动点问题专项练习一
矩形的动点问题 含答案

专题1.20矩形的动点问题(专项练习)一、解答题1.已知,在矩形ABCD 中,AB a =,BC b =,动点M 从点A 出发沿边AD 向点D 运动.如图,当2b a =,点M 运动到边AD 的中点时,请证明90BMC ∠=︒.2.如图,在矩形ABCD 中,20AB cm =,动点P 从点A 开始沿AB 边以4/cm s 的速度运动,动点Q 从点C 开始沿CD 边以1/cm s 的速度运动,点P 和点Q 同时出发,当其中一点到达终点时,另一点也随之停止运动,运动点的运动时间为ts ,则当t 为何值时,四边形APQD 时矩形?3.如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为点E ,F ,求PE+PF 的值。
4.如图,点M 是矩形ABCD 边AD 的中点,2AB AD =,点P 是BC 边上一动点,PE MC ⊥,PF BM ⊥,垂足分别为E 、F ,求点P 运动到什么位置时,四边形PEMF 为正方形,并证明.5.如图,在矩形ABCD 中,点P 是BC 边上一动点,连接AP ,过点D 作DE AP ⊥于点E.设AP x =,DE y =,若6AB =,8BC =,试求y 与x 之间的函数关系式.6.如图,A 、B 、C 、D 是矩形的四个顶点,AB =32cm ,BC =12cm ,动点P 从点A 出发,以6cm/s 的速度向点B 运动,直到点B 为止;动点Q 向时从点C 出发,以4cm/s 的速度向点D 运动,何时点P 和点Q 之间的距离是20cm ?7.如图,在矩形ABCD 中,AB =3,BC =4,点E 是AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰好落在∠BCD 的平分线上时,求CA 1的长.8.如图,点M 是矩形ABCD 的边AD 的中点,点P 是BC 边上一动点,PE ⊥MC ,PF ⊥BM ,垂足为E 、F .(1)当矩形ABCD 的长与宽满足什么条件时,四边形PEMF 为矩形?猜想并证明你的结论.(2)在(1)中,当点P 运动到什么位置时,矩形PEMF 变为正方形,为什么?9.如图,矩形ABCD 中,5AD =,7AB =,点E 为DC 上一个动点,把ADE ∆沿AE 折叠,当点D 的对应点D ¢落在ABC ∠的平分线上时,求DE 的长.10.已知矩形ABCD 中,E 是AD 边上的一个动点,点F 、G 、H 分别是BC 、BE 、CE 的中点.(1)求证:BGF FHC ∆≅∆.(2)若4=AD ,当四边形EGFH 是正方形时,求矩形ABCD 的面积.11.如图,在矩形ABCD 中,AB=5,BC=7,点E 是AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A '恰好落在∠BCD 的平分线上时,C A '的长为多少?12.已知矩形ABCD 中,E 是AD 边上的一个动点,点F ,G ,H 分别是BC ,BE ,CE 的中点.求证:BGF FHC ∆≅∆;13.如图1,矩形ABCD 中,点E 是边AD 上动点,点F 是边BC 上动点,连接EF ,把矩形ABCD 沿直线EF 折叠,点B 恰好落在边AD 上,记为点G ;如图2,把矩形展开铺平,连接BE ,FG.(1)判断四边形BEGF 的形状一定是,请证明你的结论;(2)若矩形边AB =4,BC =8,直接写出四边形BEGF 面积的最大值为.14.如图,E 是矩形ABCD 的边BC 的中点,P 是AD 边上一动点,PF AE ⊥,PH DE ⊥,垂足分别为F H ,.(1)当矩形ABCD 的边AD 与AB 满足什么条件时,四边形PHEF 是矩形?请予以证明;(2)在(1)中,动点P 运动到什么位置时,矩形PHEF 为正方形?为什么?15.如图,在矩形ABCD 中,M 是AD 的中点,连接BM 、CM ,点P 是BC 边上的动点,作PE MC ⊥于E 点,PF MB ⊥于F 点,当矩形的长与宽是什么关系时,四边形PEMF 是矩形?并证明.16.在矩形ABCD 中,1AB =,BC a =,点E 是边BC 上一动点,连接AE ,将ABE △沿AE 翻折,点B 的对应点为点B '.(1)如图,设BE x =,3BC =,在点E 从B 点运动到C 点的过程中.①AB CB ''+最小值是______,此时x =______;②点B '的运动路径长为______.(2)如图,设35BE a =,当点B 的对应点B '落在矩形ABCD 的边上时,求a 的值.17.如图,在矩形ABCD 中,AB =8cm ,BC =6cm .动点P 、Q 分别从点A 、C 以2cm/s 的速度同时出发.动点P 沿AB 向终点B 运动,动点Q 沿CD 向终点D 运动,连结PQ 交对角线AC 于点O .设点P 的运动时间为t (s ).(1)求OC 的长.(2)当四边形APQD 是矩形时,直接写出t 的值.(3)当四边形APCQ 是菱形时,求t 的值.(4)当△APO 是等腰三角形时,直接写出t 的值.18.有一张矩形纸片ABCD ,其中10,6AB AD ==,现将矩形折叠,点D 的对应点记为点P ,折痕为EF (点E 、F 是折痕与矩形的边的交点),再将纸片还原.(1)若点P 落在矩形ABCD 的边AB 上(如图1).①当点P 与点A 重合时,DEF ∠=__________︒,当点E 与点A 重合时,DEF ∠=__________︒,当点F 与C 重合时,AP =__________;②若P 为AB 的中点时,求AE 的长;(2)若点P 落在矩形的外部(如图2),点F 与点C 重合,点E 在AD 上,线段BA 与线段FP 交于点M ,当AM DE =时,请求出线段AE 的长度.(3)若点E 为动点,点F 与点DC 的中点,直接写出线段AP 的最小值=__________.参考答案1.见解析.【分析】由b =2a ,点M 是AD 的中点,可得AB =AM =MD =DC =a ,又由四边形ABCD 是矩形,即可求得∠AMB =∠DMC =45°,则可求得∠BMC =90°.【详解】证明:∵b =2a ,点M 是AD 的中点,∴AB =AM =MD =DC =a ,又∵在矩形ABCD 中,∠A =∠D =90°,∴∠AMB =∠DMC =45°,∴∠BMC =90°.【点拨】本题考查了矩形的性质以及等腰直角三角形的性质,求出∠AMB =∠DMC =45°是解题的关键.2.当4t s =时,四边形APQD 是矩形【分析】根据题意表示出AP=4t,DQ=20-t;根据菱形的对边相等,求出的值,即可解决问题.