三角形内心、外心专项训练
三角形五心的经典考题

有关三角形五心的经典试题三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理. 例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上. (杭州大学《中学数学竞赛习题》)分析:由已知可得MP ′=MP =MB ,NP ′=NP=NC ,故点M 是△P ′BP 的外心,点N 是△P ′PC 的外心.有∠BP ′P =21∠BMP =21∠BAC ,∠PP ′C =21∠PNC =21∠BAC . ∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC .从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似.(B ·波拉索洛夫《中学数学奥林匹克》)分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形O 1PO 2QO 3S 后再由外心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3. ∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K ) =21(∠O 2O 1S +∠PO 1O 2) A B C PP M N 'A B C QK P O O O ....S 123=21∠PO 1S =∠A ; 同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC . 二、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每 条中线都分成定比2:1及中线长度公式,便于解题.例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克)分析:设G 为△ABC 重心,直线PG 与AB,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′. 易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′,∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △PAD +S △PCF .例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G 为重心,连DE到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .(1)a 2,b 2,c 2成等差数列⇒△∽△′. 若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有 CF =2222221c b a -+, BE =2222221b ac -+, AD =2222221a cb -+. 将a 2+c 2=2b 2,分别代入以上三式,得 CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23=a :b :c .故有△∽△′.(2)△∽△′⇒a 2,b 2,c 2成等差数列.AA 'F F 'GE E 'D 'C 'P C B D当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′, ∴∆∆S S '=(aCF )2. 据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43.∴22aCF =43⇒3a 2=4CF 2=2a 2+b 2-c2⇒a 2+c 2=2b 2.三、垂心三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利.例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置.(1992,全国高中联赛) 分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径为R .由△A 2A 3A 4知13212sin H A A H A ∠=2R ⇒A 2H 1=2R cos ∠A 3A 2A 4; 由△A 1A 3A 4得A 1H 2=2R cos ∠A 3A 1A 4.但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2. 易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2, 故得H 1H 2 A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称. 同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2. 求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2.(1989,加拿大数学奥林匹克训练题) 分析:只须证明AA 1=BB 1=CC 1即可.设 BC =a , CA =b ,AB =c ,△ABC 外接圆半径为R ,⊙H 的半径为r . 连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH2∥=∥=.OA A A A 1234H H 12H H HM AB BA ABC CC F12111222D E=r 2+(AM 2-MH 2), ①又AM 2-HM 2=(21AH 1)2-(AH -21AH 1)2 =AH ·AH 1-AH 2=AH 2·AB -AH 2=cos A ·bc -AH 2, ② 而ABHAH ∠sin =2R ⇒AH 2=4R 2cos 2A ,Aa sin =2R ⇒a 2=4R 2sin 2A . ∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. ③ 由①、②、③有A 21A =r 2+bca cb 2222-+·bc -(4R 2-a 2)=21(a 2+b 2+c 2)-4R 2+r 2. 同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2, 21CC =21(a 2+b 2+c 2)-4R 2+r 2. 故有AA 1=BB 1=CC 1.四、内心三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心(内心的等量关系之逆同样有用).例7.ABCD 为圆内接凸四边形,取△DAB ,△ABC ,△BCD , △CDA 的内心O 1, O 2,O 3, O 4.求证:O 1O 2O 3O 4为矩形.(1986,中国数学奥林匹克集训题)证明见《中等数学》1992;4例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切.试证:EF 中点P 是△ABC之内心.(B ·波拉索洛夫《中学数学奥林匹克》)分析:在第20届IMO 中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢?A B C D O O O 234O 1如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分线上.