九年级数学上册-认识一元二次方程第2课时一元二次方程的根及近似解教案新版北师大版

合集下载

北师大版九年级数学上册《认识一元二次方程》第2课时示范公开课教学设计

北师大版九年级数学上册《认识一元二次方程》第2课时示范公开课教学设计

第二章一元二次方程1认识一元二次方程第2课时一、教学目标1.理解方程解的概念.2.经历对一元二次方程解的探索过程能理解其意义.3.会利用“两边夹”的思想估算一元二次方程的解.4.培养学生的估算意识和能力,发展学生的数感.二、教学重难点重点:探索一元二次方程的解和近似解.难点:利用“两边夹”的思想估算一元二次方程的解. 三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【合作探究】教师活动:通过列表让学生直观的感受到方程的解满足的条件,从而引出一元二次方程的解,再通过延续上一节课的两个具体问题,引导学生估算一元二次方程的解,从而归纳得出用“两边法”求一元二次方程的基本步骤.问题1:下面哪些数是方程x2–2x–8=0的解?-4,-3,-2,-1,0,1,2,3,4预设:列表归纳:像数-2,4使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解(又叫做根).问题2:在上一课中,我们知道四周未铺地毯部分的宽度x满足方程(8-2x)(5-2x)=18,你能求出这个宽度吗?(1)x可能小于0吗?说说你的理由.预设:x不可能小于0,因为宽度不能为负.追问:x可能大于4吗?可能大于2.5吗?说说你的理由.预设:x不可能大于4,(8-2x)表示地毯的长,所以有8-2x>0,x不可能大于2.5,(5-2x)表示地毯的宽,所以有5-2x>0.(2)你能确定x的大致范围吗?预设:由(1)可知:0<x<2.5(3)填写下表:预设:(4)你知道地毯花边的宽x(m)是多少吗?预设:由(3)列表可知,当x=1时,方程两边相等,所以地毯花边的宽1m.你还有其他求解方法吗?预设:教师鼓励学生尝试别的方法,可以考虑从运算的角度18等于6×3.【做一做】问题3:在上一课中,梯子的底端滑动的距离x 满足方程72+(x+6)2=102,也就是x2+12x-15=0.(1)小明认为底端也滑动了1m,他的说法正确吗?为什么?(2)底端滑动的距离可能是2m吗?可能是3m吗?为什么?预设:(1)不正确,因为x=1时不满足方程.(2)不可能是2,因为x=2时不满足方程.不可能是3,因为x=3时不满足方程.(3)你能猜出滑动距离x(m)的大致范围吗?预设:在(1)(2)基础上列表:观察表格发现,当x=1时,x2+12x-15小于0,当x=2时,x2+12x-15大于0,所以猜测1<x<2,即滑动距离在1m到2m之间.(4)由(3)可知x的整数部分是1,那它的十分位是几?预设:下面是小亮的求解过程:可知x取值的大致范围是:1<x<1.5.进一步计算:所以1.1<x<1.2,因此x整数部分是1,十分位部分是1.【归纳】上述求解是利用了“两边夹”的思想,用“两边夹”思想解一元二次方程的步骤:①在未知数x的取值范围内排除一部分取值;②再次进行排除,取值范围确定在两个连续整数之间;③对列出能反映未知数和方程的值的表格进行再次筛选;④最终得出未知数的最小取值范围或具体数据.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例请估算出一元二次方程x2-2x-1=0的正数根(精确到0.1).分析:①先列表确定整数部分,当2<x<3时,-1<x2-2x-1<2,则正数根在2到3之间;②再列表确定十分位部分,当2.4<x<2.5时,-0.04<x2-2x-1<0.25,则正数根在2.4到2.5之间;③最后确定百分位部分,当x=2.45时,x2-2x-1的值是否大于0,若大于0,则正数根在2.40到2.45之间,若小于0,则正数根在2.45到2.50之间.再根据精确到0.1,四舍五入取值即可.解:(1)列表.依次取x=0,1,2,3,…由上表可发现,当2<x<3时,-1<x2-2x-1<2;(2)继续列表,依次x=2.1,2.2,2.3,2.4,2.5,…由表发现,当2.4<x<2.5时,-0.04<x2-2x-1<0.25;(3)取x=2.45,则x2-2x-1≈0.1025.∴ 2.4<x<2.45,∴x≈2.4即正数根为2.4.教师给出练习,随时观察学生完成情况并相应1.五个连续整数,前三个数的平方和等于后两个数的平方.您能求出这五个整数分别是多少吗?2.根据题意,列出方程,并估算方程的解:一个面积为120m2的矩形苗圃,它的长比宽多2m.苗圃的长和宽各是多少?3.有一条长为16m的绳子,你能否用它围出一个面积为15m2的矩形?若能,则矩形的长、宽各是多少?答案:1.解:设第一个整数为x.x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.3x2+6x+5=2x2+14x+25.x2-8x-20=0.列表:所以x=-2或10.所以,这五个整数分别是10,11,12,13,14或-2,-1,0,1,2.2.解:设苗圃的宽为x m,则长为(x+2)m,根据题意得:x(x+2)=120.即x2+2x-120=0.列表:所以,苗圃的宽为10m,长为12m.3.解:能,设矩形的宽为x m,则长为(8-x)m,依题意,得x(8-x)=15.即:x2-8x+15=0.列表:所以,矩形的宽为3m,长为5m.思维导图的形式呈现本节课的主要内容:教科书第35页。

