郑州市八校联考2018-2019学年上学期高二理科数学试题(含答案解析)
2018-2019年河南数学高二水平会考真题及答案解析

2018-2019年河南数学高二水平会考真题及答案解析班级:___________ 姓名:___________ 分数:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题1.如图,下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度和时间之间的关系,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据题意,由于四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止,那么单位时间内进去的水量相等,选项A,应该是匀速上升,错误,选项B,先快后慢,成立,对不C,先快后慢,再快,故答案成立,丢与D,由于先慢后快再慢,故成立,因此正确的选项为B考点:函数图象点评:主要是考查了函数解析式与函数图象的关系,属于基础题。
2.设函数的定义域为R,是的极大值点,以下结论一定正确的是()A.B.是的极小值点C.是的极小值点D.是的极小值点【答案】D【解析】试题分析:对于A 项,x 0(x 0≠0)是f (x )的极大值点,不一定是最大值点,因此不能满足在整个定义域上值最大;对于B 项,f (-x )是把f (x )的图象关于y 轴对称,因此,-x 0是f (-x )的极大值点;对于C 项,-f (x )是把f (x )的图象关于x 轴对称,因此,x 0是-f (x )的极小值点; 对于D 项,-f (-x )是把f (x )的图象分别关于x 轴、y 轴做对称,因此-x 0是-f (-x )的极小值点. 故选D .考点:命题及命题的否定,函数的极值。
点评:小综合题,关键是理解命题的概念,明确函数存在极值的条件。
3.设, ,则的大小关系是( ) A .B .C .D .【答案】B 【解析】试题分析:根据题意,由于,,故那么有A-B=,故可知结论为,选B.考点:比较大小点评:主要是考查了运用作差法的思想,来比较大小,属于基础题。
2019-2020学年河南省郑州市八校高二(上)期中数学试卷(理科)(PDF版 含答案)

有 x2 x 1 0 ,推理对.
故选: A .
5.已知在 ABC 中内角 ABC 的对边分别为 ab 边 c 上的高为 ab cos C ,ab 2 2 ,则角 C 的 c
一项是符合题目要求的. 1.已知 a 0 , 1 b 0 ,则有 ( )
A. ab2 ab a
B. a ab ab2
【解答】解: a 0 , 1 b 0 ,
C. ab b ab2
0 b2 1 , ab 0 ,
ab2 a , ab2 ab , ab a ,
【解答】解:对于选项 A ,由命题 p q 为假命题可知命题 p 和命题 p 至少有一个为假,命 题 p 、 q 均为假命题错误,所以选则 A 项.
对于 B 项,x 1 x2 3x 2 0 ,但是 x2 3x 2 0 x 1 故“ x 1 ”是“ x2 3x 2 0 ” 的充分不必要条件,判断对.
C. ab b ab2
2.在 ABC 中, A 45 , B 60 , a 2 ,则 b 等于 ( )
D. ab ab2 a
A. 6
B. 2
C. 3
D. 2 6
3.设{an} 是公比为 q 的等比数列,则“ q 1”是“{an} 为递增数列”的 ( )
A.充分而不必要条件
数 a 的取值范围是 ( )
A.
(
,
3 2
][
3 2
,
)
C.
郑州市高中2018-2019学年高二上学期数学期末模拟试卷含解析

郑州市高中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=|x|(x∈R)B.y=(x≠0)C.y=x(x∈R)D.y=﹣x3(x∈R)2.若如图程序执行的结果是10,则输入的x的值是()A.0B.10C.﹣10D.10或﹣103.棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为()A.B.18C.D.4.若关于x的方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,且满足x1<x2<x3,则a的取值范围为()A.a>B.﹣<a<1C.a<﹣1D.a>﹣15.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A .4πB .12πC .16πD .48π6. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案7. 已知为自然对数的底数,若对任意的,总存在唯一的,使得e 1[,1]x e∈[1,1]y ∈-2ln 1yx x a y e -++=成立,则实数的取值范围是( )a A.B.C.D.1[,]e e2(,]e e2(,)e +∞21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.8. 已知变量满足约束条件,则的取值范围是( ),x y 20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩y x A . B .C .D .9[,6]59(,][6,)5-∞+∞ (,3][6,)-∞+∞ [3,6]9. 若某程序框图如图所示,则该程序运行后输出的值是( )A. B. C. D. 78910【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.10.若,,则不等式成立的概率为()[]0,1b ∈221a b +≤A .B .C .D .16π12π8π4π11.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( )A .16B .﹣16C .8D .﹣812.已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( )A .相离B .相切C .相交D .不能确定二、填空题13.已知满足,则的取值范围为____________.,x y 41y xx y x ≥⎧⎪+≤⎨⎪≥⎩22223y xy x x -+14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=,对任意的m ∈[﹣2,2],f (mx ﹣3x x +2)+f (x )<0恒成立,则x 的取值范围为_____.15.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .16.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .17.已知直线:()被圆:所截的弦长是圆心到直线的043=++m y x 0>m C 062222=--++y x y x C 距离的2倍,则 .=m 18.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = . 三、解答题19.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方程为(t 为参数),圆C 2的普通方程为x 2+y 2+2x =0.{x =cos t y =1+sin t)3(1)求C 1,C 2的极坐标方程;(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.20.已知数列{a n }的前n 项和S n =2n 2﹣19n+1,记T n =|a 1|+|a 2|+…+|a n |.(1)求S n 的最小值及相应n 的值;(2)求T n .21.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆及等腰直角三角形,其中,为O EFH FE FH ⊥裁剪出面积尽可能大的梯形铁片(不计损耗),将点放在弧上,点放在斜边上,ABCD ,A B EF ,C D EH 且,设.////AD BC HF AOE θ∠=(1)求梯形铁片的面积关于的函数关系式;ABCD S θ(2)试确定的值,使得梯形铁片的面积最大,并求出最大值.θABCD S22.△ABC 中,角A ,B ,C 所对的边之长依次为a ,b ,c ,且cosA=,5(a 2+b 2﹣c 2)=3ab .(Ⅰ)求cos2C 和角B 的值;(Ⅱ)若a ﹣c=﹣1,求△ABC 的面积.23.已知函数f (x )=x 2﹣(2a+1)x+alnx ,a ∈R (1)当a=1,求f (x )的单调区间;(4分)(2)a >1时,求f (x )在区间[1,e]上的最小值;(5分)(3)g (x )=(1﹣a )x ,若使得f (x 0)≥g (x 0)成立,求a 的范围.24.