易知AQ =αsin r . ∵QK ·AQ =MQ ·QN ,∴QK =AQQNMQ ⋅=αsin /)2(r rr R ⋅-=)2(sin r R -⋅α.由Rt △EPQ 知PQ =r ⋅αsin .∴PK =PQ +QK =r ⋅αsin +)2(sin r R -⋅α=R 2sin ⋅α. ∴PK =BK .α利用内心等量关系之逆定理,即知P 是△ABC 这内心. 五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于 一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切.例9.在直角三角形中,求证:r +r a +r b +r c =2p .式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁切圆半径,p 表示半周. (杭州大学《中学数学竞赛习题》)分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:p (p -c )=(p -a )(p -b ).∵p (p -c )=21(a +b +c )·21(a +b -c ) =41[(a +b )2-c 2]=21ab ; (p -a )(p -b )=21(-a +b +c )·21(a -b +c ) =41[c 2-(a -b )2]=21ab . ∴p (p -c )=(p -a )(p -b ). ①观察图形,可得 r a =AF -AC =p -b , r b =BG -BC =p -a ,AααMBCK NE R OQFrP Kr r r r O O O 213AOE CBabcr c =CK =p .而r =21(a +b -c ) =p -c . ∴r +r a +r b +r c=(p -c )+(p -b )+(p -a )+p =4p -(a +b +c )=2p . 由①及图形易证.例10.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径.证明:11q r ·22q r =qr . (IMO -12)分析:对任意△A ′B ′C ′,由正弦定理可知OD =OA ′·2'sinA =A ′B ′·'''sin 2'sinB O A B ∠·2'sin A =A ′B ′·2''sin2'sin2'sin B A B A +⋅, O ′E = A ′B ′·2''sin2'cos2'cos B A B A +. ∴2'2''B tg A tg E O OD =. 亦即有11q r ·22q r =2222Btg CNB tg CMA tgA tg ∠∠ =22B tg A tg=qr. 六、众心共圆这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.例11.设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =FA .试证:(1)AD ,BE ,CF 三条对角线交于一点;A ...'B 'C 'O O 'ED(2)AB +BC +CD +DE +EF +FA ≥AK +BE +CF . (1991,国家教委数学试验班招生试题)分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACE 的三条内角平分线,I 为△ACE的内心.从而有ID =CD =DE , IF =EF =FA , IB =AB =BC .再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用 不等式有:BI +DI +FI ≥2·(IP +IQ +IS ).不难证明IE =2IP ,IA =2IQ ,IC =2IS .∴BI +DI +FI ≥IA +IE +IC . ∴AB +BC +CD +DE +EF +FA=2(BI +DI +FI ) ≥(IA +IE +IC )+(BI +DI +FI )=AD +BE +CF .I 就是一点两心.例12.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心.证明OE 丄CD . (加拿大数学奥林匹克训练题)分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证: DG :GK =31DC :(3121-)DC =2:1. ∴DG :GK =DE :EF ⇒GE ∥MF . ∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE 之垂心. 易证OE 丄CD . 例13.△ABC 中∠C =30°,O 是外心,I 是内心,边AC 上的D 点与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE .(1988,中国数学奥林匹克集训题)分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△AID ≌△AIB ≌△EIB ,∠AID =∠AIB =∠EIB . 利用内心张角公式,有∠AIB =90°+21∠C =105°,∴∠DIE =360°-105°×3=45°. ∵∠AKB =30°+21∠DAO =30°+21(∠BAC -∠BAO ) Erdos ..I P AB CD E FQ SA B CD E F OKGO A BC DEFI K30°=30°+21(∠BAC -60°) =21∠BAC =∠BAI =∠BEI . ∴AK ∥IE .由等腰△AOD 可知DO 丄AK ,∴DO 丄IE ,即DF 是△DIE 的一条高. 同理EO 是△DIE 之垂心,OI 丄DE . 由∠DIE =∠IDO ,易知OI =DE .例14.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心.设外心到三边距离和为d 外,重心到三边距离和为d 重,垂心到三边距离和为d 垂.求证:1·d 垂+2·d 外=3·d 重. 分析:这里用三角法.设△ABC 外接圆半径为1,三个内角记为A ,B , C . 易知d 外=OO 1+OO 2+OO 3 =cos A +co sB +cos C ,∴2d 外=2(cos A +cos B +cos C ). ① ∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C , 同样可得BH 2·CH 3.∴3d 重=△ABC 三条高的和=2·(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ② ∴BCHBHsin =2,∴HH 1=cos C ·BH =2·cos B ·cos C . 同样可得HH 2,HH 3. ∴d 垂=HH 1+HH 2+HH 3=2(cos B ·cos C +cos C ·cos A +cos A ·cos B ) ③ 欲证结论,观察①、②、③,须证(cos B ·cos C +cos C ·cos A +cos A ·cos B )+( cos A + cos B + cos C )=sin B ·sin C +sin C ·sin A +sin A ·sin B .即可.练 习 题1.I 为△ABC 之内心,射线AI ,BI ,CI 交△ABC 外接圆于A ′, B ′,C ′.则AA ′+BB ′+CC ′>△ABC 周长.(1982,澳大利 亚数学奥林匹克)2.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)3.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)4.AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角B C O IA O G H O G H GO G H 123112233。
