动点问题专题训练

合集下载

中考动点问题专项训练(含详细解析)

中考动点问题专项训练(含详细解析)

8. 已知:如图,在平行四边形
中,
动,速度为
;点 从点 出发,沿


方向匀速运动,速度为
,点 从点 出发,沿
方向匀速运
,连接并延长
交 的延长线于点
,过 作
,垂足是 ,设运动时间为

( 1)当 为何值时,四边形
是平行四边形 ?
( 2)证明:在 , 运动的过程中,总有

( 3)是否存在某一时刻 ,使四边形
的面积为矩形
面积的 ;
( 4)是否存在某一时刻 ,使得点 在线段 的垂直平分线上.
6. 已知:如图①,在
速度为
;点
中, 由 出发沿
, 方向向点

,点
匀速运动,速度为

),解答下列问题:
由 出发沿 方向向点 匀速运动, ;连接 .若设运动的时间为
( 1)当 为何值时,
( 2)设
的面积为
? ,求 与 之间的函数关系式;
的面积是平行四边形
不存在,说明理由.
面积的一半 ?若存在,求出相应的 值;若
9. 如图,在梯形 方向向点
中,

匀速运动,速度为


;点 从点 出发,沿
, 方向向点
.点 从点 出发沿折线
匀速运动,速度为

, 同时出发,且其中任意一点到达终点,另一点也随之停止运动,设点
, 运动的时间是

第 3 页(共 19 页)
因为



所以

所以

设点 , 运动的时间是


形,


所以

解得:

动点问题练习(含答案)

动点问题练习(含答案)

动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。

当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC∴AO=12AC.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(备用图)CBAED图1NMA BCDEMACBEDNM(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠. ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值 AD FC G E B 图1 AD FG B 图3AD FC GE B 图2A D F C GB MA D FC G B N7、如图1,在等腰梯形ABCD中,AD BC∥,E是AB的中点,过点E作EF BC∥交CD于点F.46AB BC==,,60B=︒∠.求:(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM EF⊥交BC于点M,过M作MN AB∥交折线ADC 于点N,连结PN,设EP x=.①当点N在线段AD上时(如图2),P M N△的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使PMN△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由解(1)如图1,过点E作EG BC⊥于点G.∵E为AB的中点,∴122BE AB==.在Rt EBG△中,60B=︒∠,∴30BEG=︒∠.∴112BG BE EG====,A DEBFC图4(备用)A DEBFC图5(备用)A DEBFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,, ∴PM EG ∥. ∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒=. 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==. 此时,6132x EP GM BC BG MC ===--=--=.当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-= 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形.∴tan 301MC PM =︒=. 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动图3A D E BFCPN M 图4A D EBF CP MN 图5A DEBF (P ) CM NGGRG图1A D EBF CG 图2A D EBFCPNG H①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴51543Q CQ v t===厘米/秒。

初二数学动点练习题

初二数学动点练习题

初二数学动点练习题1. 直线上的动点问题- 题目:在直线AB上,点C是动点,当点C沿着直线AB移动时,求证∠ACB是一个恒定的角度。

2. 圆上的动点问题- 题目:圆O的半径为5,点P是圆上的动点。

求证:无论点P在圆上如何移动,OP的长度始终为5。

3. 动点与线段的关系- 题目:线段AB的长度为10,点C是线段AB上的动点。

当点C从A向B移动时,求线段AC的长度与线段BC的长度之和是否恒定。

4. 动点与三角形的面积- 题目:三角形ABC的面积为30平方单位,点D是边AB上的动点。

求证:无论点D在AB上如何移动,三角形ACD的面积始终是三角形ABC面积的一半。

5. 动点与平行四边形的对角线- 题目:平行四边形ABCD中,点E是边AB上的动点,点F是边CD 上的动点,且EF始终是平行四边形的对角线。

求证:无论点E和点F如何移动,EF的长度始终等于AB和CD的长度之和。

6. 动点与圆的切线- 题目:圆O的半径为6,点P是圆O外的一点,点Q是圆O上的动点。

当点Q沿着圆O移动时,求证:点P到圆O的切线长度始终等于点P到点Q的距离。

7. 动点与相似三角形- 题目:三角形ABC与三角形DEF相似,点G是三角形ABC的动点,点H是三角形DEF的动点,且GH始终是三角形ABC和三角形DEF的对应边的平行线。