北师大版九年级数学上册第二章一元二次方程《认识一元二次方程》教案1

北师大版九年级数学上册第二章一元二次方程《认识一元二次方程》教案1

2.1 认识一元二次方程教案 第1课时 一元二次方程1.了解一元二次方程的概念;(重点)2.掌握一元二次方程的一般形式ax 2+bx +c =0(a ,b ,c 为常数,a ≠0),能分清二次项、一次项与常数项以及二次项系数、一次项系数等,会把一元二次方程化成一般形式;(重点)3.能根据具体问题的数量关系,建立方程的模型.(难点)一、情景导入一个面积为120m 2的矩形苗圃,它的长比宽多2m ,苗圃的长和宽各是多少?设苗圃的宽为x m ,则长为(x +2)m. 根据题意,得x (x +2)=120. 所列方程是否为一元一次方程?(这个方程便是即将学习的一元二次方程.) 二、合作探究探究点一:一元二次方程的概念 【类型一】 判定一元二次方程下列方程中,是一元二次方程的是________(填入序号即可). ①4y2-y =0;②2x 2-x -3=0;③x21=3; ④x 2=2+3x ;⑤x 3-x +4=0;⑥t 2=2; ⑦x 2+3x -x 3=0;⑧=2.解析:由一元二次方程的定义知③⑤⑦⑧不是,答案为①②④⑥.方法总结:判断一个方程是不是一元二次方程,先看它是不是整式方程,若是,再对它进行整理,若能整理为ax 2+bx +c =0(a ,b ,c 为常数,a ≠0)的形式,则这个方程就是一元二次方程.【类型二】 根据一元二次方程的概念求字母的值a 为何值时,下列方程为一元二次方程?(1)ax 2-x =2x 2-ax -3;(2)(a -1)x |a |+1+2x -7=0.解析:(1)将方程转化为一般形式,得(a -2)x 2+(a -1)x +3=0,所以当a -2≠0,即a ≠2时,原方程是一元二次方程;(2)由|a |+1=2,且a -1≠0知,当a =-1时,原方程是一元二次方程.解:(1)当a ≠2时,方程ax 2-x =2x 2-ax -3为一元二次方程; (2)因为|a |+1=2,所以a =±1.当a =1时,a -1=0,不合题意,舍去.所以当a =-1时,原方程为一元二次方程.方法总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的值.【类型三】 一元二次方程的一般形式把下列方程转化成一元二次方程的一般形式,并指出二次项系数、一次项系数和常数项:(1)x (x -2)=4x 2-3x ;(2)3x2-2x +1=2-x -1;(3)关于x 的方程mx 2-nx +mx +nx 2=q -p (m +n ≠0).解析:首先对上述三个方程进行整理,通过“去分母,去括号,移项,合并同类项”等步骤将它们化为一般形式,再分别指出二次项系数、一次项系数和常数项.解:(1)去括号,得x 2-2x =4x 2-3x .移项、合并同类项,得3x 2-x =0.二次项系数为3,一次项系数为-1,常数项为0;(2)去分母,得2x 2-3(x +1)=3(-x -1).去括号、移项、合并同类项,得2x 2=0.二次项系数为2,一次项系数为0,常数项为0;(3)移项、合并同类项,得(m +n )x 2+(m -n )x +p -q =0.二次项系数为m +n ,一次项系数为m -n ,常数项为p -q .