三角形内心、外心专项训练

三角形内心、外心专项训练内心相关知识一、判断题1、在同一平面内,到三角形三边距离相等的点只有一个2、在同一平面内,到三角形三边所在直线距离相等的点只有一个3、三角形三条角平分线交于一点(三角形的内心)4、等腰三角形底边中点到两腰的距离相等5、三角形是以它的角平分线为对称轴的轴对称图形二、填空题6、如图(1),点P为△ABC三条角平分线交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD__________PE__________PF.7、如图(2),P是∠AOB平分线上任意一点,且PD=2cm,若使PE=2cm,则PE与OB的关系是__________.8、如图(3),CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、CB于点E、F,FG ⊥AB,垂足为G,则CF__________FG,∠1+∠3=__________度,∠2+∠4=__________度,∠3__________∠4,CE__________CF.9、如右图,E、D分别是AB、AC上的一点,∠EBC、∠BCD的角平分线交于点M,∠BED、∠EDC的角平分线交于N.求证:A、M、N在一条直线上.证明:过点N作NF⊥AB,NH⊥ED,NK⊥AC过点M作MJ⊥BC,MP⊥AB,MQ⊥AC∵EN平分∠BED,DN平分∠EDC∴NF__________NH,NH__________NK∴NF__________NK∴N在∠A的平分线上又∵BM平分∠ABC,CM平分∠ACB∴__________=__________,__________=__________∴__________=__________∴M在∠A的__________上∴M、N都在∠A的__________上∴A、M、N在一条直线上三、作图题10、利用角平分线的性质,找到△ABC内部距三边距离相等的点.11、在下图△ABC所在平面中,找到距三边所在直线..距离相等的点.12、如下图,一个工厂在公路西侧,在河的南岸,工厂到公路的距离与到河岸的距离相等,且与河上公路桥南首(点A)的距离为300米.请用量角器和刻度尺在图中标出工厂的位置.四、解答题13、已知:如下图在△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若BC=32,且BD∶CD=9∶7,求:D到AB边的距离.外心相关知识一、判断题1、三角形三条边的垂直平分线必交于一点(三角形的外心)2、以三角形两边的垂直平分线的交点为圆心,以该点到三角形三个顶点中的任意一点的距离为半径作圆,必经过另外两个顶点3、平面上只存在一点到已知三角形三个顶点距离相等4、三角形关于任一边上的垂直平分线成轴对称二、填空题5、如左下图,点P为△ABC三边中垂线交点,则PA__________PB__________PC.6、如右上图,在锐角三角形ABC中,∠A=50°,AC、BC的垂直平分线交于点O,则∠1_______∠2,∠3______∠4,∠5______∠6,∠2+∠3=________度,∠1+∠4=______度,∠5+∠6=_______度,∠BOC=_______度.7、如左下图,D为BC边上一点,且BC=BD+AD,则AD__________DC,点D在__________的垂直平分线上.8、如右上图,在△ABC中,DE、FG分别是边AB、AC的垂直平分线,则∠B__________∠1,∠C__________∠2;若∠BAC=126°,则∠EAG=__________度.9、如左下图,AD是△ABC中BC边上的高,E是AD上异于A,D的点,若BE=CE,则△__________≌△__________(HL);从而BD=DC,则△________≌△_________(SAS);△ABC是__________三角形.10、如右上图,∠BAC=120°,AB=AC,AC的垂直平分线交BC于D,则∠AD B=_________度.三、作图题11、(1)分别作出点P,使得PA=PB=PC(2)观察各图中的点P与△ABC的位置关系,并总结规律:当△ABC为锐角三角形时,点P在△ABC的__________;当△ABC为直角三角形时,点P在△ABC的__________;当△ABC为钝角三角形时,点P在△ABC的__________;反之也成立,且在平面内到三角形各顶点距离相等的点只有一个.四、类比联想12、既然任意一个三角形的三边的垂直平分线交于一点,那三角形的三边上的中线是否也交于一点;三个角的平分线是否也交于一点;试通过折纸或用直尺、圆规画图验证这种猜想.。
数学初中竞赛《三角形的五心》专题训练(包含答案)

数学初中竞赛《三角形的五心》专题训练一.选择题1.如图,已知直线MN∥AB,把△ABC剪成三部分,点C在直线AB上,点O在直线MN上,则点O是△ABC的()A.垂心B.重心C.内心D.外心2.课本第5页有这样一个定义“三角形的三条中线的交点叫做三角形的重心”.现在我们继续定义:①三角形三边上的高线的交点叫做三角形的垂心;②三角形三条内角平分线的交点叫做三角形的内心;③三角形三边的垂直平分线的交点叫做三角形的外心.在三角形的这四“心”中,到三角形三边距离相等的是()A.重心B.垂心C.内心D.外心3.如图为4×4的网格图,A,B,C,D,O均在格点上,则点O是()A.△ACD的重心B.△ABC的外心C.△ACD的内心D.△ABC的垂心4.如图,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF等于()A.a:b:c B.::C.sin A:sin B:sin C D.cos A:cos B:cos C5.在△ABC中,两中线AD与CF相交于点G,若∠AFC=45°,∠AGC=60°,则∠ACF的度数为()A.30°B.45°C.60°D.75°6.如图,已知△ABC的三个顶点分别在反比例函数y=(k>0)的图象上,那么△ABC的()也一定在该函数图象上.A.重心B.内心C.外心D.垂心7.如图,已知H是△ABC的垂心,△ABC的外接圆半径为R,△BHC的外接圆半径为r,则R 与r的大小关系是()A.R=r B.R>r C.R<r D.无法确定8.以Rt△ABC的两条直角边AB、BC为边,在三角形ABC的外部作等边三角形ABE和等边三角形BCF,EA和FC的延长线相交于点M,则点B一定是三角形EMF的()A.垂心B.重心C.内心D.外心9.如图,锐角△ABC的垂心为H,三条高的垂足分为D、E、F,则H是△DEF的()A.垂心B.重心C.内心D.外心10.三个等圆O 1,O 2,O 3有公共点H ,点A 、B 、C 是其他交点,则H 是三角形ABC 的( )A .外心B .内心C .垂心D .重心二.填空题11.在半径为1的⊙O 中内接有锐角△ABC ,H 是△ABC 的垂心,角平分线AL 垂直于OH ,则BC = .12.