求证:无论点G和点H如何移动,三角形AGH与三角形DEF始终相似。

8. 动点与坐标系- 题目:在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(5,6)。

点C是线段AB上的动点,其坐标为(x,y)。

求证:无论点C如何移动,x和y的和始终等于点A和点B坐标的和。

练习题答案提示:- 对于直线上的动点问题,可以利用角度的恒定性,结合直线的性质来证明。

- 对于圆上的动点问题,可以利用圆的半径性质来证明。

- 对于动点与线段的关系问题,可以利用线段长度的加法性质来证明。

- 对于动点与三角形的面积问题,可以利用三角形面积的计算公式来证明。

动点问题专题训练

动点问题专题训练

动点问题专题训练
1.已知△ABC 为直角三角形,AC=5,BC=12,∠ACB 为直角,P 是AB 边上的动点(与点A 、B 不重合),Q 是BC 边上动点(与点B 、C 不重合)
(1)如图,当PQ ∥AC ,且Q 为BC 的中点,求线段CP 的长。

(2)当PQ 与AC 不平行时,∆CPQ 可能为直角三角形吗?若有可能,求出线段CQ 的长的取值范围;若不可能,请说明理由。

2.如图,在Rt △ABC 中,∠B=90°,
C=30°.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(t >0).过点D 作DF ⊥BC 于点F ,连接DE 、EF.
(1)求证:AE=DF ;
(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.
(3)当t 为何值时,△DEF 为直角三角形?请说明理由.
3.如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).
(1)当MN AB ∥时,求t 的值; (2)试探究:t 为何值时,MNC △为等腰三角形.
Q P
C B
A。

初中数学几何的动点问题专题练习附答案版(供参考)

初中数学几何的动点问题专题练习附答案版(供参考)