方法总结:(1)在确定一元二次方程各项系数时,首先把一元二次方程转化成一般形式,如果在一般形式中二次项系数为负,那么最好在方程左右两边同乘-1,使二次项系数变为正数;(2)指出一元二次方程的各项系数时,一定要带上前面的符号;(3)一元二次方程转化为一般形式后,若没有出现一次项bx ,则b =0;若没有出现常数项c ,则c =0.探究点二:建立一元二次方程模型如图,现有一张长为19cm ,宽15cm 的长方形纸片,需要在四个顶角处剪去边长是多少的小正方形,才能将其做成底面积为81cm 2的无盖长方体纸盒?请根据题意列出方程.解析:小正方形的边长即为纸盒的高,中间虚线部分则为纸盒底面,设出未知数,利用长方形面积公式可列出方程.解:设需要剪去的小正方形边长为x cm ,则纸盒底面的长方形的长为(19-2x )cm ,宽为(15-2x )cm.根据题意,得(19-2x )(15-2x )=81.整理,得x 2-17x +51=0(x <215).方法总结:列方程最重要的是审题,只有理解题意,才能恰当地设出未知数,准确地找出已知量和未知量之间的等量关系,正确地列出方程.在列出方程后,还应根据实际需求,注明自变量的取值范围.三、板书设计一元二次方程 项系数和一次项系数 常数项,a ,b 分别称为二次本课通过丰富的实例,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想.通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效数学模型,初步培养学生的数学来源于实践又反过来作用于实践的辩证唯物主义观点,激发学生学习数学的兴趣.第2课时 一元二次方程的解及其估算1.经历一元二次方程的解或近似解的探索过程,增进对方程解的认识;(重点) 2.会用“夹逼法”估算方程的解,培养学生的估算意识和能力.(难点)一、情景导入在上一课时情境导入中,苗圃的宽满足方程x (x +2)=120,你能求出该方程的解吗?二、合作探究探究点一:一元二次方程的解下列哪些数是方程x 2-6x +8=0的根? 0,1,2,3,4,5,6,7,8,9,10.解析:把0,1,2,3,4,5,6,7,8,9,10分别代入方程x 2-6x +8=0中,发现当x =2和x =4时,方程x 2-6x +8=0成立,所以x =2,x =4是方程x 2-6x +8=0的根.解:2,4是方程x 2-6x +8=0的根.方法总结:(1)使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫一元二次方程的根.(2)判断一个数是否为某个一元二次方程的根,我们只需要将这个数当作未知数的值分别代入原方程的左右两边,看左右两边代数式的值是否相等,若相等,则这个数是一元二次方程的根;若不相等,则这个数不是一元二次方程的根.探究点二:估算一元二次方程的近似解请求出一元二次方程x 2-2x -1=0的正数根(精确到0.1).解析:先列表取值,初步确定正数根x 在哪两个整数之间,然后再用类似的方法逐步确定出x 的近似正数根.解:(1)列表,依次取x=0,1,2,3,…由上表可发现,当2<x<3时,-1<x-2x-1<2;(2)由上表可发现,当2.4<x<2.5时,-0.04<x-2x-1<0.25;(3)取x=2.45,则x2-2x-1≈0.1025.∴2.4<x<2.45,∴x≈2.4.方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.。