如图,ADCFBE 是某工厂车间的一种剩余残料,且∠ACB =90°,现需要利用这块残料在△ABC 的外部制作3个等边△ADC 、△CBF 、△ABE 的内切圆⊙O 1、⊙O 2、⊙O 3,若其中最大圆⊙O 3的半径为0.5米,可使生产成本节约3元(节约成本与圆面积成正比),照此计算,则10块这样的残料可使生产成本节约 元.13.如图,在△ABC 中M 为垂心,O 为外心,∠BAC =60°,且△ABC 外接圆直径为10,则AM = .14.如图,锐角三角形ABC 内接于半径为R 的⊙O ,H 是三角形ABC 的垂心,AO 的延长线与BC 交于点M ,若OH ⊥AO ,BC =10,OA =6,则OM 的长= .15.设凸四边形ABCD 的对角线AC 与BD 相交于O ,△OAB ,△OBC ,△OCD ,△ODA 的重心分别为E ,F ,G ,H ,则S EFGH :S ABCD = .16.如图,I 是Rt △ABC (∠C =90°)的内心,过I 作直线EF ∥AB ,分别交CA 、CB 于E 、F .已知EI=m,IF=n,则用m、n表示S△ABC=.17.已知点I是锐角三角形ABC的内心,A1、B1、C1分别是点I关于边BC,CA,AB的对称点,若点B在△A1B1C1的外接圆上,则∠ABC等于.三.解答题18.如图所示,已知锐角△ABC的外接圆半径R=1,∠BAC=60°,△ABC的垂心和外心分别为H、O,连接OH、BC交于点P(1)求凹四边形ABHC的面积;(2)求PO•OH的值.19.如图,AD,BE,CF是△ABC的高,K,M,N分别为△AEF,△BFD,△CDE的垂心,求证:△DEF≌△KMN.20.如图,点H为△ABC的垂心,以AB为直径的⊙O1和△BCH的外接圆⊙O2相交于点D,延长AD交CH于点P,求证:点P为CH的中点.21.如图,△ABC的三边满足关系BC=(AB+AC),O、I分别为△ABC的外心、内心,∠BAC 的外角平分线交⊙O于E,AI的延长线交⊙O于D,DE交BC于H,求证:(1)AI=BD;(2)OI=AE.22.如图,H是锐角△ABC的垂心,O为△ABC的外心,过O作OD⊥BC,垂足为D.(1)求证:AH=2OD;(2)若AO=AH,求∠BAC的度数.23.如图,D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且∠FDE =∠A ,∠DEF =∠B .又设△AFE ,△BDF ,△CED 均为锐角三角形,它们的垂心依次为H 1,H 2,H 3,求证:1.∠H 2DH 3=∠FH 1E ;2.△H 1H 2H 3≌△DEF .24.如图,△ABC 为锐角三角形,CF ⊥AB 于F ,H 为△ABC 的垂心.M 为AH 的中点,点G 在线段CM 上,且CG ⊥GB .(1)求证:∠MFG =∠GCF ;(2)求证:∠MCA =∠HAG .25.如图,已知H 为锐角△ABC 的垂心,D 是使四边形AHCD 为平行四边形的一点,过BC 的中点M 作AB 的垂线,垂足为N ,K 为MN 的中点,过点A 作BD 的平行线交MN 于点G ,若A ,K ,M ,C 四点共圆.求证:直线BK 平分线段CG .参考答案一.选择题1.解:如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F∵MN∥AB,OD=OE=OF(夹在平行线间的距离处处相等)如图2,过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F',由裁剪知,OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点,∴点O是△ABC的内心,故选:C.2.解:内心是三角形的三条内角平分线的交点,而角平分线上的点到角的两边的距离相等,所以在三角形的四“心”中,到三角形三边距离相等的是内心;到三个顶点的距离相等的是外心.故选:C.3.解:如图,连接OA、OB、OC、OD,设每一个小方格的边长为1,由勾股定理可求得OA=OB=OC=,OD=2,∴O点在AB、AC、BC的垂直平分线上,∴点O为△ABC的外心,∵OA=OC≠OD,∴点O即不是△ACD的重心,也不是△ACD的内心,故选:B.4.解:如图,连接OA、OB、OC;∵∠BOC=2∠BAC=2∠BOD,∴∠BAC=∠BOD;同理可得:∠BOF=∠BCA,∠AOE=∠ABC;设⊙O的半径为R,则:OD=R•cos∠BOD=R•cos∠A,OE=R•cos∠AOE=R•cos∠B,OF=R•cos∠BOF=R•cos∠C,故OD:OE:OF=cos∠A:cos∠B:cos∠C,故选:D.5.解:∵点G是△ABC的重心,∴=2,作CE⊥AG于点E,连接EF,∴△CEG是直角三角形,∵∠EGC=60°,∴∠ECG=30°,那么EG=CG=GF,∴GE=GF,∠FGE=120°,∴∠GFE=∠FEG=30°,而∠ECG=30°,∴EF=EC,∵∠EFA=45°﹣30°=15°,∠FAD=∠AGC﹣∠AFC=15°,∴∠FAD=∠EFA,∴EF=AE,∴AE=EC,∵△AEC是等腰直角三角形,∴∠ACE=45°,∴∠ACF=∠ACE+∠ECF=30°+45°=75°,故选:D.6.解:结论:△ABC的垂心也一定在该函数图象上;理由:∵A、B、C都在y=上,∴可设A、B、C的坐标依次是:(a,)、(b,)、(c,).令H的坐标为(x,y).容易得出:AB的斜率==﹣,BC的斜率==﹣,AH的斜率=,CH的斜率=,∵AH⊥BC,CH⊥AB,∴=,=,∴a•=c•,∴(k﹣ay)(c﹣x)=(k﹣cy)(a﹣x),∴ck﹣kx﹣acy+axy=ak﹣kx﹣acy+cxy,∴(a﹣c)xy=(a﹣c)k.显然,a﹣c≠0,∴xy=k,即:y=.∴点H(x,y)在反比例函数y=的图象上.故选:D.7.解:如图,延长AD交△ABC的外接圆于G,连接BG,CG,∴△ABC的外接圆的半径等于△BGC的外接圆的半径,∵△ABC的外接圆半径为R,∴△BGC的外接圆半径为R,∵点H是△ABC的垂心,∴AD⊥BC,BE⊥AC,∴∠ADC=∠BEC=90°,∴∠CAD+∠ACB=90°,∠CBE+∠ACB=90°,∴∠CAD=∠CBE,∵∠CBG=∠CAD,∴∠CBE=∠CBG,同理:∠BCF=∠BCG,在△BCH和△BCG中,,∴△BCH≌△BCG(ASA),∴△BHC的外接圆的半径等于△BGC的外接圆的半径,∵△BHC的外接圆半径为r,∴△BGC的外接圆的半径为r,∴R=r,故选:A.8.解:如图,连接CE,AF,延长EB交MF于G,延长FB交ME于H,∵以Rt△ABC的两条直角边AB,BC为边作等边△ABE和等边△BCF,∴∠CBE=90°+60°=150°,∠FBE=360°﹣90°﹣60°﹣60°=150°,在△CBE与△FBE中,,∴△CBE≌△FBE(SAS);∴CE=FE,∠FEB=∠CEB,∴BE⊥CF于G,∴EG是△MEF的边FM上的高,同理:FH是△MEF的边EM上的高,∴点B是△MEF的三边的高,即:点B是△MEF的垂心.故选:A.9.解:∵BE丄AC,CF丄AB,∴四点B、C、E、F共圆(以BC为直径),∴∠EBF=∠FCE,∵HD丄BD,HF丄BF,∴四点B、D、H、F共圆(以BH为直径),∴∠HBF=∠FDH,同理,四点C、D、H、E共圆,(以CH为直径),∠HDE=∠HCE,∴∠HDE=∠HDF,∴DA平分∠EDF即可.同理可证EB平分∠DEF,FC平分∠EFD,∴H是△DEF的角平分线的交点,∴H是△DEF的内心.故选:C.10.