释放出贮存的能量(衰 退);
在各种TLD材料中,公认LiF最受欢迎:常 温下几年也不衰退,平均原子序数低,与空气 和人体组织的平均原子序数差不多,能量响应 好,LiF小薄片被普遍用作个人剂量计;