新北师大版九年级上册第二章一元二次方程全章教案

新北师大版九年级上册第二章一元二次方程全章教案

第二章 一元二次方程 2.1认识一元二次方程-(1) 晋公庙中学数学组学习目标:1、会根据具体问题列出一元二次方程。

通过“花边有多宽”,“梯子的底端滑动多少米”等问题的分析,列出方程,体会方程的模型思想,2.通过分析方程的特点,抽象出一元二次方程的概念,培养归纳分析的能力 3.会说出一元二次方程的一般形式,会把方程化为一般形式。

学习重点:一元二次方程的概念学习难点:如何把实际问题转化为数学方程 学习过程:一、导入新课:什么是一元一次方程?什么是二元一次方程?? 二、自学指导:1、自主学习:自学课本31页至32页内容,独立思考解答下列问题:1)情境问题:列方程解应用题:一个面积为120 m 2的矩形苗圃,它的长比宽多2m 。

苗圃的长和宽各是多少?设未知数列方程。

你能将方程化成ax 2+bx+c=0的形式吗? 阅读课本P48,回答问题: 1)什么是一元二次方程?2)什么是一元二次方程的一般形式?二次项及二次项系数、一次项及一次项系数、常数项?2、合作交流:1.一元二次方程应用举例:1)一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m ,宽为5m ,如果地毯中央长方形图案的面积为18m 2,那么花边有多宽?列 方程并化成一般形式。

2)求五个连续整数,使前三个数的平方和等于后两个数的平方和。

如果设中间的一个数为x ,列 方程并化成一般形式.3)如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米? 列出方程并化简。

如果设梯子底端滑动x m ,列 方程并化成一般形式。

2。

知识梳理:1)一元二次方程的概念:强调三个特征:①它是______方程;②它只含______未知数;③方程中未知数的最高次数是__________.一元二次方程的一般形式: 在任何一个一元二次方程中,_______是必不可少的项.2)几种不同的表示形式:①ax 2+bx+c=0 (a ≠0,b ≠0,c ≠0) ② ___________ (a ≠0,b ≠0,c=0) ③____________ (a ≠0,b=0,c ≠0) ④___________ (a ≠0,b=0,c=0) 三、当堂训练81、判断下列方程是不是一元二次方程,并说明理由。

九年级数学(北师大版)上册教案:认识一元二次方程

九年级数学(北师大版)上册教案:认识一元二次方程

第二章一元二次方程2.1 认识一元二次方程(一)课题 2.1 认识一元二次方程课型新授课教学目标1.要求学生会根据具体问题列出一元二次方程。

通过“未铺地毯区域有多宽”,“梯子的底端滑动多少米”等问题的提出,让学生列出方程,体会方程的模型思想,培养学生把文字叙述的问题转换成数学语言的能力。

2.通过教师的讲解和引导,使学生抽象出一元二次方程的概念,培养学生归纳分析的能力。

教学重点一元二次方程的概念教学难点如何把实际问题转化为数学方程学情分析本课通过丰富的实例:未铺地毯区域有多宽、梯子的底端滑动多少米,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想。

学生在以前的学习中已经了解了方程的概念,但对于一元二次方程没有深入的理解。

通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效数学模型。

教学后记教学内容及过程教师活动学生活动一、通过实例引入新课1.在开始新的一个单元的时候,要向学生讲清楚本单元的主要内容和总体目标,这样可以让学生对本单元的内容做到整体把握和概览。

2.进人本单元的第一节:认识一元二次方程? 板书课题,明确本节课的中心任务。

3.播放“未铺地毯区域有多宽”的课件,说明题目的条件和要求,课件要求制作得精美并且可以清楚得显示出各个量之间的关系。

4.给学生时间思考:如何明确并用数学式子表示出题目中的各个量?5.让学生回答他们的答案是什么,给予点评,让学生核对答案,可以以学生举手示意的方式掌握全班的情况。

6.继续进行下二个问题:板书P31的等式,提出问题:你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?8.让学生说出自己的答案,点评,其他学1.认真听讲,对本单元(一元二次方程) 有了一个较好的总体认识,为新的内容的学习作好准备。