【详解】由题意得:4AP t =,20DQ t =-;∵四边形APQD 是矩形,∴AP DQ =,即420t t =-,解得:()4t s =.即当4t s =时,四边形APQD 是矩形.【点拨】本题主要考查矩形的判定与性质.3.PE+PF=125【解析】【分析】连接OP ,过点A 作AG ⊥BD 于G ,利用勾股定理列式求出BD ,再利用三角形的面积求出AG ,然后根据△AOD 的面积求出PE+PF=AG 即可.【详解】解:如图所示,连接OP ,过点A 作AG ⊥BD 于G ,∵AB=3,AD=4,∴BD=22345+=,S △ABD =12AB•AD=12BD•AG ,即12×3×4=12×5×AG ,解得:AG=125,在矩形ABCD 中,OA=OD ,∵S △AOD =12OA•PE+12OD•PF=12OD•AG ,∴PE+PF=AG=125.故PE+PF=125【点拨】本题考查了矩形的性质,勾股定理,三角形的面积;熟练掌握各性质并利用三角形的面积列出方程是解题的关键.4.当P 是BC 的中点时,矩形PEMF 为正方形.【解析】【分析】根据矩形的相知和已知条件推出∠A=∠D=90°,AB=CD ,AM=DM ,求出∠ABM=∠AMB=45°,∠DCM=∠DMC=45°,求出∠BMC=90°,即可求出矩形PEMF.根据AAS 证△BFP ≌△CEP ,推出PE=PF 即可.【详解】解:当P 是BC 的中点时,四边形PEMF 为正方形.理由如下:∵四边形ABCD 为矩形,∴90A D ∠=∠= ,∵22AD AB CD ==,12AM DM AD ==,∴AB AM DM CD ===,∴45ABM AMB ∠=∠= ,45DCM DMC ∠=∠= ,∴180454590BMC ∠=--= ,∵PE MC ⊥,PF BM ⊥,∴90MEP FPE ∠=∠= ,∴四边形PEMF 为矩形,∴90PFM PFB PEC ∠=∠=∠= .在BFP 和CEP 中FBP ECP PFB PEC BP CP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BFP CEP AAS ≅ ,∴PE PF =,∵四边形PEMF 是矩形,∴矩形PEMF 是正方形,即当P 是BC 的中点时,矩形PEMF 为正方形.【点拨】本题主要考察对矩形的判定和性质,正方形的判定,等腰三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,熟练地运用性质进行推理是解此题的关键.5.48(610)y x x= .【解析】【分析】根据2APD ABCD AP DE S S ⋅==矩形△列出关系式,整理即可.【详解】连接PD ,则26848APD ABCD AP DE S S ⋅===⨯=矩形△,所以48xy =,故y 与x 之间的函数关系式为:48(610)y x x= .【点拨】本题考查了反比例函数的定义,根据2APD ABCD S S =矩形△列出关系式是解题关键.6.85s 或245s 【分析】设当t 秒时PQ =20cm ,利用勾股定理得出即可.【详解】设当时间为ts 时,点P 和点Q 之间的距离是20cm ,过点Q 作ON ⊥AB 于点N ,则QC =2tcm ,PN =(32﹣10t )cm ,故122+(32﹣10t )2=400,解得:t 1=85,t 2=245.故当时间为85s 或245s 时,点P 和点Q 之间的距离是20cm .【点拨】本题考查了一元二次方程的应用,勾股定理和矩形的性质,能构造直角三角形是解此题的关键,用了方程思想.7.±1【分析】过点A 1作A 1M ⊥BC ,A 1N ⊥CD ,证明MA 1=MC ,在△BMA 1中,运用勾股定理列出关于x的方程,求出x ,根据CA 1x ,即可解决问题.【详解】解:如图,过点A1作A1M⊥BC,A1N⊥CD;∵四边形ABCD为矩形,且CA1平分∠BCD,∴∠BCD=90°,∠MCA1=∠MA1C=45°,∴△MA1C是等腰直角三角形,∴MA1=MC,设MA1=MC=x,则BM=4﹣x;由折叠的性质得:BA1=BA=3;在△BMA1中,由勾股定理得:x2+(4﹣x)2=32,解得:x=2±2 2,∴CA1x=±1,∴CA1的长为±1.【点拨】本题考查矩形的翻折变换(折叠问题)、矩形的性质、角平分线的性质等,灵活根据题意构造直角三角形运用勾股定理求解是解题关键.8.(1)当AD=2AB时,四边形PEMF为矩形,理由见解析;(2)当P是BC的中点时,矩形PEMF为正方形,理由见解析【分析】(1)根据矩形的性质推出∠A=∠D=90°,AB=CD,AM=DM,求出∠ABM=∠AMB=45°,∠DCM=∠DMC=45°,求出∠BMC,即可求出矩形PEMF.(2)根据AAS证△BFP≌△CEP,推出PE=PF即可.【详解】(1)当AD=2AB时,四边形PEMF为矩形.证明:∵四边形ABCD为矩形,∴∠A=∠D=90°,∵AD=2AB=2CD ,AM=DM=12AD ,∴AB=AM=DM=CD ,∴∠ABM=∠AMB=45°,∠DCM=∠DMC=45°,∴∠BMC=180°-45°-45°=90°,∵PE ⊥MC ,PF ⊥BM ,∴∠MEP=∠FPE=90°,∴四边形PEMF 为矩形,即当AD=2AB 时,四边形PEMF 为矩形;(2)当P 是BC 的中点时,矩形PEMF 为正方形.理由是:∵四边形PEMF 为矩形,∴∠PFM=∠PFB=∠PEC=90°,在△BFP 和△CEP 中9045PFB PEC FBP ECP BP CP ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,∴△BFP ≌△CEP(AAS),∴PE=PF ,∵四边形PEMF 是矩形,∴矩形PEMF 是正方形,即当P 是BC 的中点时,矩形PEMF 为正方形.【点拨】本题主要考查了矩形的判定和性质,正方形的判定,等腰三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,熟练地运用性质进行推理是解此题的关键.9.52或53【分析】过点D ¢作MN AB ⊥,交CD 于点N ,交AB 于点M ,连接BD ',先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE .【详解】如图,过点D ¢作MN AB ⊥,交CD 于点N ,交AB 于点M ,连接BD '.∵点D 的对应点D ¢恰落在ABC ∠的平分线上,∴D M BM '=,设BM D M x '==,则7AM x =-.