解:延长AH交BC于E点,延长CH交AB于F点,如图,∵三个等圆O1,O2,O3有公共点H,∴∠1所对的弧BH与∠4所对的弧BH为等弧;∠2所对的弧CH与∠5所对的弧CH为同弧;∠3所对的弧AH与∠6所对的弧AH为同弧,∴∠1=∠4,∠2=∠5,∠3=∠6,∵∠1+∠2+∠3+∠4+∠5+∠6=180°,∴2∠2+2∠3+2∠4=180°,2∠1+2∠3+2∠2=180°,∴∠2+∠3+∠4=90°,∠1+∠3+∠2=90°,∴AE⊥BC,CF⊥AB,∴点H为△ABC的垂心.故选:C.二.填空题(共7小题)11.解:设AL与⊙O交于点D,与OH交于点N,连接OD,交BC于点M,连接CO并延长交⊙O于点G,连接GA、GB、AO,如图所示,∵CG是⊙O的直径,∴∠CBG=∠CAG=90°,∴BG⊥BC,AG⊥AC.∵H为△ABC的垂心,∴AE⊥BC,BF⊥AC,∴AE∥BG,AG∥BF,∴四边形AGBH是平行四边形,∴BG=AH.∵AL平分∠BAC,∴∠BAD=∠CAD,∴=,根据垂径定理的推论可得:OD⊥BC.∵AE⊥BC,∴OD∥AE,∴∠ODA=∠EAD.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EAD.∵AL垂直于OH,∴∠ANO=∠ANH=90°.在△ANO和△ANH中,,∴△ANO≌△ANH(ASA),∴AO=AH,∴BG=AH=AO=1.在Rt△GBC中,∵BG=1,GC=2,∴BC==.故答案为:.12.解:由勾股定理和相似图形的性质可知,⊙O1的面积+⊙O2的面积=⊙O3的面积,∵⊙O3可使生产成本节约3元,∴1块这样的残料可使生产成本节约6元.则10块这样的残料可使生产成本节约6×10=60元.故答案为:60.13.解:延长AM交BC于D,延长CM交AB于E,作直径BF,连结AF,如图,∵BF为⊙的直径,∴∠BAF=90°,∴sin F==,∴AB=10•sin F=10•sin∠ACB,又∵点M为△ABC的垂心,∴AD⊥BC,CE⊥AB,∴∠ADB=∠AEC=90°,∴△AEM∽△ADB,∴=,即AM=,在Rt△AEC中,∠EAC=60°,AC=2AE,即AE=AC,在Rt△ADC中,sin∠ACD=,即AD=AC•sin∠ACD,∴AM==5.故答案为5.14.解:如图,连接BO并延长交圆于F,连接CF,AH,连接AF,CH,过点O作ON⊥BC于N,∵BF是⊙O的直径,∴∠BCF=∠BAF=90°,∴ON∥FC,∵OB=OF,∴ON是△BCF的中位线,∴CF=2ON.∴BN=CN=BC=5,在Rt△OBN中,OB=OA=6,BN=5,∴ON==,∴CF=2ON=2,∵H是△ABC的垂心,∴AH⊥BC,∵CF⊥BC,∴AH∥CF,同理可得:CH∥AF,∴四边形AHCF是平行四边形,∴AH=CF=2∵H是△ABC的垂心,∴AH⊥BC,∵ON⊥BC,∴AH∥ON,∴∠OAH=∠NOM,∵OH⊥AM,∴∠AOH=∠ONM=90°,∴△AOH∽△ONM,∴,∴,∴OM=.故答案为.15.解:如图:∵E、F分别是△OAB与△OBC的重心,∴,∴EF∥AC,同理:FG∥BD,HG∥AC,HE∥BD,∴ERUQ,RUSF,USGT,THQU,EFGH是平行四边形,∵,∴,同理:,∴,∴,同理:,,.∴.16.解:如图,过I分别作三边的垂线,垂足为D、F、G,设AB=c,BC=a,AC=b,ID=IH=IG=r,由△ABC∽△EIG∽△IFH,得=,=,解得a=,b=,由勾股定理,得c2=a2+b2,得1=+,解得r=,又ab=2S△ABC=r(a+b+c),∴=r(++c),解得c=m+n+=m+n+,∴S△ABC=ab==()2(m+n+)2=.故答案为:.17.解:∵I是锐角三角形ABC的内心,∴∠DBI=∠ABC,∵A1、B1、C1分别是点I关于边BC,CA,AB的对称点,∴ID=A1D=IA1,∠BDI=90°,∵点B在△A1B1C1的外接圆上,∴IB=IA1,∴ID=IB,∴∠IBD=30°,∴∠ABC=60°.故答案为:60°.三.解答题(共8小题)18.解:(1)如图:连接BO并延长交⊙O于点G,连接AG、CG、CO,延长CH交AB于F,延长BH交AC于E,延长AH交BC于N,作OM⊥BC于M.∵BG是直径,∴GA⊥AB,GC⊥BC,∵H为垂心,∴BE⊥AC,CF⊥AB,AN⊥BC,∴GA∥CH,GC∥AH,∴AGCH是平行四边形,∴AG=GC,∵∠BA C=60°,OB=OC,∴∠OBC=∠OCB=30°,∴OM=OB=,BM=,∴BC=,又∵OM=CG,∴AH=2OM=1,设凹四边形的面积为S,则S=S△AHB+S△AHC=×AH×BN+×AH×CN=×AH×BC=,(2)∵BE⊥AC,CF⊥AB,AN⊥BC,∠BAC=60°,∴∠ACF=30°,∴∠CHE=60°,∴∠BHC=120°,∴B、C、H、O四点共圆,∵∠OBC=∠OCB=30°,∴∠CHP=∠OBC=30°,∴∠OHC=∠OCP=150°,∴△OHC∽△OCP,∴OH•OP=OC2=1.19.证明:如图:∵OD⊥BC,FM⊥BC,∴OD∥FM,∵OF⊥AB,DM⊥AB,∴OF∥DM,∵DMFO是平行四边形,同理OFKE,ODNE均为平行四边形,∴MD∥KE,MD=KE,∴MDEK也是平行四边形,∴DE=MK,同理DF=KN,EF=MN∴△DEF≌△KMN(SSS).于点Q,20.证明:如图,延长AP交⊙O2连接AH,BD,QB,QC,QH.因为AB为⊙O的直径,1所以∠ADB=∠BDQ=90°.(5分)故BQ为⊙O的直径.2于是CQ⊥BC,BH⊥HQ.(10分)又因为点H为△ABC的垂心,所以AH⊥BC,BH⊥AC.所以AH∥CQ,AC∥HQ,四边形ACQH为平行四边形.(15分)所以点P为CH的中点.(20分)21.证明:(1)作IG⊥AB于G点,连BI,BD,如图,∴AG=(AB+AC﹣BC),而BC=(AB+AC),∴AG=BC,又∵AD平分∠BAC,AE平分∠BAC的外角,∴∠EAD=90°,∴O点在DE上,即ED为⊙O的直径,而BD弧=DC弧,∴ED垂直平分BC,即BH=BC,∴AG=BH,而∠BAD=∠DAC=∠DBC,∴Rt△AGI≌Rt△BHD,∴AI=BD;(2)∵∠BID=∠BAI+∠ABI,而∠BAI=∠DBC,∠ABI=∠CBI,∴∠DBI=∠BID,∴ID=DB,而AI=BD,∴AI=ID,∴OI为三角形AED的中位线,∴OI=AE.22.(1)证明:如图1,连接BH并延长交AC于E,∴BE⊥AC,过O作OF⊥AC于F,则F为AC的中点,连接CH,取CH中点N,连接FN,DN,则FN∥AM,AH=2FN,DN∥BE,∵AM⊥BC,OD⊥BC,∴OD∥AM,∴FN∥OD,∵BE⊥AC,OF⊥AC,∴BE∥OF,∵OD⊥BC,∴D为BC中点,∵N为CH中点,∴DN∥BE,∴DN∥OF,∴四边形ODNF是平行四边形,∴OD=FN,∵AH=2FN,∴AH=2OD.(2)解:如图2,连接OB,OC,∴OA=OB,∵OA=AH,∴OB=AH,由(1)知,AH=2OD,∴OB=2OD,在Rt△ODB中,cos∠BOD==,∴∠BOM=60°,∵OD⊥BC,∴∠BOC=2∠BOD=120°,∴∠BAC=∠BOC=60°.23.证明:(1)∵H2是△BDF的垂心,⊥BF,∴DH2DB=90°﹣∠B,∴∠H2同理:∠H 3DC =90°﹣∠C ,∴∠H 2DH 3=180°﹣∠H 2DB ﹣∠H 3DC =∠B +∠C , ∵H 1是△AEF 的垂心,∴∠H 1EF =90°﹣∠AFE ,∠H 1FE =90°﹣∠AEF , ∴∠EH 1F =180°﹣∠H 1EF ﹣∠H 1FE =180°﹣(90°﹣∠AFE )﹣(90°﹣∠AEF ) =180°﹣∠A =∠B +∠C ,∴∠H 2DH 3=∠FH 1E ;(2)如图,由(1)知,∠FH 1E =∠B +∠C , ∵∠FDE =∠A ,∠A +∠B +∠C =180°,∴∠FH 1E +∠EDF =180°,∴H 1在△DEF 的外接圆上,同理:H 2,H 3也在△DEF 的外接圆上,∴D ,H 2,F ,H 1,E ,H 3六点共圆,由(1)知,∠EH 1F =∠H 2DH 3,∴EF =H 2H 3,同理:DF =H 1H 3,DE =H 1H 2,∴△DEF ≌△H 1H 2H 3(SSS ).24.