2.进入良好的学习状态,在教师的引导下顺利进入到新课的学习中,新颖的标题也引起了学生的兴趣;3.很有兴趣地观看课件,对“未铺地毯区域有多宽”的问题产生了很强的探究的欲望,但大部分学生不知道如何找到解决问题的方法,新的任务与原来的认知结构发生冲突。

新北师大版九上第二章一元二次方程教案

新北师大版九上第二章一元二次方程教案

第二章一元二次方程第1节认识一元二次方程教学目标:1.经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。

2.理解一元二次方程及其相关概念。

3.经历估计一元二次方程解的过程,增进对方程解的认识,进一步培养估算意识和能力,发展数感。

教学重点:理解一元二次方程概念。

教学难点:化为一元二次方程一般式。

教学过程:2个课第一课时一元二次方程一、导入新课解决实际问题的一种手段和方法。

二、例:P31,教室地面长为8米,宽为5米。

如果地毯中央长方形图案的面积为18平方米,那么花边有多宽(四周的花花等宽)?如果设花边的宽为x米,那么地毯中央长方形图案的长为米,宽为米。

根据题意,可得方程。

三、例:P31,先观察下面等式:102+112+122=132+142你还能找到其它的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为,,,。

根据题意,可得方程。

四、例:P31,如图,一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端滑动多少米?由构股定理可知,滑动前梯子底端距墙 m,如果设梯子底端滑动xm,那么滑动后梯子底端距墙 m。

根据题意,可得方程。

五、由上面三个问题,我们可以得到三个方程:(8-2x)(5-2x)=18, x2+(x+1) 2+(x+2) 2=(x+3) 2+(x+4) 2,(x+6) 2+72=10 2上述三个方程有什么共同特点?能不能把这三个方程化简?结果是多少?(2x2-13x+11=0,x2-8x-20=0,x2+12x-15=0)注意:化简一元二次方程的要求:系数化为最简整数,等号右边为0,等号左边降幂排列,最高项系数为正数)六、归纳:1、只含有一个未知数x的整式方程,并且都可以化为ax2+bx+c=0(a,b,c为常数,a ≠0)的形式,这样的方程叫做一元二次方程。

北师大版九年级上册211 认识一元二次方程(教案)

北师大版九年级上册211 认识一元二次方程(教案)

2.1.1 认识一元二次方程教学目标知识技能:1、理解一元二次方程的概念.2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.过程与方法:1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力.4、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.情感态度与价值观:1、培养学生主动探究知识、自主学习和合作交流的意识.2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识. 教学重难点:【重点】一元二次方程的概念及一般形式.【难点】1.由实际问题向数学问题转化的过程.2.正确识别一般形式中的“项”及“系数”.教学过程:一、新课导入:问题1:①2021年奥运会将在北京举办,许多大学生都希望为奥运奉献自己的一份力量。

现组委会决定对高校奥运志愿者进行分批培训,由已合格人员培训第一轮人员,再由前面所有合格人员培训第二轮人员,以此类推来完成此次培训任务。

②某高校学生李红已受训合格,成为一名志愿者,并由她负责培训本校志愿者。

若每轮培训中每个志愿者平均培训x人。

(1)已知经过第一轮培训后该校共有11人合格, 请列出满足条件的方程:(2)若两轮培训后该校共有121人合格,你能列出满足条件的方程吗?问题2:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒底面积为3600cm2,那么铁皮各角应切去多大的正方形?问题3:我校为丰富校园文化氛围,要设计一座2米高的人体雕像,使雕像的上部(腰以上)与全部高度的乘积,等于下部(腰以下)高度的平方,求雕像下部的高度 .通过多媒体播放视频短片,引入情境,提出问题.在第(1)问中,通过教师引导,学生列出方程,解决问题.在第(2)问中,遵循刚才解决问题的思路,由学生思考,列出方程.活动中教师应重点关注:学生对题目的理解,可举例,由特殊到一般,帮助学生理解题意,从而引导学会列出满足条件的方程通过多媒体演示,把文字转化为图形,帮助学生理解题意,从而由学生独立思考,列出满足条件的方程.此题是与实际问题结合的题目,通过演示高度关系,帮助学生理解题意,从而列出符合题意的方程。