由折叠知,5DA D A '==.在Rt D AM '∆中,222D M D A AM ''=-,∴2225(7)x x --=,∴3x =或4x =,即3D M '=或4D M '=.设DE m =,则D E m '=,分两种情况讨论:(1)当3D M '=时,3BM NC ==,2D N '=,734EN CD DE NC m m =--=--=-.在Rt D NE '∆中,222(4)2m m =-+,∴52m =,即52DE =.(2)当4D M '=时,4BM NC ==,1D N '=,743EN CD DE NC m m =--=--=-,在Rt D NE '∆中,222(3)1m m =-+,∴53m =,即53DE =.综上,DE 的长为52或53.【点拨】此题考查翻折变换(折叠问题),矩形的性质,解题关键在于作辅助线和分情况讨论.10.(1)见解析;(2)8.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【详解】解:(1)连接EF ,∵点F ,G ,H 分别是BC ,BE ,CE 的中点,∴FH ∥BE ,FH=12BE ,FH=BG ,∴∠CFH=∠CBG ,∵BF=CF ,∴△BGF ≌△FHC (SAS ),(2)当四边形EGFH 是正方形时,连接GH ,可得:EF ⊥GH 且EF=GH ,∵在△BEC 中,点,H 分别是BE ,CE 的中点,∴GH=12BC =12AD =2,且GH ∥BC ,∴EF ⊥BC ,∵AD ∥BC ,AB ⊥BC ,∴AB=EF=GH=2,∴矩形ABCD 的面积=AB•AD =2×4=8.【点拨】此题考查正方形的性质,全等三角形的判定与性质,解题关键是根据全等三角形的判定和正方形的性质解答.11.23或24【解析】试题分析:过点A’作A’M ⊥BC ,,A’N ⊥CM ,然后证得四边形A’MCN 是正方形,然后根据正方形的性质及勾股定理可求解.试题解析:解:过点A’作A’M ⊥BC ,,A’N ⊥CM ,∵∠BCD=90°,∴四边形A’MCN 是矩形,∵CA’平分∠BCD∴矩形A’MCN 是正方形∴A’M=CM ,A’M∴BM=BC-CM=7-A’M∵BA’=BA=5,∠BMA’=90°∴A’B²=BM²+A’M²即5²=(7-A’M)²+A’M²∴A’M=3或A’M=4∴A’C=32或A’C=42考点:折叠问题,矩形与正方形的性质12.详见解析【分析】根据三角形中位线定理和全等三角形的判定证明即可;【详解】证明:解:连接EF,(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=12BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,【点拨】本题考查三角形中位线定理和全等三角形的判定,解题关键是熟练掌握三角形中位线的性质定理.13.(1)四边形BEGF是菱形,证明见解析;(2)四边形BEGF面积的最大值为20.【分析】(1)由折叠的性质可得∠BFE=∠EFG,BF=FG,由平行线的性质可得∠DEF=∠GFE=∠EFB,可得EG=FG=BF,AD∥BC,可证四边形BEGF是菱形;(2)当EG最大时,四边形BEGF面积有最大值,由勾股定理可求EG的长,即可求解.【详解】(1)四边形BEGF 是菱形,∵四边形ABCD 是矩形∴AD ∥BC ,∴∠DEF =∠EFB ,∵把矩形ABCD 沿直线EF 折叠,点B 恰好落在边AD 上,∴∠BFE =∠EFG ,BF =FG ,∴∠DEF =∠GFE ,∴EG =FG ,∴EG =BF ,且AD ∥BC ,∴四边形BEGF 是平行四边形,且BF =FG ,∴四边形BEGF 是菱形,(2)∵四边形BEGF 是菱形,∴BE =EG ,∵S 四边形BEGF =EG ×AB =4EG ,∴当EG 最大时,四边形BEGF 面积有最大值,当AE +EG =AD 时,EG 最大,∵AB 2+AE 2=BE 2,∴2216()AD ED BE +=﹣,∴2216(8)BE BE +=﹣,∴BE =5=EG ,∴四边形BEGF 面积的最大值=4×5=20.【点拨】本题考查了翻折变换,矩形的性质,由勾股定理求EG 的长是正确解答本题的关键.14.(1)当2=AD AB 时,四边形PHEF 是矩形;(2)点P 运动到AD 的中点时,矩形PHEF 为正方形.理由见解析.【解析】【分析】(1)当四边形PFEH 是矩形时,∠FEH=90°;易证得△ABE ≌△DCE ,则∠AEB=∠DEC=45°;那么△ABE 、△DCE 是等腰直角三角形,此时AB=BE=EC=CD ,故矩形ABCD 满足长是宽的2倍时,四边形PFEH 是矩形;(2)若矩形PHEF 是正方形,则PF=PH ,此时可证得△PAF ≌△PDH ,则AP=PD ,所以当P 为AD 中点时,矩形PHEF 变为正方形.【详解】(1)当2=AD AB 时,四边形PHEF 是矩形.证明如下:∵四边形ABCD 是矩形,∴AD BC =,AB CD =.∵E 是BC 的中点,2=AD AB ,∴AB BE EC CD ===,∴ABE ∆,DCE ∆是等腰直角三角形,∴45AEB DEC ︒∠=∠=,90AED ︒=∠.在四边形PHEF 中,∵90PFE FEH EHP ︒∠=∠=∠=,∵四边形PHEF 是矩形.(2)点P 运动到AD 的中点时,矩形PHEF 为正方形.理由如下:由(1)可得45BAE CDE ︒∠=∠=,∴45FAP HDP ︒∠=∠=,又∵90AFP PHD ︒∠=∠=,AP PD =,∴AFP DHP ∆∆≌,∴PF PH =,∴矩形PHEF 是正方形.【点拨】此题考查矩形的判定与性质,正方形的判定,解题关键在于证明△ABE 、△DCE 是等腰直角三角形.15.证明见解析【分析】当长=宽的2倍的时候,根据4个角为直角即可证明四边形PEMF 是矩形.【详解】∵M 是AD 的中点,2AD AB=∴AM MD AB CD ===,∵矩形ABCD 中,90A D ∠=∠= ,∴45AMB DMC ∠=∠= ,∴180454590BMC ∠=--= ,∴36090909090EPF ∠=---=∴四边形PEMF 是矩形.【点拨】本题考查了矩形的判定与性质,解题的关键是熟练的掌握矩形的判定与性质.16.(1)①2,3;②23π;(2)53a =或3a =【分析】(1)①由题意,当点B '恰好在直线AC 上时,AB CB ''+有最小值,然后求出答案即可;②先证明点B '在以A 为圆心,1为半径的圆上,再求出2120BAB BAC '∠=∠=︒,然后根据弧长公式,即可求出答案;(2)分两种情况,①当点B '落在AD 边上时,四边形ABEB '为正方形,然后求出答案;②当点B '落在CD 边上时,证明CEB DB A '' △△,利用相似三角形的性质,即可求出答案.