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角AC 边长为BC 边长的,C θ=()1a a >倍,三角形ABC 的面积为S (千米2).试用和表示;θa S (2)若恰好当时,S 取得最大值,求的值.60θ= a郑州市高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:y=|x|(x∈R)是偶函数,不满足条件,y=(x≠0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(x∈R)是奇函数,在定义域上是增函数,不满足条件,y=﹣x3(x∈R)奇函数,在定义域上是减函数,满足条件,故选:D2.【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x<0,时﹣x=10,解得:x=﹣10当x≥0,时x=10,解得:x=10故选:D.3.【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.4.【答案】B【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,由f′(x)>0得x>1或x<﹣,此时函数单调递增,由f′(x)<0得﹣<x<1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,则﹣1<﹣a<,即﹣<a<1,故选:B.【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键. 5.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.6.【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。
河南省名校2018-2019学年高二5月联考数学(理科)试题(解析版)

河南省名校2018~2019学年高二5月联考数学(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2|,{0,1,2}A x ax x B ===,若A B ⊆,则实数a 的值为( )A. 1或2B. 0或1C. 0或2D. 0或1或2【答案】D 【解析】 【分析】就0a =和0a ≠分类讨论即可. 【详解】因为当0a =时,{}2|0{0}A x x===,满足A B ⊆;当0a ≠时,{0,}A a =,若A B ⊆,所以1a =或2.综上,a 的值为0或1或2.故选D.【点睛】本题考查集合的包含关系,属于基础题,解题时注意利用集合中元素的性质(如互异性、确定性、无序性)合理分类讨论.2.复数22i+(i 为虚数单位)的虚部是( ) A. 25- B. 25C. 25i - D. 25i【答案】A 【解析】 【分析】利用复数的除法可得242255i i =-+后,从而可得其虚部. 【详解】22(2)422(2)(2)55i i i i i -==-++-,所以复数22i+的虚部是25-.故选A. 【点睛】本题考查复数的除法及其复数的概念,注意复数(),a bi a b R +∈的虚部是b ,不是bi ,这是复数概念中的易错题.3.“3,a b ==22222(0,0)x y a b a b -=->>的离心率为2”的( ) A. 充要条件B. 必要补充分条件C. 既不必要也不充分条件D. 充分不必要条件【答案】D 【解析】 【分析】当3,a b ==时,我们只能得到a b =之间的条件关系.【详解】当3,a b ==22222x y a b -=-化为标准方程是2212418y x -=,其离心率是e ==;但当双曲线22222(0,0)x y a b a b -=->>时,即22221(0,0)22y x a b b a -=>>的离心率为22=,得a b =所以不一定非要3,a b ==故“3,a b ==22222x y a b -=-(0,0)a b >>”的充分不必要条件.故选D.【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.4.某市某校在秋季运动会中,安排了篮球投篮比赛.现有20名同学参加篮球投篮比赛,已知每名同学投进的概率均为0.4,每名同学有2次投篮机会,且各同学投篮之间没有影响.现规定:投进两个得4分,投进一个得2分,一个未进得0分,则其中一名同学得2分的概率为()A. 0.5B. 0.48C. 0.4D. 0.32【答案】B【解析】【分析】事件“第一次投进球”和“第二次投进球”是相互独立的,利用对立事件和相互独立事件可求“其中一名同学得2分”的概率.【详解】设“第一次投进球”为事件A,“第二次投进球”为事件B,则得2分的概率为+⨯=.故选B.=+=⨯0.60.60.40.4()()0.4p P A B P AB【点睛】本题考查对立事件、相互独立事件,注意互斥事件、对立事件和独立事件三者之间的区别,互斥事件指不同时发生的事件,对立事件指不同时发生的事件且必有一个发生的两个事件,而独立事件指一个事件的发生与否与另一个事件没有关系.5.《九章算术》中的玉石问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(176两),问玉、石重各几何?”其意思:“宝玉1立方寸重7两,石料1立方寸重6两,现有宝玉和石料混合在一起的一个正方体,棱长是3寸,质量是11斤(176两),问这个正方体中的宝玉和石料各多少两?”如图所示的程序框图给出了对此题的一个求解算法,运行该程序框图,则输出的x,y分别为()A. 96,80B. 100,76C. 98,78D. 94,82【答案】C 【解析】 【分析】流程图的作用是求出112776x y +=的一个解,其中90,86x y ≥≤且x 为偶数,逐个计算可得输出值. 【详解】执行程序:90,86,27;92,84,27;94,82,27;96x y s x y s x y s x ==≠==≠==≠=,80,27;98y s x =≠=78,27y s ==,故输出的,x y 分别为98,78.故选C.【点睛】本题考查算法中的循环结构、选择结构,读懂流程图的作用是关键,此类题是基础题. 6.632(1)x x x ⎛⎫++ ⎪⎝⎭展开式中,含3x 项的系数为( ) A. 45 B. 30C. 75D. 60【答案】C 【解析】 【分析】考虑6(1)x +展开式中2CF PC ==及2x 系数可得所求的系数.【详解】在6(1)x +中,222444365615,15T C x x T C x x ====,因此展开式3x 项的系数是21531575⨯+⨯=.故选C.【点睛】二项展开式中指定项的系数,可利用赋值法来求其大小,也可以利用二项展开式的通项结合多项式的乘法来求.7.某莲藕种植塘每年的固定成本是1万元,每年最大规模的种植量是8万斤,每种植一斤藕,成本增加0.5元.如果销售额函数是32191()8162f x x ax x =-++ (x 是莲藕种植量,单位:万斤;销售额的单位:万元,a 是常数),若种植2万斤,利润是2.5万元,则要使利润最大,每年需种植莲藕( )A. 8万斤B. 6万斤C. 3万斤D. 5万斤【答案】B 【解析】 【分析】销售的利润为321911()181622g x x ax x x =-++--,利用(2) 2.5g =可得a ,再利用导数确定函数的单调性后可得利润的最大值.【详解】设销售的利润为()g x ,由题意,得321911()181622g x x ax x x =-++--,(]0,8x ∈ 即3219()8161g x x ax =-+-,当2x =时,95(2)1142g a =-+-=,解得2a =, 故3219()1,88g x x x =-+-23()8g x x '=-+93(6)48x x x =--,当(0,6)x ∈时,'()0g x >,当(6,8)x ∈时,'()0g x <,所以函数()g x 在(0,6)上单调递增,在(6,8)上单调递减,所以6x =时,利润最大,故选B.【点睛】一般地,若()f x 在区间(),a b 上可导,且()()()'0'0f x f x ><,则()f x 在(),a b 上为单调增(减)函数;反之,若()f x 在区间(),a b 上可导且为单调增(减)函数,则()()()'0'0f x f x ≥≤.8.如图所示是一个几何的三视图,则其表面积为( )A. 4B. 4C. 8D. 8【答案】A 【解析】 【分析】根据三视图可得对应的三棱锥,逐个计算其侧面积和底面积可得其表面积. 【详解】将三视图复原后得到的几何体即为如图所示的三棱锥P ABC -,其中、、P A B 是棱长为4的正方体的顶点,C 为正方体的底面中心,注意到,PC BC AB PB ⊥⊥所以1=42PCA S ∆⨯=,11422PCB ABP S S ∆∆=⨯==⨯⨯=142ABC S ∆=⨯=,因此该三棱锥的表面积等于4.故选A.【点睛】本题考查三视图,要求根据三视图复原几何体,注意复原前后点、线、面的关系.9.