北师大版九年级上册数学2章《认识一元二次方程》教案

北师大版九年级上册数学2章《认识一元二次方程》教案

第二章一元二次方程2.1认识一元二次方程第1课时一元二次方程【学习目标】1.探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识.2.在探索问题的过程中使学生感受到方程是刻画现实世界的一个模型,体会方程与实际生活的联系.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.【学习重点】一元二次方程的概念.【学习难点】如何把实际问题转化为数学方程.一、情景导入生成问题1.单项式和多项式统称为整式.2.含有未知数的等式叫做方程.3.计算:(x+2)2=x2+4x+4;(x-3)2=x2-6x+9.4.计算:(5-2x)(8-2x)=4x2-26x+40.二、自学互研生成能力知识模块一探索一元二次方程先阅读教材P31“议一议”前面的内容,然后完成下面问题:1.在第一个问题中,地毯的长可以表示为(8-2x)m,宽可以表示为(5-2x)m,由矩形的面积公式可以列出方程为(8-2x)(5-2x)=18.2.在第二个问题中,如果设五个连续整数中间的一个数为x,你又能列出怎样的方程呢?答:设五个连续整数中间的一个数为x,由题意可列方程,得(x-2)2+(x-1)2+x2=(x+1)2+(x+2)21.问题1:有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个面积相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm2,那么铁皮各角应切去多大的正方形?2.问题2:一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端滑动多少米?你能设出未知数,列出相应的方程吗?答:问题1由题意可列方程:(100-2x)(50-2x)=3600;问题2由题意可列出方程:(x+6)2+72=102.3.你能通过观察下列方程得到它们的共同特点吗?(1)(100-2x)(50-2x)=3600(2)(x +6)2+72=102归纳结论:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程.一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: ax 2+bx +c =0(a 、b 、c 为常数,a ≠0) 这种形式叫做一元二次方程的一般形式.其中ax 2是二次项,a 是二次项的系数;bx 是一次项,b 是一次项系数;c 是常数项.知识模块二 一元二次方程有关概念的应用解答下列各题:1.下列方程中,是一元二次方程的是( C )A .x 2+2y -1=0B .x +2y 2=5C .2x 2=2x -1D .x 2+1x -2=02.将方程(x +3)2=8x 化成一般形式为x 2-2x +9=0,其二次项系数为__1__,一次项系数是__-2__,常数项是__9__.典例讲解:关于x 的方程mx 2-3x =x 2-mx +2是一元二次方程,m 应满足什么条件? 分析:先把这个方程化为一般形式,只要二次项的系数不为0即可.解:由mx 2-3x =x 2-mx +2得到(m -1)x 2+(m -3)x -2=0,所以m -1≠0,即m ≠1.所以关于x 的方程mx 2-3x =x 2-mx +2是一元二次方程,m 应满足m ≠1.对应练习:1.关于x 的方程(a -1)x 2+3x =0是一元二次方程,则a 的取值范围是a ≠1.2.已知方程(m +2)x 2+(m +1)x -m =0,当m 满足m =-2时,它是一元一次方程;当m 满足m ≠-2时,它是一元二次方程.3.(易错题)已知关于x 的方程(m -2)x |m|+3x -4=0是一元二次方程,那么m 的值是( C ) A .2 B .±2 C .-2 D .1三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索一元二次方程知识模块二 一元二次方程有关概念的应用四、检测反馈 达成目标 见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:_________________________________________________ 2.