证明:(1)如图延长AH 交BC 于T .∵H 是△ABC 的垂心,∴∠THC =∠HFA =90°,∵∠THC =∠AHF ,∴∠HCT =∠FAH ,在Rt △AFH 中,∵AM =MH ,∴FM=AM=MH,∴∠FAH=∠MFA,∴∠MFA=∠HCT,∵BG⊥CM,∴∠BFC=∠BGC=90°,∴B、C、G、F四点共圆,∴∠AFG=∠BCG,∴∠AFM+∠MFG=∠HCT+∠MCF,∴∠MFG=∠GCF.(2)∵∠FMG=∠FMC,∠MFG=∠MCF,∴△MFG∽△MCF,∴=,∴MF2=MG•MC,∵MA=MF,∴MA2=MG•MC,∴=,∵∠AMG=∠AMC,∴△MAG∽△MCA,∴∠MCA=∠HAG.25.证明:如图,设BK交CG于E,连接AG,AK,∵A,K,M,C四点共圆,∴∠AC B=∠AKG(外角等于内对角),∵H是△ABC的垂心,∴AH⊥BC,CH⊥AB,∵四边形AHCD是平行四边形,∴CH∥AD,AH∥CD,∴CD⊥BC,AD⊥AB,∴∠BCD=∠BAD=90°,∴∠BAD+∠BCD=180°,∴点A,B,C,D四点共圆,∴∠5=∠ACB=∠AKG,∵AH⊥BC,MN⊥AB,AD⊥AB,∴∠1=∠2=∠4,∵AG∥BD,∴∠3=∠4=∠2,在△ANG和△ANK中,,∴△ANG≌△ANK,∴GN=KN=MK,∴MK=KG,∵直线BKE截得△GMC,由梅涅劳斯定理得:,∵点M是CB中点,∴CB=2BM,∴GE=EC,∴直线BK平分线段CG.。
三角形内心典型题

1、三角形的三条角平分线交于一点,这一点是三角形的:A. 外心B. 内心C. 重心D. 垂心(答案:B)2、已知三角形的内心到三角形三边的距离分别为d1, d2, d3,若d1 + d2 + d3 = 6,且三角形的周长为12,则三角形的面积等于:A. 6B. 12C. 18D. 24(答案:B)3、在三角形ABC中,I为内心,若∠BIC = 130°,则∠A的度数为:A. 50°B. 65°C. 80°D. 100°(答案:B)4、设三角形ABC的内心为I,半径为r,若三角形ABC的面积为S,则以下关系正确的是:A. S = r(a + b + c) / 2B. S = r(a + b - c)C. S = r(a + b + c)D. S = 2r(a + b + c)(答案:A)5、三角形ABC的内心I到三边AB, BC, CA的距离分别为d1, d2, d3,若d1:d2 = 2:3:4,且三角形ABC的周长为27,则三角形ABC的最短边长为:A. 6B. 9C. 12D. 15(答案:A)6、在三角形ABC中,内心I到顶点A的距离为3,到边BC的距离为1,若∠BIC = 120°,则三角形ABC的面积为:A. 3√3B. 6√3C. 9√3D. 12√3(答案:A)7、三角形ABC的内心为I,若∠A = 60°,∠BIC = 125°,则∠C的度数为:A. 55°B. 65°C. 75°D. 85°(答案:B)8、在三角形ABC中,若内心I到三边AB, BC, CA的距离之和为6,且三角形ABC的周长为12,则三角形ABC的面积是:A. 12B. 18C. 24D. 36(答案:A)。
初中数学竞赛三角形的四心(含答案)

初中数学竞赛三⾓形的四⼼(含答案)三⾓形的四⼼三⾓形的四⼼,指的是三⾓形的垂⼼。
重⼼、内⼼、外⼼,它们的性质在⼏何证明与计算中具有重要的作⽤。
(1)三⾓形的垂⼼是指三条⾼线的交点。
垂⼼常⽤字母H来表⽰。
(2)三⾓形的垂⼼是指三条中线的交点。
重⼼常⽤字母G来表⽰。
重⼼到顶点的距离是它到对边中点距离的⼆倍。
(3)三⾓形的内⼼是指三条内⾓平分线的交点。
内⼼常⽤字母I来表⽰。
内⼼到三边的距离相等。
(4)三⾓形的外⼼是指三边的中垂线的交点外⼼常⽤字母O来表⽰。
外⼼到三⾓形三个顶点的距离相等。
例1已知G为△ABC的重⼼,不过三⾓形顶点的直线L过G点,从A、B、C三点向直线L引垂线AO, BE,CF,O,E,F为垂⾜。
求证:AO=BE+CF。
思路直接证AO=BE+CF⽐较困难。
可考虑连AG延长交BC于D,过D作于H,则可知DH为梯形BCFE的中位线,问题即可得证。
证明如图3-15-1所⽰,连AG并延长交BC于D。
∵G是重⼼,BD=DC。
过D点作于H,⼜∴DH为梯形BCFE的中位线,⼜∵△AOG∽△DHG,即因此,AO=BE+CF。
例2如图3-15-2, I 为△ABC的内⼼,且I,D,C,E在同⼀圆周上,若DE=1,试求ID和IE之长。
思路分析由I,D,C,E四点共圆可知,⼜由I为△ABC的内⼼知故可求得这时问题即可解决。
解∵I, D, C, E共圆,⼜∵I为△ABC的内⼼。
从⽽知连CI则∵I, D, C, E 共圆。
因⽽ID=IE。
在△DIE中,即由余弦定理解得例3已知△ABC的重⼼G和内⼼O的连线GO//BC,求证AB+CA=2BC。
思路1 由于题设中有内⼼O的条件,所以可考虑利⽤三⾓形内⾓平分线定理证之。
证明1 如图3-15-3,连AG, AO并延长交BC于M,T,连CO,则AG为中线,AO和CO分别为的平分线。
⼜∵CO是∠ACB的平分线,得CA=2CT。
同理可证AB=2BT。
∴AB+CA=2(BT+CT)=2BC。
几何三角形的五心练习及解答

第五讲 三角形的五心三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理. 例1. 过等腰△底边上一点引∥交于;引∥交于.作点关于的对称点′.试证:′点在△外接圆上.(杭州大学《中学数学竞赛习题》)例.在△的边,,上分别取点,,.证明以△,△,△的外心为顶点的三角形与△相似.(·波拉索洛夫《中学数学奥林匹克》) 二、重心A BCPP MN'A BCQK P O O O ....S123三角形三条中线的交点,叫做三角形的重心.掌握重心将每条中线都分成定比及中线长度公式,便于解题.例.,,是△的三条中线,是任意一点.证明:在△,△,△中,其中一个面积等于另外两个面积的和.(第届莫斯科数学奥林匹克)例.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真. 三、垂心三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角AA 'F F 'GEE 'D 'C 'PCBD.OA A A A 1234H H 12形,给我们解题提供了极大的便利.例.设1A 2A 3A 为⊙内接四边形,,,,依次为△2A 3A ,△3A 4A ,△4A 1A ,△1A 2A 的垂心.求证:,,,四点共圆,并确定出该圆的圆心位置.例.为△的垂心,,,分别是,,的中心.一个以为圆心的⊙交直线,,于,,,,,.求证:.四、内心三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:H H H MA B B A A B C CC F12111222D E设为△的内心,射线交△外接圆于′,则有′′′.换言之,点′必是△之外心(内心的等量关系之逆同样有用).例.已知⊙内接△,⊙切,于,且与⊙内切.试证:中点是△之内心. 