在钝角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且a b >,已知8,sin sin a B C =-=sin 4A,7cos 28A =-,则ABC ∆的面积为( )A. 3B. 6C.D. 【答案】C 【解析】 分析】由正弦定理可得2b c -=,再利用二倍角公式可求1cos 4A =-,再利用余弦定理求出24bc =后可求ABC ∆的面积.【详解】由正弦定理,得24a b c -==,由2cos22cos 1A A =-,得1cos 4A =(舍),1cos 4A =-由余弦定理,得a ===8=,解得24bc =. 由1cos 4A =-,得sin A =,所以ABC ∆的面积11sin 24224S bc A ==⨯⨯= C.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.10.函数1sin cos (0)y x a x a =+>的图象是由函数25sin 5cos y x x =+的图像向左平移ϕ个单位得到的,则cos ϕ=( ) A.35B.45C.D.5【答案】B 【解析】 【分析】【把25sin 5cos 4y x x x π⎛⎫=+=+⎪⎝⎭的图像向左平移ϕ个单位后得到4y x πϕ⎛⎫=++ ⎪⎝⎭的图像,化简后可得cos ,sin 44ππϕϕ⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭的值,利用两角和的余弦和正弦展开后可得cos j 的值.【详解】把25sin 5cos 4y x x x π⎛⎫=+=+⎪⎝⎭的图像向左平移ϕ个单位后得到所得图像的解析式为cos sin 444y x x x πππϕϕϕ⎛⎫⎛⎫⎛⎫=++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,根据1sin cos (0)y x a x a =+>可得44a ππϕϕ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭①, 所以2150a +=即7a =(7a =-舍),又对①化简可得1cos sin 107sin cos 10ϕϕϕϕ⎧-=⎪⎪⎨⎪+=⎪⎩,故4cos 5ϕ=,故选B.【点睛】三角函数的图像往往涉及振幅变换、周期变换和平移变换,注意左右平移时是自变量x 作相应的变化,而且周期变换和平移变换(左右平移)的次序对函数解析式的也有影响,比如sin 23y x π⎛⎫=+ ⎪⎝⎭,它可以由sin y x =先向左平移3π个单位,再纵坐标不变,横坐标变为原来的12,也可以先保持纵坐标不变,横坐标变为原来的12,再向左平移6π..11.在四棱锥P - ABCD 中,底面ABCD 是正方形,顶点P 在底面的射影是底面的中心,且各顶点都在同一,体积为4,且四棱锥的高为整数,则此球的半径等于(参考公式:()3322()a b a b a ab b -=-++)( )A. 2B.116C. 4D.113【答案】B【解析】 【分析】如图所示,设底面正方形ABCD 的中心为'O ,正四棱锥P ABCD -的外接球的球心为O ,半径为R .则在'Rt PO D ∆中,有221112a h +=,再根据体积为4可求3h =及2a =,在'R t OO D ∆中,有222(3))R R -+=,解出R 后可得正确的选项.【详解】如图所示,设底面正方形ABCD 的中心为'O ,正四棱锥P ABCD -的外接球的球心为O ,半径为R .设底面正方形ABCD 的边长为a ,正四凌锥的高为()*h h ∈N,则2O D a '=.=221112a h +=……① 又因为正四棱锥的体积为4,所以2143a h =• ……②由①得()22211a h=-,代入②得31160hh -+=,配凑得32711330h h --+=,()2(3)3911(3)0h h h h -++--=,即()2(3)320h h h -+-=,得30h -=或2h +320h -=.因为*h ∈N ,所以3h =,再将3h =代入①中,解得2a =,所以O D '==,所以OO PO '='-3PO R =-. 在Rt OO D ∆'中,由勾股定理,得222OO O D OD '+'=,即222(3)R R -+=,解得116R =,所以此球半径等于116.故选B. 【点睛】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.12.已知抛物线2:2(0)C y px p =>的焦点为F ,点(00,2p M x x ⎛⎫>⎪⎝⎭时抛物线C 上的一点,以点M 为圆心与直线2px =交于E ,G 两点,若1sin 3MFG ∠=,则抛物线C 的方程是( ) A. 2y x = B. 22y x =C. 24y x =D. 28y x =【答案】C 【解析】 【分析】作MD EG ⊥,垂足为点D,根据(0Mx 在抛物线上可得04px=,再根据1sin 3MFG ∠=得到001232p p x x ⎛⎫-=+ ⎪⎝⎭,结合前者可得2p =,从而得到抛物线的方程. 【详解】画出图形如图所示作MD EG ⊥,垂足为点D .由题意得点(00,2p M x x ⎛⎫>⎪⎝⎭在抛物线上,则082px =,得04px =.① 由抛物线的性质,可知0||2p DM x =-,的因为1sin 3MFG ∠=,所以011||||332p DM MF x ⎛⎫==+ ⎪⎝⎭.所以001232p p x x ⎛⎫-=+ ⎪⎝⎭,解得0x p =. ②, 由①②,解得02x p ==-(舍去)或02x p ==. 故抛物线C 的方程是24y x =.故选C.【点睛】一般地,抛物线()220=>y px p 上的点()00,P x y 到焦点的距离为02px +;抛物线()220x py p => 上的点()00,P x y 到焦点的距离为02p y +.二、填空题(将答案填在答题纸上)13.已知向量(,a t t =-与(3,2)b t =+共线且方向相同,则t =_______. 【答案】3 【解析】 【分析】利用向量共线的坐标形式可得2230t t --=,解出t 后检验可得3t =.【详解】由题意得(2t t t =即2230tt --=,解得1ι=-或3t =.当1t =-时,(31)b a =--,不满足条件;当3t =时,33b a +=,a 与b 方向相同, 故3t =.【点睛】如果()()1122,,,a x y b x y ==,那么: (1)若//a b ,则1221x y x y =; (2)若a b ⊥,则12120x x y y +=;14.设实数x ,y 满足约束条件35474311x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则2z x y =+的最大值为_______. 【答案】11. 【解析】分析:作出可行域,2z x y =+变变形为,12y x z =-+,平移直线12y x z =-+,由图可知当直线经过点()5,3时,直线在y 轴上的截距最大,将点()5,3代入2z x y =+,即可得结果.详解:作出约束条件35474311x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩表示的可行域,由474311x y x y -=-⎧⎪⎨⎪-=⎩可得,53x y =⎧⎪⎨⎪=⎩2z x y =+变变形为,12y x z =-+,平移直线12y x z =-+,由图可知当直线经过点()5,3时, 直线在y 轴上的截距最大, 将点()5,3代入2z x y =+, 可得z 取得最大值11,故答案为11.点睛:本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.15.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且ABC ∆的外接圆半径为1,若6abc =,则ABC ∆的面积为______. 【答案】32【解析】分析:由正弦定理可把其中一边化为角,从而由6abc =及由公式1sin 2S ab C =求得面积. 详解:由题意得22sin c R C ==,即sin 2cC =, ∴1sin 2ABC S ab c ∆==1113622442c ab abc ⨯==⨯=,故答案为32.点睛:正弦定理:2sin sin sin a b cR A B C ===,利用它把三角形的边角与外接圆半径建立联系,这样可得三角形面积为4abcS R=22sin sin sin R A B C =.16.已知函数()2122,01()2,10x x x m x f x x m x +⎧+≤≤⎪=⎨---≤<⎪⎩若在区间[1,1]-上方程()1f x =只有一个解,则实数m 的取值范围为______.