存在困惑:_____________________________________________第2课时一元二次方程的解及其估算【学习目标】1.会进行简单的一元二次方程的试解.2.根据题意判定一个数是否是一元二次方程的根及利用试解方法解决一些具体问题.3.理解方程的解的概念,培养有条理的思考与表达的能力.【学习重点】判定一个数是否是方程的根.【学习难点】会在简单的实际问题中估算方程的解,理解方程解的实际意义.一、情景导入生成问题1.使方程左右两边相等的未知数的值叫做方程的解.2.一元二次方程(x+1)2-x=3(x2-2)化成一般形式是2x2-x-7=0.3.近似数2.36≈2.4(精确到十分位).二、自学互研生成能力知识模块一探索一元二次方程的近似解1.先阅读教材P33“做一做”前面的内容,并完成所设计的四个小问题.答:(1)x的值不能小于0,不能大于4,不能大于2.5,因为x表示四周未铺地毯部分的宽度,所以x的值不能为负,又因为(8-2x)和(5-2x)分别表示地毯的长和宽,所以有8-2x>0,5-2x>0,即x<2.5.(2)x的取值范围是0<x<2.5.(3)表格中的对应值分别为:28、18、10、4.(4)所求宽度为x=1m.2.学生活动:请同学独立完成下列问题.问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?设梯子底端距墙为xm,那么,根据题意,可得方程为x2+82=102.整理,得x2-36=0.列表:x 0 1 2 3 4 5 6 7 8 x2-36 -36 -35 -32 -27 -20 -11 0 13 28 问题2:一个面积为120m的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?设苗圃的宽为xm,则长为(x+2)m.根据题意,得x(x+2)=120.整理,得x2+2x-120=0.列表:x 5 6 7 8 9 10 11x2+2x-85 -72 -57 -40 -21 0 23 -120提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其他解吗?问题2呢?教师点评:(1)问题1中x=6是x2-36=0的解;问题2中,x=10是x2+2x-120=0的解.(2)如果抛开实际问题,问题1中还有x=-6的解;问题2中还有x=-12的解.为了与以前所学的一元一次方程只有一个解的情况区别,我们也称一元二次方程的解叫做一元二次方程的根.回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也不满足题意.知识模块二一元二次方程根的判定及应用解答下列各题:1.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为(A)A.1B.-1C.2D.-22.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足该等式方程,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.典例讲解:若x=1是关于x的一元二次方程ax2+bx+c=1(a≠0)的一个根,求代数式2016(a+b+c)的值.分析:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这一点同学们要深刻理解.解:将x=1代入得a+b+c=1,故2016(a+b+c)=2016.对应练习:1.若x=1是一元二次方程ax2+bx+c=0的解,则a+b+c=__0__;若x=-1是一元二次方程ax2+bx+c=0的解,则a-b+c=__0__.2.若x=-1是一元二次方程ax2+bx-2=0的根,则a-b=__2__.3.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.解:由已知,得a+b=-3,原式=(a+b)2=(-3)2=9三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一探索一元二次方程的近似解知识模块二一元二次方程根的判定及应用四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:___________________________________________________ 2.存在困惑:_______________________________________________。