【详解】解:(1)①连接B C ',如图1,,由折叠的性质得:1AB AB '==,AB E B '∠=∠,∵四边形ABCD 是矩形,∴90AB E B '∠=∠=︒,∴B E AB ''⊥;当点B '恰好在直线AC 上时,AB CB ''+有最小值,∵2AB B C AC ''+====,∴12AB AC =,1B C '=,∴30ACB ∠=︒,AB B C ''=,∴903060BAC ∠=︒-︒=︒,AE CE =,∴30EAC ACB ∠=∠=︒,∴30BAE ∠=︒,∴3333BE AB ==;故答案为:2,3;②当点E 从B 到点C 的过程中,1AB '=,∴点B '在以A 为圆心,1为半径的圆上,由①知,60BAC ∠=︒,∴2120BAB BAC '∠=∠=︒,∴点B '的运动路径长为:120121803p p ´=;故答案为:23π;(2)当点B '落在AD 边上时(如图),四边形ABEB '为正方形,∴1BE AB ==,∴315a =,解得53a =;当点B '落在CD 边上时(如图),由折叠得'B E BE a ==,1AB AB '==∴25CE a =,21BD a '=-由CEB DB A '' △△得,∴CE DB B E AB '='',2215315a a a -=,解得53a =±,∵0a >,∴53a =,∴53a =或53a =;【点拨】本题是四边形综合题目,考查了矩形的性质、折叠的性质、正方形的判定和性质、含30度直角三角形的性质、勾股定理、相似三角形的判定和性质、弧长公式等知识,熟练掌握所学的知识,正确进行分析题意是解题的关键.17.(1)5;(2)t =2;(3)258t =;(4)2516t =或52t =或4t =【分析】(1)根据矩形的性质以及勾股定理判定AOP ∆≌COQ ∆,即可得解;(2)根据题意判定当四边形APQD 是矩形时,P 、Q 分别为AB 、CD 的中点,即可得解;(3)根据菱形的性质以及勾股定理的运用,构建一元二次方程,即可得解;(4)分情况:当AO=OP 时,当AO=AP 时,当AP=OP 时,求解即可.【详解】(1)∵四边形ABCD 是矩形,∴AB CD ∥.∴CQO APO ∠=∠,QCO PAO ∠=∠.在Rt △ABC 中,∠B =90°,由勾股定理,得10AC ==.∵2AP CQ t ==,∴AOP ∆≌COQ ∆.∴152CO AC ==.(2)当四边形APQD 是矩形时,P 、Q 分别为AB 、CD 的中点即2AP CQ t ===4t =2.(3)如图,当四边形APCQ 是菱形时,AP =CP =2t .∴PB =8-2t .在Rt △BCP 中,∠B =90°,由勾股定理,得222CP BP BC =+.∴222(2)(82)6t t =-+.解得258t =.当258t =时,四边形APCQ 是菱形.(4)当AO=OP 时,如图所示:∵AO=5∴P 运动到点B∴4t =;当AO=AP 时,∵AO=AP=5∴52t =;当AP=OP 时,由(2),得OH=3,AH=4∴PH=4-2t,OP=2t∴222OP OH PH =+,即()()2224342t t =+-∴2516t =综上所述,2516t =或52t =或4t =.【点拨】此题主要考查四边形动点综合问题,熟练掌握,即可解题.18.(1)①90°,45°,2;②1112;(2)127;(35【分析】(1)①分别根据图形,利用折叠的性质计算即可;②设AE =x ,利用折叠的性质表示出EP ,求出AP ,利用勾股定理列出方程,解之即可;(2)设AE =x ,证明Rt △AEM ≌Rt △PME ,得到AE =PM =x ,在Rt △B CM 中,利用勾股定理得到方程,求出x 值即可;(3)根据折叠的性质得到PF 为定值,得到当A ,P ,F 三点共线时,AP 最小,再求解即可.解:(1)①当点P 与点A 重合时,∴EF 是AD 的中垂线,∴∠DEF =90°,当点E 与点A 重合时,此时∠DEF =12∠DAB =45°,当点F 与C 重合时,CD =CP =AB =10,∵AD =BC =6,∴BP =8,∴AP =AB -BP =2;②如图,点P 为AB 中点,则AP =BP =5,由折叠可知:DE =EP ,DF =PF ,设AE =x ,则DE =EP =6-x ,在△AEP 中,222AE AP EP +=,即()22256x x +=-,解得:x =1112,即AE =1112;(2)连接EM,设AE=x,由折叠知PE=DE,∠CDB=∠EPM=90°,CD=CP=10,∵AM=DE,∠A=90°,EM=EM,∴Rt△AEM≌Rt△PME(HL),∴AE=PM=x,∴CM=10-x,BM=AB-AM=AB-DE=10-(6-x)=4+x,在Rt△B CM中,BM2+BC2=CM2,∴(4+x)2+62=(10-x)2,解得x=12 7.∴AE=12 7.(3)如图,∵F为CD中点,∴DF=CF=5,由折叠可知:DF=PF=5,即PF的长度不变,∴当A,P,F三点共线时,AP最小,∵AF,∴AP=AF-PF5,即AP5-.【点拨】本题是四边形综合题,考查了折叠的性质,矩形的性质,勾股定理,全等三角形的判定和性质,熟练掌握折叠的性质是关键,本题难度适中,注意运用数形结合的思想.。
动点问题练习(含标准答案)

动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t=时,四边形是平行四边形;6当t=时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC∴AO=12AC.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E. (1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.(备用图)CBED图1NMA BCDEMACBEDNM解:(1)①∵∠ACD=∠ACB=90°∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB②∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE , 又∵AC=BC ,∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=. 