五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起,旁心还与三角形的半周长关系密切. 例.在直角三角形中,求证:.式中,,,分别表示内切圆半径及与,,相切的旁切圆半径,表示半周. 分析:设△中,为斜边,先来证明一个特性:()()(). ∵()21()·21() 41[()] 21; ()()21()·21()41[()]21.∴()()().① 观察图形,可得,,.而21(). ∴()()()().由①及图形易证.例.是△边上的任意一点,,分别是△,△,△内切圆的半径,,,分别是上述三角形在∠内部的旁切圆半径.证明:11q r ·22q r qr.()分析:对任意△′′′,由正弦定理可知′·2'sinA AααMBC NE R OQFr P A ...'B 'C 'O O 'ED′′·'''sin 2'sin B O A B ∠·2'sin A ′′·2''sin 2'sin2'sin B A B A +⋅,′ ′′·2''sin 2'cos2'cos B A B A +.∴2'2''B tg A tg E O OD =.亦即有11q r ·22q r 2222B tg CNB tg CMA tg A tg ∠∠22B tg A tg qr.六、众心共圆这有两种情况:()同一点却是不同三角形的不同的心;()同一图形出现了同一三角形的几个心.例.设在圆内接凸六边形中,,,.试证:(),,三条对角线交于一点;()≥.(,国家教委数学试验班招生试题)分析:连接,,,由已知可证,,是△的三条内角平分线,为△的内心.从而有,, .再由△,易证,,是它的三条高,是它的垂心,利用不等式有: ≥·(). 不难证明,,. ∴≥. ∴ ()≥()() 就是一点两心.例.△的外心为,,是中点,是△的重心. 证明丄.分析:设为高亦为中线,取中点,必在上且.设 交于,必为△重心.连,,交于.易证:31).∴⇒∥. ∵丄,∥,∴丄⇒丄.但丄⇒又是△之垂心.易证丄.例.△中∠°,是外心,是内心,边上的点与边上的点使得.求证:丄,. 分析:辅助线如图所示,作∠平分线交于.I PABCDEFQ SABCDE FOKG O ABCDEF I K30°易证△≌△≌△,∠∠∠. 利用内心张角公式,有∠°21∠°, ∴∠°°×°. ∵∠°21∠°21(∠∠)°21(∠°)21∠∠∠.∴∥. 由等腰△可知丄,∴丄,即是△的一条高. 同理是△之垂心,丄.由∠∠,易知.。
平面几何:有关三角形五心的经典试题及证明

平面几何:有关三角形五心的经典试题及证明咅部门:XXX时间:XXX整理范文,仅供参考,可下载自行编辑平面几何:有关三角形五心的经典试卷三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.例1.过等腰△ ABC底边BC上一点P弓I PM/ CA交AB于M引PN// BA交AC于N.作点P关于MN的对称点P'.试证:P'点在厶ABC 外接圆上.b5E2RGbCAP(杭州大学《中学数学竞赛习题》>p:「A分析:由已知可得MP =MP=MBNP二=NC故点皿是厶P‘ BP的外心,点3P CN是厶P‘ PC的外心.有/ BP P=0 / BMP= / BAC/ PP C= | Z PNC= / BAC.•••/ BP C=Z BP P+Z P‘ PC Z BAC.从而,P f点与A, B, C共圆、即P f在厶ABC外接圆上.由于P‘ P平分Z BP C,显然还有P‘ B:P ' C=BP:PC.例2 .在△ ABC的边AB, BC, CA上分别取点P, Q, S.证明以△ APS △ BQP △ CSQ的外心为顶点的三角形与△ ABC 相似.p1Ea nqFDPw(B •波拉索洛夫《中学数学奥林匹克》 > AA.01P02Q0后再由外 心性质可知/ P01S=2A, / QO2P=2 B , / SO3Q=2 C.•••2 P01S 2 QO2P 2 SO3Q=36° .从而又知 2 01P02+2 O2QO32O3SO1=36°将 △ O2QO3绕着 03点旋转到 △ KS03 ,易判断△ KSO ^A 02P01 同时可得厶 0102*△ O1KO3.DXDiTa9E3d• 2 0201032 K0103= 2 0201K= 」(2 0201S 2 S01K>= |( 2 0201S 2 P0102>=勺 2 P01S 2 A ;同理有 2 0102032 B.故厶 01020^△ ABC. 、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题分析:设 01, 02 03是4 APS △ BQP P△ CSG 的外心,作出六边形KQ C,BC 相交.从A ,C, D, E ,F 分别 作该直线的垂线,垂足为 A', C ,有 S A PGE 二△PGD+S PGF.两边各扩大3倍,有S A PBE=S\ PAD+金 PCF.例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.分析:将厶ABC 简记为△,由三中线 AD BE, CF 围成的三角形简记为△' .G 为重心,连DE 到H,使EH=DE 连HC HF,则△' 就是△ HCF.5PCzVD7HxA (1>a2, b2, c2成等差数列若厶ABC 为正三角形,易证 不妨设a >b >c ,有CF= ______ BE=I例3. AD, BE, CF 是厶ABC 的三条中线,P 是任意一点.证明:在△ PAD △ PBE △ PCF 中,其中一个面积等于另外两个面积 的和只TCrpUDGiT第26届莫斯科数学奥林匹克> B分析: 设 GABC 重心,直线 PG 与 AB••• EE 易证 AA =2DD , CC =2FF‘,2EE=DD +FF .=AA +CC ,7-CPAD= || .将a2+c2=2b2,分别代入以上三式,得CF= | , BE= , AD=1J .••• CF:BE:AD =凶:|二1| : 2]=a:b:c.故有.(2>a2, b2, c2 成等差数列.当△中a>b>c时,△'中CF> BE> AD.•=(日>2.据“三角形的三条中线围成的新三角形面积等于原三角形面积的勺”,有凶=].•••因二月回3a2=4CF2=2a2+b2-c2a2+c2=2b2.三、垂心三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接> 圆三角形,给我们解题提供了极大的便利.jLBHrnAlLg例5.设A1A2A3A4为。
初三数学2019部审湘教版三角形的内心与外心规律题

初三数学部审湘教版三角形的内心与外心规律题
1、如图,△ABC内接于⊙O,其外角平分线AD交⊙O于DM⊥AC于M,下列结论:①DB=DC;
②AC-AB=2AM;答案B 解析
2、如图是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是(; 答案C 解析
3、下列四张扑克牌图案,属于中心对称的是(;).答案B 解析
4、(2014?兰山区一模)为了让返乡农民工尽快实现再就业,某区加强了对返乡农民工培训经费的投入.2008年投入30 答案A 解析试题分析:本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果这两年培训经费的年平均增长率为x,根据题意即可列出方程.解:∵增长后的量=增长前的量×(1+增长率),∴3000(1+x)2=5000故选A.点评:本题主要考查:复利公式:“a(1+x%)n=b”的应用,理解公式是解决本题的关键.