【答案】1|12m m ⎧-≤<-⎨⎩或1}m = 【解析】 【分析】令11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩,则方程()1f x =等价于()2g x x m =+有且只有一个实数根,在同一平面直角坐标系中画出函数()g x 的图像和()2h x x m =+的图像,动态平移()h x 的图像可得实数m 的取值范围.【详解】当01x ≤≤时,由()1f x =,得()221xx m +=,即212xx m ⎛⎫=+ ⎪⎝⎭;当10x -≤<时,由()1f x =,得1221x x m +--=,即1221x x m +-=+.令函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩,则问题转化为函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与函数()h x =2x m+的图像在区间[1,1]-上有且仅有一个交点.在同一平面直角坐标系中画出函数11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与2y x m =+在区间函数[1,1]-上的大致图象如下图所示:结合图象可知:当(0)1h =,即1m =时,两个函数的图象只有一个交点;当(1)(1),11(1)(1)2h g m h g <⎧⇒-≤<-⎨-≥-⎩时,两个函数的图象也只有一个交点,故所求实数m 的取值范围是1|112m m m ⎧⎫-≤<-=⎨⎬⎩⎭或.【点睛】已知方程的解的个数求参数的取值范围时,要根据方程的特点去判断零点的分布情况(特别是对于分段函数对应的方程),也可以参变分离,把方程的解的问题归结为不同函数的交点的个数问题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知在等比数列{}n a 中,23411,92187a a a ==. (1)求数列{}n a 的通项公式;(2)设n n b na =,求数列{}n b 的前n 项和n T .【答案】(1) 13n n a ⎛⎫= ⎪⎝⎭(2) 3314423nn n T ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭• 【解析】 【分析】(1)求出公比后可得{}n a 的通项公式. (2)利用错位相减法可求n T .【详解】(1)设等比数列{}n a 的公比为q .由23411,92187a a a ==,得22212187a q a q =•,得23212187a q =, 所以3127q =,解得13q =.故数列{}n a 的通项公式是2213nn n a a q -⎛⎫== ⎪⎝⎭. (2)13nn n b na n ⎛⎫== ⎪⎝⎭, 则23111111123(1)33333n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,①2341111111123(1)333333nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,②由①-②,得231121111113333333n nn n T n -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋯++- ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11113311313nn n +⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=- ⎪⎝⎭-, 111112233nn n +⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭,故3314423nn n T ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭•【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.18.在四棱锥A BCDE -中,侧棱AD ⊥底面BCDE ,底面BCDE 是直角梯形,//DE BC ,BC CD ⊥,2224,,BC AD DC DE BDEC O H =====是棱AD 上的一点(不与A 、D 点重合).(1)若//OH 平面ABE ,求AHHD的值; (2)求二面角A BE C --的余弦值. 【答案】(1) 2AH HD =(2) 3【解析】 【分析】(1)由//OH 平面ABE 可得//OH AB ,从而得到2AHHD=. (2)以D 为坐标原点,,,DE DC DA 的方向为x 轴,y 轴,z 轴正方向建立空间直角坐标系,求出平面ABE 的一个法向量和平面BCDE 的一个法向量后可得二面角A BE C --的余弦值.【详解】(1)证明:因为//OH 平面ABE ,OH ⊂平面ABD ,平面ABD ⋂平面ABE AB =, 所以//OH AB ,所以::OD OB DH HA =, 因为//,2DE BC BC DE =, 所以::1:2OD OB DE BC ==. 所以1,22HD AHAH HD==即. (2)解:以D 为坐标原点,,,DE DC DA 的方向为x 轴,y 轴,z 轴正方向建立如图所示的空间直角坐标系D xyz -,则点(0,0,2),(2,0,0),(4,2,0)A E B . 则(2,0,2),(4,2,2)AE AB =-=-.设平面ABE 的一个法向量为(,,)n x y z =,则•0•0n AE n AB ⎧=⎨=⎩,即2204220x z x y z -=⎧⎨+-=⎩,得x zy z =⎧⎨=-⎩. 令1z =,得(1,1,1)n =-;易知平面BCDE 的一个法向量为(0,0,1)m =,设二面角A BE C --的大小为θ,则cos 313m n m nθ===⨯.故二面角A BE C --【点睛】线线平行的证明可利用线面平行或面面平行来证明,空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.19.阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.他们的调查结果如下:(1)完成如下22列表,并判断是否由99%的把握认为.了解阿基米德与选择文理科有关?(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.(i)求抽取的文科生和理科生的人数;(ii )从10人的样本中随机抽取3人,用X 表示这3人中文科生的人数,求X 的分布列和数学期望. 参考数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++【答案】(1)见解析;(2) (i )文科生3人,理科生7人 (ii )见解析 【解析】 【分析】(1)写出列联表后可计算2K ,根据预测值表可得没有99%的把握认为,了解阿基米德与选择文理科有关. (2)(i )文科生与理科生的比为310,据此可计算出文科生和理科生的人数. (ii )利用超几何分布可计算X 的分布列及其数学期望. 【详解】解:(1)依题意填写列联表如下:计算222()100(42182812) 3.382 6.635()()()()30705446n ad bc K a b c d a c b d -⨯-⨯==≈<++++⨯⨯⨯, ∴没有99%的把握认为,了解阿基米德与选择文理科有关.(2)(i )抽取的文科生人数是30103100⨯=(人),理科生人数是70107100⨯=(人). (ii )X 的可能取值为0,1,2,3,则0337310C C 7(0)C 24P X ===, 1237310C C 21(1)C 40P X ===, 17213307(2)40C C P X C ===,3037310C C 1(3)C 120P X ===. 其分布列为所以72171369()01232440401204010E X =⨯+⨯+⨯+⨯==. 【点睛】本题考查独立性检验、分层抽样及超几何分布,注意在计算离散型随机变量的概率时,注意利用常见的概率分布列来简化计算(如二项分布、超几何分布等).20.已知椭圆2222:1(0)x y Ca b a b+=>>的离心率为12,1F ,2F 分别是其左、右焦点,且过点(2,3)A .(1)求椭圆C 的标准方程;(2)若在直线6y x =+上任取一点P ,从点P 向12AF F ∆的外接圆引一条切线,切点为Q .问是否存在点M ,恒有||||PM PQ =?请说明理由.【答案】(1) 2211612x y += (2) M ⎝⎭,或M ⎝⎭【解析】【分析】(1)求出,,a b c 后可得椭圆的标准方程.(2)先求出12AF F ∆的外接圆的方程,设M 点为(,),t n P 点为(,6)x x +,则由||||PM PQ =可得()221222(322)0n n t n x ι+-++--=对任意的x R ∈恒成立,故可得关于,t n 的方程,从而求得M 的坐标.