6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD F GB图1A D FC G B 图3ADFGB 图2AD FC GE B MA D FG B N7、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.求:(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PM N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由解(1)如图1,过点E 作EG BC ⊥于点G .∵E 为AB 的中点,∴122BE AB ==.在Rt EBG△中,60B =︒∠,∴30BEG =︒∠.∴112BG BE EG ====,即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM ==∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.图1 A D E BF CGA D E BFCPNMG HA D E BF C图4(备用)AD EBF C 图5(备用)A D E BF C图1 图2A D E BF C PNM图3A D EBFCPNM(第25题)在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==.∵MNC △是等边三角形,∴3MC MN ==. 此时,6132x EP GM BC BG MC ===--=--=.当MP MN=时,如图4,这时MC MN MP ==此时,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠,∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=.此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘M ,8BC =厘M ,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘M , ∵10AB =厘M ,点D 为AB 的中点, ∴5BD =厘M .图3A D E BFCPN M图4A D EBF CP MN 图5A DEBF (P ) CM NGGRG又∵8PC BC BP BC =-=,厘M , ∴835PC =-=厘M , ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘M/秒。
初中数学动点问题及练习题附参考答案

初中数学动点练习题专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
二、应用比例式建立函数解析式。
三、应用求图形面积的方法建立函数关系式。
专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、以动态几何为主线的压轴题。
(一)点动问题。
(二)线动问题。
(三)面动问题。
二、解决动态几何问题的常见方法有:1、特殊探路,一般推证。
2、动手实践,操作确认。
3、建立联系,计算说明。
三、专题二总结,本大类习题的共性:1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数.2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。
专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1 以双动点为载体,探求函数图象问题。
动点问题练习题

动点问题一.填空题(共2小题)1.如图,在矩形ABCD中,AB=6,AD=8,P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足分别为E,F,则PE+PF=.2.如图,在Rt△ABC中,∠C=90°,AC=5cm,BC=3cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm 的速度向终点C运动.设点P运动的时间为t秒,当△PBQ是直角三角形时,t的值为.二.解答题(共18小题)3.如图,直线y=x+4与x轴交于点A,与y轴交于点B,以线段AB为一边,在第二象限内作正方形ABCD.(1)求线段AB的长;(2)求点D的坐标;(3)点E在x轴上,将点E沿x轴向右平移3个单位得到点F,连接DE,BF,请直接写出四边形BDEF周长的最小值.4.(1)如图1,在△ABC中,∠ACB=90°,∠A=30°,点E,F分别是边BC,AC上的点,且EF∥AB,线段CF与线段CE的数量关系为;(2)将图1中的△CEF绕点C逆时针旋转,旋转角为α,连接AF,BE,①若0°<α<90°,如图2,请判断线段AF与BE的数量关系并说明理;②若BC=3,CE=2,在旋转过程中,当点B,E,F三点在同一直线上时,直线BE与直线AC交于点M,请直接写出此时线段AM的长.5.已知,在矩形ABCD中,AB=6,BC=3,BD的垂直平分线EF分别交AB,CD于点E,F,垂足为O.(1)如图1,连接DE,BF.①求证:四边形DEBF为菱形;②直接写出AE的长.(2)如图2,动点P,Q分别从D,B两点同时出发,沿△DEA和△BCF各边匀速运动一周,即点P自D→E→A→D停止,点Q自B→C→F→B停止,在运动过程中,若点P,Q的运动路程分别为x,y(xy≠0),已知A,C,P,Q四点为顶点的四边形是平行四边形,请直接写出x与y满足的数量关系式.6.如图,在平面直角坐标系中,矩形AOBC在y轴上,OB在x轴上,A(0,4),OB=4,连接OC,∠COB=30°,点B作BD⊥OC,垂足为D,动点E从O点以每秒2个单位长度的速度沿OD方向匀速运动到D点为止:点F沿线段CA以每秒个单位长度的速度由点C向点A匀速运动,到点A为止,点E与点F同时出发,点F随点E停止而停止运动,设运动时间为t秒(t>0).(1)线段OD=;(2)连接EF和FD,当△DEF的面积为时,求点E的坐标;(3)在整个运动过程中,当△DEF是以DE为腰的等腰三角形时,直接写出t的值.7.如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,点P从点A出发,以2cm/s 的速度沿边AB向终点B运动,过点P作PQ⊥AB交边AC于点Q,当点Q与点C重合时,点P停止运动,点D为PQ中点,以DQ为边作正方形DEFQ,使点E与点A分别在直线PQ两侧.