5、下列二次根式中与同类二次根式的是………………………(答案C 解析
6、在中,分式的个数是()A 答案B 解析
7、己知A、B两点在数轴上表示的数分别为a,b,且a与b的积小于0,则A、B两点在数轴上的位置是( 答案D 解析
8、若,则有; 答案A 解析
9、如图,正方形图案绕中心O旋转180°后,得到的图案是( 答案D 解析
10、下列运算正确的是 A.x2+x3="x5" B.x8cedil;x2=" 答案D 解析
11、某等腰三角形的两条边长分别为3cm和6cm,则它的周长为答案C 解析
七年级数学苏科课标版用反比例函数解决实际问题
12,下面的几何体的左视图是答案C 解析
13、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形内心、外心专项训练
内心相关知识
一、判断题
1、在同一平面内,到三角形三边距离相等的点只有一个
2、在同一平面内,到三角形三边所在直线距离相等的点只有一个
3、三角形三条角平分线交于一点(三角形的内心)
4、等腰三角形底边中点到两腰的距离相等
5、三角形是以它的角平分线为对称轴的轴对称图形
二、填空题
6、如图(1),点P为△ABC三条角平分线交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD__________PE__________PF.
7、如图(2),P是∠AOB平分线上任意一点,且PD=2cm,若使PE=2cm,则PE与OB的关系是__________.
8、如图(3),CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、CB于点E、F,FG ⊥AB,垂足为G,则CF__________FG,∠1+∠3=__________度,∠2+∠4=__________度,∠3__________∠4,CE__________CF.
9、如右图,E、D分别是AB、AC上的一点,∠EBC、∠BCD的角平分线交于点M,∠BED、∠EDC的角平分线交于N.
求证:A、M、N在一条直线上.
证明:过点N作NF⊥AB,NH⊥ED,NK⊥AC
过点M作MJ⊥BC,MP⊥AB,MQ⊥AC
∵EN平分∠BED,DN平分∠EDC
∴NF__________NH,NH__________NK
∴NF__________NK
∴N在∠A的平分线上
又∵BM平分∠ABC,CM平分∠ACB
∴__________=__________,__________=__________
∴__________=__________
∴M在∠A的__________上
∴M、N都在∠A的__________上
∴A、M、N在一条直线上
三、作图题
10、利用角平分线的性质,找到△ABC内部距三边距离相等的点.
11、在下图△ABC所在平面中,找到距三边所在直线
..距离相等的点.
12、如下图,一个工厂在公路西侧,在河的南岸,工厂到公路的距离与到河岸的距离相等,且与河上公路桥南首(点A)的距离为300米.请用量角器和刻度尺在图中标出工厂的位置.
四、解答题
13、已知:如下图在△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若BC=32,且BD∶CD=9∶7,求:D到AB边的距离.
外心相关知识
一、判断题
1、三角形三条边的垂直平分线必交于一点(三角形的外心)
2、以三角形两边的垂直平分线的交点为圆心,以该点到三角形三个顶点中的任意一点的距离为半径作圆,必经过另外两个顶点
3、平面上只存在一点到已知三角形三个顶点距离相等
4、三角形关于任一边上的垂直平分线成轴对称
二、填空题
5、如左下图,点P为△ABC三边中垂线交点,则PA__________PB__________PC.
6、如右上图,在锐角三角形ABC中,∠A=50°,AC、BC的垂直平分线交于点O,则∠1_______∠2,∠3______∠4,∠5______∠6,∠2+∠3=________度,∠1+∠4=______度,∠5+∠6=_______度,∠BOC=_______度.
7、如左下图,D为BC边上一点,且BC=BD+AD,则AD__________DC,点D在__________的垂直平分线上.
8、如右上图,在△ABC中,DE、FG分别是边AB、AC的垂直平分线,则∠B__________∠1,∠C__________∠2;若∠BAC=126°,则∠EAG=__________度.
9、如左下图,AD是△ABC中BC边上的高,E是AD上异于A,D的点,若BE=CE,则△__________≌△__________(HL);从而BD=DC,则△________≌△_________(SAS);△ABC是__________三角形.
10、如右上图,∠BAC=120°,AB=AC,AC的垂直平分线交BC于D,则∠AD B=_________度.
三、作图题
11、(1)分别作出点P,使得PA=PB=PC
(2)观察各图中的点P与△ABC的位置关系,并总结规律:
当△ABC为锐角三角形时,点P在△ABC的__________;
当△ABC为直角三角形时,点P在△ABC的__________;
当△ABC为钝角三角形时,点P在△ABC的__________;
反之也成立,且在平面内到三角形各顶点距离相等的点只有一个.
四、类比联想
12、既然任意一个三角形的三边的垂直平分线交于一点,那三角形的三边上的中线是否也交于一点;三个角的平分线是否也交于一点;试通过折纸或用直尺、圆规画图验证这种猜想.。