【详解】解:(1)因为椭圆C 的离心率为12,所以12c a =. ① 又椭圆C 过点(2,3)A ,所以代入得22491a b +=. ② 又2a . ③由①②③,解得4,2a b c ===.所以椭圆C 的标准方程为2211612x y +=. (2)由(1)得,1F ,2F 的坐标分别是(2,0),(2,0)-.因为12AF F ∆的外接圆的圆心一定在边12F F 的垂直平分线上,即12AF F ∆的外接圆的圆心一定在y 轴上,所以可设12AF F ∆的外接圆的圆心为'O ,半径为r ,圆心'O 的坐标为(0,)m , 则由2O A O F '='=, 解得32m = 所以圆心'O 的坐标为30,2⎛⎫ ⎪⎝⎭,半径252r O F ='==, 所以12AF F ∆的外接圆的方程为2223522x y ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,即2232524x y ⎛⎫+-= ⎪⎝⎭. 设M 点为(,),t n P 点为(,6)x x +,因为||||PM PQ =, 所以2222325()(6)624x t x n x x ⎛⎫-++-=++-- ⎪⎝⎭, 化简,得()221222(322)0n n t n x ι+-++--=,.所以22122203220t n n t n ⎧+-+=⎨--=⎩,消去t ,得29721504n n -+=,解得154n =或154n =.当n =时,32t n =-=;当154n =时,3924t n =-=所以存在点M ⎝⎭,或M ⎝⎭满足条件. 【点睛】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等.直线与圆的位置关系,一般通过圆心到直线的距离与半径的关系来判断.解析几何中的几何关系的恒成立问题,应该通过等价转化变为代数式的恒成立问题.21.设函数()ln ,()2mx m f x x g x x -==. (1)当01x ≠时,求函数()()()F x f x g x =+的零点个数;(2)若0[1,)x ∃∈+∞,使得()()00f x g x <,求实数m 的取值范围.【答案】(1)见解析;(2) (2,)+∞【解析】【分析】(1)利用()F x '的符号讨论函数的单调性,结合零点存在定理可得零点的个数.(2)不等式有解等价于()()f x g x ≥对任意[1,)x ∈+∞恒成立即ln 02mx m x x--≥,构建新函数()ln (1)2mx m h x x x x-=-≥,求出()'h x 后分2m ≤和2m >分类讨论可得实数m 的取值范围. 【详解】解:(1)1()ln 2x F x x x -=-,即11()ln (0)22F x x x x =+->, 则221121()22x F x x x x -'=-=,令()0F x '=解得12x =. 当10,,()0,()2x F x F x ⎛⎫∈'< ⎪⎝⎭在10,2⎛⎫ ⎪⎝⎭上单调递减; 当1,,()0,()2x F x F x '⎛⎫∈+∞> ⎪⎝⎭在12+∞(,)上单调递增, 所以当12x =时,min 11()ln 222F x F ⎛⎫==- ⎪⎝⎭. 因为121ln 2ln e ln 202-=-<, 所以min ()0F x <. 又2221e 1e 520e 222F -⎛⎫=-+-=> ⎪⎝⎭,1111(e)102e 22e 2F =+-=+>, 所以21102F F e ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,1()02F e F ⎛⎫< ⎪⎝⎭, 所以()F x 分别在区间2111,,,e e 22⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭上各存在一个零点,函数()F x 存在两个零点. (2)假设()()f x g x ≥对任意[1,)x ∈+∞恒成立,即ln 02mx m x x--≥对任意[1,)x ∈+∞恒成立. 令()ln (1)2mx m h x x x x -=-≥,则2212()22m x m h x x x x -'=-=. ①当2m ≤,即20x m -≥时,且()h x '不恒为0,所以函数()ln 2mx m h x x x-=-在区间[1,)+∞上单调递增. 又1(1)ln1021m m h ⨯-=-=⨯,所以()0h x ≥对任意[1,)x ∈+∞恒成立. 故2m ≤不符合题意;②当2m >时,令22()02x m h x x -'=<,得12m x ≤<;令22()02x m h x x -'=>,得2m x >. 所以函数()ln 2mx m h x x x -=-在区间1,2m ⎡⎫⎪⎢⎣⎭上单调递减,在区间,2m ⎛⎫+∞ ⎪⎝⎭上单调递增,所以(1)02m h h ⎛⎫<= ⎪⎝⎭,即当2m >时,存在01x ≥,使()00h x <,即()()00f x g x <. 故2m >符合题意.综上可知,实数m 的取值范围是(2,)+∞.【点睛】导数背景下的函数零点个数问题,应该根据单调性和零点存在定理来说明.含参数的不等式的有解问题,可转化为恒成立问题来处理,后者以导数为工具讨论函数的单调性从而得到函数的最值,最后由最值的正负得到不等式成立.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为212x t y =⎧⎪⎨=+⎪⎩(t 为参数).以坐标原点为极点,x 轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆1C 的极坐标方程为2sin ρθ=.(1)求直线l 的普通方程与圆1C 的直角坐标方程;(2)设动点A 在圆1C 上,动线段OA 的中点P 的轨迹为2C ,2C 与直线l 交点为,M N ,且直角坐标系中M 点的横坐标大于N 点的横坐标,求点,M N 的直角坐标.【答案】(1) 1C 的直角坐标方程是222x y y +=.直线l 的普通方程为102y -+=.(2) 1111,,4242⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【解析】【分析】(1)消去参数t 后可得l 的普通方程,把2sin ρθ=化成22sin ρρθ=,利用互化公式可得1C 的直角方程.(2)设点(,)P x y ,则()2,2A x y ,利用A 在椭圆上可得2C 的直角方程,联立直线的普通方程和2C 的直角坐标方程可得,M N 的直角坐标.【详解】解:(1)由2sin ρθ=,得22sin ρρθ=,将互化公式cos ,sin x y ρθρθ==代上式,得222x y y +=,故圆1C 直角坐标方程是222x y y +=. 由212x t y =⎧⎪⎨=+⎪⎩,得12y =+102y -+=. 所以直线l 102y -+=. (2)设点(,)P x y .由中点坐标公式得曲线2C 的直角坐标方程为221124x y ⎛⎫+-= ⎪⎝⎭. 联立221021124y x y ⎧-+=⎪⎪⎨⎛⎫⎪+-= ⎪⎪⎝⎭⎩,解得14142x y ⎧=⎪⎪⎨⎪=+⎪⎩,或14142x y ⎧=-⎪⎪⎨⎪=-+⎪⎩. 故点,M N 的直角坐标是1111,,4242⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点睛】极坐标转化为直角坐标,关键是cos sin x y ρθρθ=⎧⎨=⎩,而直角坐标转化为极坐标,关键是222tan x y y x ρθ⎧=+⎪⎨=⎪⎩.参数方程化为直角方法,关键是消去参数,消参的方法有反解消参、平方消参、交轨法等.23.选修4-5:不等式选讲已知函数()|||3|()f x x a x a =-++∈R .(1)若函数()f x 的最小值为2,求实数a 的值;(2)若当[0,1]x ∈时,不等式()|5|f x x ≤+恒成立,求实数a 的取值范围.【答案】(1) 1a =-或5a =-. (2) [1,2]-【解析】【分析】 的(1)利用绝对值不等式可得min ()|3|f x a =+.(2)不等式()|5|f x x ≤+在[]0,1上恒成立等价于||2x a -≤在[]0,1上恒成立,故||2x a -≤的解集是[]0,1的子集,据此可求a 的取值范围.【详解】解:(1)因为()|||3||()(3)||3|f x x a x x a x a =-++≥--+=+,所以min ()|3|f x a =+.令|3|2a +=,得32a +=或32a +=-,解得1a =-或5a =-.(2)当[0,1]x ∈时,()||3,|5|5f x x a x x x =-+++=+.由()|5|f x x ≤+,得||35x a x x -++≤+,即||2x a -≤,即22a x a -≤≤+.据题意,[0,1][2,2]a a ⊆-+,则2021a a -≤⎧⎨+≥⎩,解得12a -≤≤. 所以实数a 的取值范围是[1,2]-.【点睛】(1)绝对值不等式指:a b a b a b -≤+≤+及a b a b a b -≤-≤+,我们常利用它们求含绝对值符号的函数的最值.(2)解绝对值不等式的基本方法有公式法、零点分段讨论法、图像法、平方法等,利用公式法时注意不等号的方向,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图像法求解时注意图像的正确刻画.。