点P的运动时间为x(s).(1)当点Q在边AC上且不与点A重合时,正方形DEFQ的边长为cm,AQ的长为cm(用含x的代数式表示);(2)当点F落在边BC上时,求x的值;(3)当正方形DEFQ与△ABC重合部分为五边形时,请用含x的代数式直接写出此时正方形DEFQ与△ABC重合部分的面积.8.如图1所示,在Rt△ABC中,∠ACB=90°,AC=4dm,BC=3dm.已知一点Q由点A 出发沿边AC向点C匀速运动,点P由点B出发沿边BA向点A匀速运动,两点的运动速度均为1dm/s.以AQ、PQ为邻边作平行四边形AQPD,连接DQ,交边AB于点E.假设P、Q两点运动的时间为t(单位:s)(0<t<4).(1)求AE的长度;(用含有t的代数式表示)(2)当t取何值时,平行四边形AQPD为矩形?(3)如图2所示,当t取何值时,AP⊥QD?9.如图,在矩形ABCD中,AB=6cm,AD=2cm,点P以2cm/s的速度从顶点A出发沿折线A→B→C向点C运动,同时点Q以1cm/s的速度从顶点C出发沿边CD向点D运动.当其中一个动点到达末端停止运动时,另一点也停止运动.(1)两动点运动几秒,使四边形PBCQ的面积是矩形ABCD面积的?(2)是否存在某一时刻,点P与点Q之间的距离为cm?若存在,直接写出运动所需的时间为;若不存在,请说明理由.(3)直接写出PQ长度的最小值.10.如图1.在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动,连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,则t的值为;(3)如图2,过点Q作QG⊥AB,垂足为G,当t=时,四边形EPQG为矩形;(4)当t=时,△PQF为等腰三角形.11.如图是4×4的正方形网格,△ABC的三个顶点均在格点上.(1)将△ABC绕点A顺时针方向旋转90°得到△AB1C1,在图①中作出△AB1C1;(2)在图②中作格点△A2B2C2,使△A2B2C2∽△ABC,且周长比为;(3)在图③中作一个与△ABC相似且面积最大的格点△A3B3C312.如图,平面直角坐标系中,O是坐标原点,直线y=kx+15(k≠0)经过点C(3,6),与x轴交于点A,与y轴交于点B.线段CD平行于x轴,交直线y=x于点D,连接OC,AD.(1)填空:k=,点A的坐标是(,);(2)求证:四边形OADC是平行四边形;(3)动点P从点O出发,沿对角线OD以每秒1个单位长度的速度向点D运动,直到点D为止;动点Q同时从点D出发,沿对角线DO以每秒1个单位长度的速度向点O 运动,直到点O为止,设两个点的运动时间均为t秒.①当t=1时,△CPQ的面积是.②当点P,Q运动至四边形CP AQ为矩形时,请直接写出此时t的值.13.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点C移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t.(1)根据题意知:CQ=,CP=;(用含t的代数式表示)(2)t为何值时,△CPQ的面积等于△ABC面积的?(3)运动几秒时,△CPQ与△CBA相似?14.如图所示,在平面直角坐标系内,点A、B在x轴上,点C在y轴上,∠ACB=90°,AB=10,AC=8,点Q在边AB上,且AQ=2,过Q作QR⊥AB,垂足为Q,QR交折线AC﹣CB于R(如图1),当点Q以每秒2个单位向终点B移动时,点P同时从A出发,以每秒6个单位的速度沿AB﹣BC﹣CA移动,设移动时间为t秒(如图2).(1)BQ=.(用含t的代数式表示)(2)t为何值时,QP∥AC?(3)t的值=秒时,直线QR经过点P.(4)当点P在边AB上运动时,以PQ为边在AB上方所作的正方形PQMN在Rt△ABC 内部,此时的取值范围是.15.如图,直线l1:y=﹣x+4与直线l2:y=2x﹣2的图象交于点A,与x轴交于点B.(1)填空:A的坐标;B的坐标;(2)过点A作AC⊥y轴于点C,动点P从点O出发,以每秒1个单位长度的速度,沿O→C→A的路线向点A运动,同时动点Q从点B出发,以每秒个单位长度的速度.沿射线BA方向运动,过点Q作直线l∥y轴,交l2于点M.当点P到达点A时,点Q也停止运动,设动点P运动的时间为t秒,△PQM的面积为S.①当P在OC上运动时,求S与t的函数关系式(不必写出自变量的取值范围);②若S=,请直接写出此时t的值.16.如图1,在平面直角坐标系中,▱OABC的顶点A在x轴上,顶点C在正比例函数y=x上,顶点B的坐标为(m,n),且m、n满足=﹣(n﹣)2.(1)求点B、C的坐标;(2)在y轴上存在一点D,使得以O、C、D为顶点的三角形是等腰三角形,求D点的坐标;(3)如图2,∠AOC的角平分线与BC相交于点E,在OE上有一点F,连接CF,动点P从点C出发,以1个单位每秒的速度匀速运动到点F,再以2个单位每秒的速度匀速运动到点O,且到点O之后停止运动,求点P走完全程所需的最少时间,及此时EF的长.17.在平面直角坐标系中,矩形AOCE的顶点E的坐标为(8,6),连接AC,动点P从点C出发,沿CA匀速运动,动点Q从点A出发沿AO匀速运动,两点同时出发,运动速度均为每秒1个单位长度,点Q到达点O时两点同时停止运动,设运动时间为t秒(t >0),连接PQ,过点P作PG⊥PQ交OC于点G,延长GP交EC或AE于点F.(1)如图1,当PQ垂直平分GF时,求证:P A=PC;(2)如图2,当FG⊥OC时,①求证:四边形AQPF是矩形;②直接写出此时的值;(3)当点F在边CE上时,①当点F与点E重合时,直接写出点P的坐标;②若,直接写出t的值.18.如图,已知:在矩形ABCD中,AB=6cm,BC=8cm,点P从点B出发,沿BC方向匀速运动,速度为2cm/s;与点P同时,点Q从D点出发,沿DA方向匀速运动,速度为1cm/s;过点Q作QE∥AC,交DC于点E.设运动时间为t(s),(0<t<4),解答下列问题:(1)当t=时,BP长为cm,AQ长为cm;(2)在运动过程中,是否存在某一时刻t,使PQ平分∠APC?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<时,是否存在某一时刻t,使△PQE是直角三角形?若存在,直接写出t的值;若不存在,请说明理由.19.如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A 出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)20.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C 移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?。