北师大版数学九上2.1《认识一元二次方程》教案(3页)

北师大版数学九上2.1《认识一元二次方程》教案(3页)
-通过图形和数值例子,让学生理解判别式Δ的意义,如Δ>0表示方程有两个不同实数解,Δ=0表示方程有两个相同实数解,Δ<0表示方程没有实数解。
-以x² - 5x + 6 = 0为例,详细讲解如何通过因式分解法求解一元二次方程,并让学生进行类似的练习。
-给出实际情境问题,如面积计算、年龄问题等,指导学生如何将其转化为相应的一元二次方程。
北师大版数学九上2.1《认识一元二次方程》教案(3页)
一、教学内容
本节课选自北师大版数学九年级上册第二章第1节《认识一元二次方程》。教学内容主要包括以下方面:
1.理解一元二次方程的定义,能够识别标准形式的一元二次方程:ax² + bx + c = 0(a≠0)。
2.掌握一元二次方程的解的概念,了解解的个数与判别式Δ的关系。
-在因式分解法中,学生可能会遇到难以找到合适的因式对,如对于方程x² + 4x + 3 = 0,需要引导学生思考如何分解成(x+3)(x+1)。
-对于实际问题的抽象,教师需要指导学生如何从问题中提取关键信息,如速度、时间、距离等,并建立数学模型。例如,从“一个数的平方加上这个数等于12”这个问题中,抽象出方程x² + x - 12 = 0。
五、教学反思
今天我们在课堂上学习了《认识一元二次方程》,整体来看,学生的学习态度非常积极,对一元二次方程的概念和求解方法有了基本的认识。但在教学过程中,我也发现了一些问题,值得我们共同反思。
首先,对于一元二次方程定义的理解,部分学生仍然存在困难。在讲解过程中,我意识到可能是因为我未能将概念讲解得足够直观和具体。在今后的教学中,我需要更加注意用简单易懂的语言和例子来解释抽象的数学概念,帮助学生更好地理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时一元二次方程的根及近似解
【知识与技能】
会进行简单的一元二次方程的试解.
【过程与方法】
根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.
【情感态度】
理解方程的解的概念,培养有条理的思考与表达的能力.
【教学重点】
判定一个数是否是方程的根.
【教学难点】
会在简单的实际问题中估算方程的解,理解方程解的实际意义.
一、情境导入,初步认识
学生活动:请同学独立完成下列问题.
问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?
设梯子底端距墙为xm,那么,
根据题意,可得方程为x2+82=102.
整理,得x2-36=0.
列表:
问题2:一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?
设苗圃的宽为xm,则长为(x+2)m.
根据题意,得x(x+2)=120.
整理,得x2+2x-120=0.
列表:
【教学说明】通过列表计算使学生了解一元二次方程的解,确定未知数的大致范围. 二、思考探究,获取新知
提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?
(2)如果抛开实际问题,问题1中还有其它解吗?问题2呢?
老师点评:(1)问题1中x=6是x2-36=0的解;问题2中,x=10是x2+2x-120=0的解.
(2)如果抛开实际问题,问题1中还有x=-6的解;问题2中还有x=-12的解.
为了与以前所学的一元一次方程等只有一个解的情况区别,我们也称一元二次方程的解叫做一元二次方程的根.
回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也不满足题意.
【教学说明】由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.
三、运用新知,深化理解
1.下面哪些数是方程2x2+10x+12=0的根?
-4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把它代入等式,看它是否能使等式两边相等即可.
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.
2.若x=1是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根,求代数式2014(a+b+c)的值.
分析:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这一点同学们要深刻理解.
3.你能用以前所学的知识求出下列方程的根吗?
(1)x2-64=0(2)3x2-6=0
(3)x2-3x=0
分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义来求解.
4.x(x-1)=2的两根为(D)
A.x1=0,x2=1
B.x1=0,x2=-1
C.x1=1,x2=2
D.x1=-1,x2=2
5.方程ax(x-b)+(b-x)=0的根是(B)
A.x1=b,x2=a
B.x1=b,x2=1/a
C.x1=a,x2=1/a
D.x1=a2,x2=b2
6.如果x2-81=0,那么x2-81=0的两个根分别是x1= 9 ,x2= -9 .
7.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.
解:由已知,得a+b=-3,
原式=(a+b)2
=(-3)2
=9
8.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.
解:由题意可知:
a+c=b,a-b+c=0,
把x=-1代入原方程,得
ax2+bx+c
=a×(-1)2+b×(-1)+c
=a-b+c
=0
∴-1必是该方程的一个根.
9.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在(
21
x
x
-
)2-2
×
21
x
x
-
+1=0,令
21
x
x
-
=y,则有y2-2y+1=0,根据上述变形数学思想(换元法)解决小明给出
的问题:求(x2-1)2+(x2-1)=0的根.
解:设y=x2-1,则y2+y=0,y1=0,y2=-1,
当x2-1=0时,x1=1,x2=-1;
当x2-1=-1时,x3=x4=0.
∴x1=1,x2=-1,x3=x4=0是原方程的根.
【教学说明】让学生先独立完成,而后将不会的问题同各小组交流讨论得出结果.
四、师生互动,课堂小结
本节课应掌握:
1.一元二次方程根的概念;
2.一个数是否是一元二次方程的根的判断方法;
3.求一元二次方程的根的方法.
1.布置作业:教材“习题
2.2”第1、2题.
2.完成练习册中相应练习.
本节课通过列表计算使学生了解一元二次方程的解,确定未知数的大致范围,从而会进行简单的一元二次方程的解的计算.。

相关文档
最新文档