河南省八市重点高中2018—2019学年高三第二次联合测评数学(理科)含答案

河南省八市重点高中2018~2019(上)高三第二次联合测评理 数 试 题注意事项:1.本试卷共6页,三个大题,22小题,满分150分,考试时间120分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.己知集合A ={x |x ≤-1},B ={x |x >0},则C R(A ∪B )=( ) A .{x |x >-1} B .{x |x ≤0} C .{x |-1≤x <0} D .{x |-1<x ≤0}2.已知集合A 是奇函数集,B 是偶函数集.若命题p :()f x ∀∈A ,|f (x )|∈B ,则p ⌝ 为( )A .()f x ∀∈A ,|f (x )|∉B B .()f x ∀∉A ,|f (x )|∉BC .()f x ∃∈A ,|f (x )|∉BD .()f x ∃∉A ,|f (x )|∉B3.《九章算术》中有一题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何.其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”若按此比例偿还,牛、马、羊的主人各应赔偿多少?设牛、马、羊的主人分别应偿还x 斗、y 斗、z 斗,则下列判断正确的是( )A .y 2=xz 且x =57 B .y 2=xz 且x =207C .2y =x +z 且x =57D .2y =x +z 且x =207 4.己知函数f (x )=,则41()f x dx ⎰-=( ) A .14 B .143 C .7 D .2125.已知tana =3,则cos (2α+2π)=( ) A .-35 B .35 C .-35 D .35411x x x x ⎪⎩1<≤,,-≤≤,6.在等腰梯形ABCD 中,AB uu u r =2DC uuu r ,点E 是线段BC 的中点,若AE uu u r =λAB uu u r +μAD uuu r ,则λ+μ=( )A .52B .54C .12D .147.设a =132()3,b =231()3,c =231log 3,则a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .a >c >b D .c >a >b8.已知函数f (x )=Asin (ωx +ϕ)(A >0,|ϕ|<2π,ω>0)的部分图象如图所示,则ϕ=( ) A .6π B .4π C .3π D .23π 9.若x ,y 满足2y ≤x ≤y -1,则2xy -的取值范围是( ) A .(-∞,12)∪[32,+∞) B .(12,32] C .(-∞,12]∪[32,+∞) D .[12,32] 10.己知函数f (x )=x e -1-x e -+1,则下列说法正确的是( )A .函数f (x )的最小正周期是lB .函数f (x )是单调递减函数C .函数f (x )关于直线x =1轴对称D .函数f (x )关于(1,0)中心对称11.己知对任意平面向量AB uu u r =(x ,y ),把AB uu u r 绕其起点沿逆时针方向旋转θ角得到向量AP uu u r =(xcos θ-ysin θ,xsin θ+ycos θ),叫做把点B 绕点A 逆时针方向旋转θ角得到点P .若平面内点A0),点B (0,1),把点B 绕点A 顺时针方向旋转43π后得到点P ,则点P 的坐标为( )A .2) B .(0,-2) C .1) D .(0)12.己知f (x )=x 2+2x +1+a ,x ∀∈R ,f (f (x ))≥0恒成立,则实数a 的取值范围为( )A .]B .,+∞] C .[-1,+∞) D .[0,+∞)二、填空题:本大题共4小题,每小题5分.13.己知非零向量a ,b 满足|2a +b |=|a +2ba |,则a ,b 的夹角为_________.14.函数y =sin 2x 的图象可由y =cos 2x 的图象向左平移ϕ个单位长度得到,则正数ϕ的最小值为___________.15.若一直线与曲线y =elnx 和曲线y =mx 2相切于同一点P ,则实数m =_________.16.将正整数1,2,3,…,n ,…排成数表如表所示,即第一行3个数,第二行6个数,且后一行比前一行多3个数,若第i 行,第j 列的数可用(i ,j )表示,则100可表示为___________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知命题p :函数f (x )=ax 2+4x +2有零点;命题q :函数f (x )=sin 2πx 区间 (0,a )内只有一个极值点.若(p ⌝)∧q 为真命题,求实数a 的取值范围.18.(12分)已知向量a =(1,cos2x),b =(-1,f (x )),且a ∥b .(1)将f (x )表示成x 的函数并求f (x )的单调递增区间;(2)若f (θ)=65,3π<θ<,求cos2θ的值.2π已知数列{n a }满足a 1·a 2·a 3……1n a -·n a =n +1(n ∈N ﹡).(1)求数列{n a }的通项公式:(2)若n b =n a +1n a ,求数列{n b }的前n 项和n S .20.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos a A . (1)求角A ;(2)若b c =4,点D 在△ABC 内,且BD BDC +∠A =π,求△BDC的面积.如图,将宽和长都分别为x,y(x<y)的两个矩形部分重叠(注:正十字形指的是原来的两个矩形的顶点都在同一个圆上,且两矩形长所在的直线互相垂直的图形).(1)求y关于x的函数解析式;(2)当x,y取何值时,该正十字形的外接圆面积最小,并求出其最小值.22.(12分)已知函数f(x)=x2-2x+alnx.(1)讨论函数f(x)的单调性;(2)若函数f(x)存在两个极值点x1,x2,且x1<x2,证明:x1f(x2)>x2f(x1).。
河南省郑州市2018-2019学年高二上学期期中考试数学(理)试题Word版含答案

河南省郑州市2018-2019学年高二上学期期中考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在ABC ∆中,2,4a b A π===,则角B = ( )A .6π B .6π或56π C .3πD .56π2. “20x x ><或” 是“11x<” 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .即不充分也不必要条件3. 已知正项数列 {}n a 中,()22212111,2,22n n n a a a a a n +-===+≥,则6a =( )A .16B .4C ..454. 命题“0,x R n N *∀∈∃∈,使得20n x >”的否定形式是( )A .0,x R n N *∀∈∃∈,使得20n x ≤B .,x R n N *∀∈∀∈使得,2n x ≤ C. 00,x R n N *∃∈∃∈,使得 200n x ≤ D .0,x R n N *∃∈∀∈,使得20n x ≤5. 《莱茵德纸草书》 是世界上最古老的数学著作之一,书中有这样的一道题: 把 120个面包分成 5份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的 7倍,则最少的那份面包个数为( )A .4B .3 C.2 D . 16. 已知数列n S 为等比数列{}n a 的前n 项和,8242,14S S ==, 则2016S = ( ) A .25222- B .25322- C.100822- D .201622-7. 设,a b 是非零实数, 若a b > ,则一定有 ( ) A .11a b < B .2a ab > C.2211ab a b > D .11a b a b->- 8. 设等差数列{}n a 的前n 项和 n S ,且满足201620170,0S S ><,对任意正整数n , 都有n k a a ≥,则 k 的值为 ( )A .1006B .1007 C.1008 D .1009 9. 若实数,x y 满足0xy >,则22x y x y x y+++的最大值为( ) A.2 B.24+ D.4-10. 若对于任意的[]1,0x ∈-,关于x 的不等式2320x ax b ++≤恒成立, 则222a b +-的最小值为( )A .15-B .54 C.45 D .1411. 