初一路程动点问题练习题

一、直线上的动点问题1. 已知直线l:y=2x+1,动点P在直线l上,且P到点A(1,3)的距离为2,求动点P的坐标。
2. 在直线l:x+y=3上,动点P的坐标为(t,3t),求点P到原点O的距离d的表达式。
3. 直线l:y=kx+b上,动点P的坐标为(x,kx+b),若点P到点A(a,b)的距离为定值,求k和b的取值范围。
二、圆上的动点问题1. 圆O的方程为x^2+y^2=16,动点P在圆上,且OP的长度为4,求动点P的坐标。
2. 圆O的方程为x^2+y^2=9,动点P在圆上,且OP的长度为3,求动点P到圆心O的距离的最大值和最小值。
3. 圆O的方程为x^2+y^2=4,动点P在圆上,且∠AOP=60°,求点P的坐标。
三、直线与圆的位置关系1. 圆O的方程为x^2+y^2=9,直线l:y=x+1与圆O相交于A、B两点,求AB的长度。
2. 圆O的方程为x^2+y^2=16,直线l:y=x+4与圆O相切于点P,求点P的坐标。
3. 圆O的方程为x^2+y^2=25,直线l:y=2x+3与圆O相交于A、B两点,求AB的中点坐标。
四、椭圆上的动点问题1. 椭圆的方程为x^2/4+y^2/9=1,动点P在椭圆上,且∠AOP=60°,求点P的坐标。
2. 椭圆的方程为x^2/9+y^2/16=1,动点P在椭圆上,且OP的长度为5,求动点P的坐标。
3. 椭圆的方程为x^2/25+y^2/16=1,动点P在椭圆上,且∠AOP=45°,求点P的坐标。
五、双曲线上的动点问题1. 双曲线的方程为x^2/9y^2/16=1,动点P在双曲线上,且∠AOP=30°,求点P的坐标。
2. 双曲线的方程为x^2/16y^2/9=1,动点P在双曲线上,且OP的长度为10,求动点P的坐标。
3. 双曲线的方程为x^2/25y^2/36=1,动点P在双曲线上,且∠AOP=90°,求点P的坐标。
(中考数学)动点问题专题训练(含答案)

中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。
(完整版)初一上学期动点问题(含答案)

初一上学期动点问题练习1。
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数 ,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3=”14”解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2。
已知数轴上有A、B、C三点,分别表示有理数—26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36—t;(2)当16≤t≤24时PQ=t-3(t—16)=-2t+48,当24<t≤28时PQ=3(t-16)—t=2t—48,当28<t≤30时PQ=72—3(t—16)-t=120-4t,当30<t≤36时PQ=t—[72—3(t-16)]=4t-120.3。
简单动点问题专题训练(附答案)

动点问题专题训练1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒,∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点,∴5BD =厘米.又∵8PC BC BP BC =-=,厘米,∴835PC =-=厘米,∴PC BD =.又∵AB AC =,∴B C ∠=∠, ∴BPD CQP △≌△. ····················· (4分)②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t ===厘米/秒. ················· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P与点Q第一次在边AB上相遇.·········(12分)2.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ∴24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.3.(09济南)如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形 ∴3KH AD ==. ······················ 1分在Rt ABK △中,sin 454AK AB =︒== 2cos 454242BK AB =︒==················ 2分在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ············· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形∵MN AB ∥∴MN DG ∥∴3BG AD ==∴1037GC =-= ····················· 4分由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,.∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△ ∴CNCMCD CG = ······················ 5分即10257t t-=解得,5017t = ······················ 6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-∴103t = ························ 7分(图①) A D C B KH (图②)A DCB G M N②当MN NC =时,如图④,过N 作NE MC ⊥于E解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=-在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535tt -=解得258t = ······················· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠,∴NEC DHC △∽△∴NC ECDC HC =即553t t-=∴258t = ························ 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025t FC C MC t ===-解得6017t = 解法二: ∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC =即1102235tt-=A DC B M N(图③) (图④)A DCB M NH E(图⑤)A DCBH NM F∴6017 t=综上所述,当103t=、258t=或6017t=时,MNC△为等腰三角形·9分4..