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若(),1cos cos ,23A b C c A b π=-==,则ABC ∆的面积为( )A.D12. 设{},min ,,a a b a b b a b≤⎧=⎨>⎩,若()2f x x px q =++的图象经过两点()(),0,,0αβ ,且存在正整数 n ,使得1n n αβ<<<+成立,则 ( )A .()(){}1min ,14f n f n +>B .()(){}1min ,14f n f n +< C.()(){}1min ,14f n f n += D .()(){}1min ,14f n f n +≥第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 若0,0,2a b a b ab >>+=,则3a b +的最小值为 __________. 14. 已知两个等差数列 {}n a 和{}n b 的前 n 项和分别为,n n S T ,若231n n S nT n =+,则 823746a ab b b b +=++ __________.15. 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且2,3,4a b c ===,则s i n2s i n CA= _________. 16. 已知数列{}n a 的通项公式为3nn a =,记数列{}n a 的前n 项和为n T ,若对任意的3,362n n N T k n *⎛⎫∈+≥- ⎪⎝⎭恒成立, 则实数 k 的取值范围 _________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知命题12:,p x x 是方程210x mx --=的两个实根 ,且不等式21243a a x x +-≤-对任意的m R ∈恒成立;命题:q 不等式220x x a ++<有实数解. 若命题p q ∨为真,p q ∧为假, 求实数 a 的取值范围.18. (本小题满分12分)在等比数列{}n a 中,公比1q ≠,等差数列{}n b 满足11243133,,a b a b a b ====. (1)求数列{}n a 的{}n b 通项公式;(2)记n n n c a b =,求数列{}n c 的前n 项和n S .19.(本小题满分12分)某人上午7时, 乘摩托艇以匀速()/840vkm h v ≤≤从A 港出发到距100km 的B 港去, 然后乘汽车以匀速()/30100wkm h w ≤≤自B 港向距300km 的C 市驶去.应该在同一天下午4至9点到达C 市. 设乘坐汽车、 摩托艇去目的地所需要的时间分别是,xh yh .(1)作图表示满足上述条件的,x y 范围;(2)如果已知所需的经费()()1003528p x y =+-+-(元),那么,v w 分别是多少时p 最小? 此时需花费多少元?20. (本小题满分12分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,()cos25cos 2B A C -+=. (1)求角B 的值;(2)若 1cos 7A =,ABC ∆的面积为求BC 边上的中线长. 21.(本小题满分12分)某城市响应城市绿化的号召, 计划建一个如图所示的三角形 ABC 形状的主题公园,其中一边利用现成的围墙BC , 长度为米, 另外两边,AB AC 使用某种新型材料围成, 已知120,,(,BAC AB x AC y x y ∠===单位均为米).(1)求 ,x y 满足的关系式(指出,x y 的取值范围);(2)在保证围成的是三角形公园的情况下,如何设计能使所用的新型材料总长度最短? 最短长度是多少?22. (本小题满分12分)设正项数列{}n a 的前n 项和n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式; (2)若数列1221n n n n n a a b a a ++++=+,数列{}n b 的前n 项和为n T ,求证:122n T n <+.河南省郑州市2018-2019学年高二上学期期中考试数学(理)试题参考答案一、选择题(每小题5分,共60分)1-5. ABBDC 6-10.BCDDA 11-12. DB 二、填空题(每小题5分,共20分)13. 7+914 15. 1- 16. 2,27⎡⎫+∞⎪⎢⎣⎭三、解答题17.解:若p 为真,不等式21243a a x x +-≤-对任意的 m R ∈恒成立,243a a +-m R ∈恒成立,2432a a +-≤,解得51a -≤≤,若q 为真,不等式220x x a ++<有解,2440a ∆=->,解得1a <,因为命题p q ∨为真,p q ∧ 为假,所以,p q , 一真一假.(1)p 真q 假,则51,11a a a -≤≤⎧∴=⎨≥⎩.(2)若p 假q 真,则51,51a a a a <->⎧∴<-⎨<⎩或,综上,a 的取值范围是{}|51a a a <-=或.18.解:(1)由已知得: 2234133,3,33,312a q a q b d b d ===+=+,即23333312q d q d=+⎧⎨=+⎩,解得2031d d q q ==⎧⎧⎨⎨==⎩⎩或 ( 舍) ,所以2d =,所以3,21nn n a b n ==+.19.解:(1)依题意得 100300525,,840,30100,310,22y x v w x y v w ==≤≤≤≤∴≤≤≤≤① 由于乘汽车、摩托艇所需的时间和x y +应在9至 14个小时之间,即914x y ≤+≤ ② 因此,满足①②的点(),x y 的存在范围是图中阴影部分(包括边界)(2)()()100352813132p x y x y =+-+-=--,上式表示斜率为32-的直线,当动直线13132p x y =--通过图中的阴影部分区域(包括边界),通过点A 时,p 值最小.由1410x y x +=⎧⎨=⎩得 104x y =⎧⎨=⎩,即当10,4x y ==时,p 最小. 此时,25,30,v w p ==的最小值为 93元. 20.解:(1)由条件知 22cos 15cos 2B B -+=,即22cos 5cos 30B B +-= ,解得 1cos 2B =或cos 3B =-(舍去)又0B π<<, 3B π∴=.(2)由于11cos ,sin sin 3572A A S bc A bc =∴===∴=. ①又由正弦定理得,sinsin 33b cA ππ=⎛⎫+ ⎪⎝⎭,又1sin sin cos ,5732214A A A b c π⎛⎫+=+=∴= ⎪⎝⎭, ② 由① ②知,7,5b c ==,由余弦定理得,8,a BC ==边上的中线AD ==21.解:(1)在ABC ∆中,由余弦定理,得222222cos ,2cos12030000AB AC AB AC A BC x y xy +-=∴+-=,即 2230000x y xy ++=,由正弦定理,得200,200sin ,060,0sin sin sin AB AC BC x C C x C B A ====∴=<<∴<<同理0y <<(2)要使所用的新型材料总长度最短只需x y +最小,由(1)知,()23000x y xy =+-,由于22x y xy +⎛⎫≤ ⎪⎝⎭,当且仅当x y =时,等号成立. 所以()()()()2222300044x y x y x y xy x y ++=+-≥+-=,所以200x y +≤,故当,AB AC 边长均为100米时,所用材料长度最短为 200米.22.解:(1)由题意可得221112,2n n n n n n S a a S a a ---=+=+, 两式相减得, 22112n n n n n a a a a a --=-++ ,所以22110n n n n a a a a -----=,即()()1110n n n n a a a a --+--=,又因为数列{}n a 为正项数列,所以11n n a a -+=.即数列{}n a 为等差数列,又1n =时,21112a a a =+,所以111,1n a a a n n ==+-=.(2)由(1)知1221n n n b n n ++=+++,又因为121111112212112n n n b n n n n n n ++=+=-++=+-++++++, 所以()12111111...22...2...233412n n T b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫=+++=++++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦所以12111 (22222)n n T b b b n n n =+++=+-<++.。
2018-2019学年河南省高二上学期期末数学(理)试题(解析版)

2018-2019学年河南省高二上学期期末数学(理)试题一、单选题1.设命题:0p x ∀>,||=x x ,则p ⌝为 A .0x ∀>,||x x ≠ B .00x ∃≤,00||x x =C .0x ∀≤,||=x xD .00x ∃>,00||x x ≠【答案】D【解析】根据全称命题的否定是特称命题进行判断 . 【详解】命题是全称命题, 则命题的否定是特称命题, 则000:0,P x x x ⌝∃>≠, 故选D . 【点睛】本题主要考查含有全称量词的命题的否定, 比较基础 . 2.已知抛物线的准线方程x 12=,则抛物线的标准方程为( ) A .x 2=2y B .x 2=﹣2yC .y 2=xD .y 2=﹣2x【答案】D【解析】由抛物线的准线方程求得p ,进一步得到抛物线方程. 【详解】解:Q 抛物线的准线方程12x =, 可知抛物线为焦点在x 轴上,且开口向左的抛物线, 且122p =,则1p =. ∴抛物线方程为22y x =-.故选:D . 【点睛】本题考查了抛物线的简单性质,考查了抛物线方程的求法,是基础题.3.若等比数列{}n a 的前n 项和为n S ,3620a a +=,则63S S =( ) A .1-B .1C .2-D .2【答案】A【解析】由363a a q =,代入3620a a +=,可以求出32q =-,然后利用等比数列的前n 项和公式,可以得到663311S q S q -=-,进而可以求出答案。
【详解】设等比数列{}n a 的公比为q ,则33363332220a a a a q a q +=+=+=(), 因为30a ≠,所以320q +=,故32q =-,则()()6166333111141111211a q S q q S q a q q----====--+--. 故选A. 【点睛】本题考查了等比数列的性质及前n 项和公式,属于基础题。
河南省郑州市2018-2019上期期末高二数学(理) 解析版

河南省郑州市2018-2019学年上期期末考试高二数学(理)第Ⅰ卷(选择题,共60分)一、选择题:本大题共有12个小题,每小题5分,共60分。
在每小题所给出的四个选项中,只有一项是符合题目要求的。
1.【河南省郑州市2018-2019学年上期期末考试高二数学(理) 题1】已知命题3:280p x x ∀->,>,那么p ⌝为A.3280x x ∀-≤>,B.30280x x ∃-≤>,C.3280x x ∀≤-≤,D.30280x x ∃≤-≤,【答案】B2.【河南省郑州市2018-2019学年上期期末考试高二数学(理) 题2】已知数列{}n a 是等比数列,若151,16,a a ==则3a 的值为A.4B. 4或-4C. 2D.2或-2 【答案】A【解析】因422513116,4,4a q q a a q =====a3.【河南省郑州市2018-2019学年上期期末考试高二数学(理) 题3】已知,,a b c 是实数,下列命题结论正确的是.A “22a b >”是“a b >”的充分条件 .B “22a b >”是“a b >”的必要条件 .C “22ac bc >” 是“a b >”的充分条件 .D “||||a b >” 是“a b >”的充要条件【答案】C【解析】对于A ,当5,1a b =-=时,满足22a b >,但是a b <,所以充分性不成立;对于B ,当1,2a b ==-时,满足a b >,但是22a b <,所以必要性不成立;对于D ,当5,1a b =-=时,||||a b >成立,但是a b <,所以充分性不成立,当1,2a b ==-时,满足a b >,但是||||a b <,所以必要性也不成立,故“||||a b >” 是“a b >”的既不充分也不必要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当 为奇数时, ∴实数 的取值范围是
,解得 . .…………………………………………12 分
解得 a1 = 3, d = 2 ,………………………………………2 分
则 an = 2n +1;…………………………………………4 分
(2)由(1)知 Sn = n2 + 2n ,
即
1 Sn
=
n2
1 + 2n
=
1
n(n +
2)
=
1 2
´
æ çè
1 n
-
n
1 +
2
ö ÷ø
,
…………………………………………6 分
l
=
a
+
b
+
c
=
23 3
(sinA
+
sinC )
+1
=
2
3 3
éêësinA
+
sin
æ çè
2π 3
-
A
öù ÷øúû
+1 …………8
分
=
23 3
æ çè
sinA
+
sin
2π 3
cosA - cos
2π 3
sinAö÷ø +1
=
3sinA
+
cosA
+1
=
2sin
æ çè
A
+
π 6
ö ÷ø
+1
Q0
<
A
22.(1)设等差数列 的公差为 ,等比数列 的公比为 , Nhomakorabea∵
,且满足:
∴
,联立解得
.……………………………2 分
∴
,
.…………………………………………4 分
(2) ∴ 的前 项和
∴
,
, ,
∴
,
∴
.…………………………………………8 分
(3)不等式
,即
,
化为: 当 为偶数时,
.…………………………………………10 分 .
<
2π 3
,\
π 6
<
A
+
π 6
<
5π 6
,\
1 2
<
sin
æ çè
A
+
π 6
ö ÷ø
£
1
,…………………………………………10
分
\1
<
2sin
æ çè
A
+
π 6
ö ÷ø
£
2
,
\DABC 的周长 l = a + b + c Î(2,3] ,………………………………………12 分
故 DABC 的周长 l 的取值范围为 (2,3] .
21.(1)Q bcosC
=
a
-
1 2
c
,
\ 由余弦定理,得 b × a2
+ b2 - c2 2ab
=a-
1 2
c
,
\ a2 + b2 - c2 = 2a2 - ac ,
\ a2 + c2 - b2 = ac …………………………………………2 分
∵
cosB
=
a2
+ c2 2ac
b2
\ cosB
=
1 2
2
ö ÷ø
………………………………10
分
=
3 4
-
1 2
´
æ çè
1 n +1
+
n
1 +
2
ö ÷ø
.
所以 Tn
<
3 4
.…………………………………………12
分
20.(1)设 n 年后的总利润为 y 万元,则
y
=
50n
-
98
-
êé12 ë
´
n
+
n
(
n -1)
2
´
4úù û
=
-2
(
n
-10)2
+
102
,…………………4
则
Tn
=
1 S1
+
1 S2
+L +
1 Sn-1
+
1 Sn
=
1 2
´ [æçè1 -
1 3
ö ÷ø
+
æ çè
1 2
-
1 4
ö ÷ø
+L
+
æ çè
n
1 -1
-
n
1 +
1
ö ÷ø
+
æ çè
1 n
-
n
1 +
2
ö÷ø ]
…………………………………………8 分
=
1 2
´ æçè1+
1 2
-
1 n +1
-
n
1 +
,Q B
Î(0, π),\ B
=
π 3
.…………………………………………4
分
(2)Q B
=
π 3
,\
A+C
=
2π 3
.
由正弦定理,得
b sinB
=
a sinA
,\ a
=
bsinA sinB
=
23 3
sinA ,同理可得 c
=
23 3
sinC
,
\DABC 的周长
…………………………………………6 分
1-5.CACBC 6-10.CDACB 11-1.2CC
13.
ìíî
1 2
,
0,
1 3
ü ý þ
参考答案
14. 15.
16.
17.对于
p
由
2x2
-
3x
+1
£
0
,得
1 2
£
x
£
1……………………………………2
分
对于 q 由 x2 - 2ax + a2 -1 £ 0 ,得 a -1 £ x £ a +1………………………………4 分
Q 非 p 是非 q 的必要不充分条件
\ p 是 q 的充分不必要条件…………………………………………6 分
\
{a -1 £ a +1³
1
2 1
,得
0
£
a
£
3 2
…………………………………………10
分
18.(1)∵
,∴由正弦定理可得
,…………………………2 分
∴ ,∴ .…………………………………………4 分
分
所以到第10 年末总利润最大,最大值是102 万元.……………………………6 分
(2)年平均利润为
y n
=
-2
æ çè
n
+
49 n
ö ÷ø
+
40
£
-28 +
40
= 12
,………………8
分
当且仅当
n
=
49 n
时,即
n
=
7
时,上式取等号.…………………………………10
分
所以到第 7 年末平均利润最大,最大值是12 万元.……………………………12 分
(2)∵ , ,∴ .…………………………………………6 分
∴
.…………………………………………8 分
∴
,∴
.…………………………………………12 分
19.(1)设等差数列的公差为 d ,则由 2a9 = a2 +13 及等差数列的通项公式,
得 a1 + 5d = 12 ,又 a2 = a1 + d = 4 ,