如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.分析:(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AO M=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题专项练习一
1、如下图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离; (2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.
①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN
△的周长;若改变,请说明理由;
②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.
A D E B
F C
4题(备用)
A
D E
B
F C
4题(备用)
A D E
B F C
图1 图2
A D E
B
F C P
N
M 图3 A D E
B
F
C
P
N
M (第25题)
2、在矩形ABCD 中,BC =20cm ,P ,Q ,M ,N 分别从A ,B ,C ,D 出发沿AD ,BC ,CB ,DA 方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ =x cm(0x ≠),则AP =2x cm ,CM =3x cm ,DN =x 2cm .
(1)当x 为何值时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边构成一个三角形;(2)当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形;
3、已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.
(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,
BPD △与CQP △是否全等,请说明理由;
②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使
BPD △与CQP △全等?
(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?
A
B
D
C
P
Q
M
N
A
Q
C
D
B
P
4、如图,在△ABC中,BC>AC,动点D绕△ABC的顶点A逆时针旋转,且AD=BC,连接DC,过AB、DC的中点E、F作直线,直线EF与直线AD、BC分别相交于点M、N (1)如图1,当点D旋转到BC的延长线上时,点N恰好与点F重合,取AC 的中点H,连结HE、HF,根据三角形中位线定理和平行线的性质,可得结论∠AMF=∠BNE.(2)当点D旋转到图2或图3中的位置时,∠AMF与∠BNE 有何数量关系?请分别写出猜想,并任选一种情况证明.
5、如图,在直角梯形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.
(1)求CD的长
(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;
(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.
6、如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm 的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,
(1)直角梯形ABCD的面积为cm2;
(2)当t= 秒时,四边形PQCD成为平行四边形?
(3)当t= 秒时,AQ=DC;
(4)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值;若不存在,说明理由.
7、如图,△ABC是边长为6的等边三角形,P 是AC边上一动点,由A向C运动(与A、C 不重
合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.
A B
C
D E R P
H Q
8、直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,已知AD =AB =3,BC =4,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M ,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒.
(1)求NC 的长(用t 的代数式表示);
(2)当t 为何值时,四边形PCDQ 构成平行四边形?
(3)是否存在某一时刻,使射线QN 恰好将△ABC 的面积和周长同时平分?若存在,求出此时t 的值;若不存在,请说明理由;(利用相似求出MC 的表达式)
9、在Rt ABC △中,90A ∠=,6AB =,∠B=60°,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于
R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的关系式;(3)是否存在点P ,使P Q R △为等腰三角形?
若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.。