动点问题专题训练一、如图,已知ABC==厘米,8BC=厘米,点D为AB的中点.AB AC△中,10(1)若是点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①假设点Q的运动速度与点P的运动速度相等,通过1秒后,BPD△与CQP△是不是全等,请说明理由;②假设点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与△全等?CQP(2)假设点Q以②中的运动速度从点C动身,点P以原先的运动速度从点B同时动身,都逆时针沿ABC△三边运动,求通过量长时刻点P与点Q第一次在ABC△的哪条边Array上相遇?P二、直线364y x =-+与坐标轴别离交于A B 、两点,动点P Q 、同时从O 点动身,同时抵达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿线路O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时刻为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为极点的平行四边形的第四个极点M 的坐标.3、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,现在AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,现在AD 的长为 ; (2)当90α=°时,判定四边形EDBC 是不是为菱形,并说明理由.xAO QPBy O E CDA α lOCA(备用图)4、如图,在平面直角坐标系中,直线l:y=-2x-8别离与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结P A,假设P A=PB,试判定⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为极点的三角形是正三角形?五、如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点动身沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点动身沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时刻为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探讨:t 为何值时,MNC △为等腰三角形.六、如图①,正方形 ABCD 中,点A 、B 的坐标别离为(0,10),(8,4),点C 在第一象限.动点PC在正方形 ABCD 的边上,从点A 动身沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点抵达D 点时,两点同时停止运动,设运动的时刻为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时刻t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及极点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求现在P 点的坐标;(4)若是点P 、Q 维持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 可否相等,假设能,写出所有符合条件的t 的值;假设不能,请说明理由.7、数学课上,张教师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .通过试探,小明展现了一种正确的解题思路:取AB 的中点M ,连接ME ,那么AM =EC ,易证AME ECF △≌△,因此AE EF =.在此基础上,同窗们作了进一步的研究:(1)小颖提出:如图2,若是把“点E 是边BC 的中点”改成“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你以为小颖的观点正确吗?若是正确,写出证明进程;若是不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你以为小华的观点正确吗?若是正确,写出证明进程;若是不正确,请说明理由.八、已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)假设折叠后使点B 与点A 重合,求点C 的坐标;ADFC GE B图1ADF C GE B 图2 ADFGB图3(Ⅱ)假设折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确信y 的取值范围;(Ⅲ)假设折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求现在点C 的坐标.1.解:(1)①∵1t =秒,∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米,∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,那么45BP PC CQ BD ====,, ∴点P ,点Q 运动的时刻433BP t ==秒, ∴515443Q CQ v t ===厘米/秒. ·································································· (7分) (2)设通过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴通过803秒点P 与点Q 第一次在边AB 上相遇. ········································· (12分) 2.解(1)A (8,0)B (0,6) ·············· 1分 (2)86OA OB ==, 10AB ∴=点Q 由O 到A 的时刻是881=(秒) ∴点P 的速度是61028+=(单位/秒) ·· 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = ········································································································· 1分当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ····························· 1分 21324255S OQ PD t t ∴=⨯=-+ ······································································ 1分(自变量取值范围写对给1分,不然不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ···························································································· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ···················································· 3分3.解:(1)⊙P 与x 轴相切.∵直线y =-2x -8与x 轴交于A (4,0),与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =P A =8+k .在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P在线段OB 上时,作PE ⊥CD 于E .∵△PCD 为正三角形,∴DE =12CD =32,PD =3, ∴PE 33. ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE , ∴△AOB ∽△PEB ,∴332,45AO PE AB PB PB =即, ∴315PB =∴3158PO BO PB =-= ∴3158)P -, ∴3158k =. 当圆心P 在线段OB 延长线上时,同理可得P (0,315-8), ∴k =315-8,∴当k=315-8或k=-315-8时,以⊙P与直线l的两个交点和圆心P为极点的三角形是正三角形.4.5.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅, 即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 现在∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.现在∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 运动,DE 通过点C .连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 通过点C ,如图7. 22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6.解(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC //ED .∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC ∴AO =12AC ……………………8分P图4图5在Rt △AOD 中,∠A =300,∴AD =2. ∴BD =2. ∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7.解:(1)如图①,过A 、D 别离作AK BC ⊥于K ,DH BC ⊥于H ,那么四边形ADHK 是矩形∴3KH AD ==. ················································································ 1分 在Rt ABK △中,sin 4542AK AB =︒==.2cos 454242BK AB =︒== ·························································· 2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ················································· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,那么四边形ADGB 是平行四边形∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ············································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG = ··················································································· 5分 即10257t t -= 解得,5017t = ···················································································· 6分(3)分三种情形讨论:①当NC MC =时,如图③,即102t t =- ∴103t =·························································································· 7分 (图①) A D C B K H (图②) A D C B G MNADNAD N②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ······················································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC =即553t t -= ∴258t = ·························································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方式同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC = 即1102235tt -= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ··············· 9分(图⑤)A DCBH N MF8.解(1)如图1,过点E 作EG BC ⊥于点G . ··················· 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ··········· 2分∴112BG BE EG ====, 即点E 到BC····································· 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ················································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ······································ 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,那么MR NR =.类似①,32MR =. ∴23MN MR ==.··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.现在,6132x EP GM BC BG MC ===--=--=. ··································· 8分当MP MN=时,如图4,这时MC MN MP ===现在,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF (P ) CMN GGRG图1A D E BF CG图2A D EBF CPNMG H则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=.现在,6114x EP GM ===--=.综上所述,当2x =或4或(5-时,PMN △为等腰三角形. ···················· 10分 9解:(1)Q (1,0) ····················································································· 1分 点P 运动速度每秒钟1个单位长度. ································································ 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,那么BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB中,10AB == 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MP AB AF BF ==. 1068t AM MP∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==.设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) ················································ 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. ························· 6分 现在P 的坐标为(9415,5310) . ····································································· 7分 (4) 当 53t =或29513t =时, OP 与PQ 相等. ················································ 9分10.解:(1)正确. ················································ (1分) 证明:在AB 上取一点M ,使AM EC =,连接ME . (2分) BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线, 45DCF ∴∠=°, 135ECF ∴∠=°. AME ECF ∴∠=∠.A DF CGEBM90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ··································································· (5分) AE EF ∴=. ························································································· (6分) (2)正确. ····················································· (7分)证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . ·································· (8分) BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠.NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ·································································· (10分) AE EF ∴=. (11分)11.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ·················································································· 4分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···························································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,A D F GB Ny ∴的取值范围为322y ≤≤. ····································································· 7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB''=,得2OC OB ''=. ·································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,那么02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ···································································· 10分。

动点问题练习题

动点问题练习题

动点问题一.填空题(共2小题)1.如图,在矩形ABCD中,AB=6,AD=8,P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足分别为E,F,则PE+PF=.2.如图,在Rt△ABC中,∠C=90°,AC=5cm,BC=3cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm 的速度向终点C运动.设点P运动的时间为t秒,当△PBQ是直角三角形时,t的值为.二.解答题(共18小题)3.如图,直线y=x+4与x轴交于点A,与y轴交于点B,以线段AB为一边,在第二象限内作正方形ABCD.(1)求线段AB的长;(2)求点D的坐标;(3)点E在x轴上,将点E沿x轴向右平移3个单位得到点F,连接DE,BF,请直接写出四边形BDEF周长的最小值.4.(1)如图1,在△ABC中,∠ACB=90°,∠A=30°,点E,F分别是边BC,AC上的点,且EF∥AB,线段CF与线段CE的数量关系为;(2)将图1中的△CEF绕点C逆时针旋转,旋转角为α,连接AF,BE,①若0°<α<90°,如图2,请判断线段AF与BE的数量关系并说明理;②若BC=3,CE=2,在旋转过程中,当点B,E,F三点在同一直线上时,直线BE与直线AC交于点M,请直接写出此时线段AM的长.5.已知,在矩形ABCD中,AB=6,BC=3,BD的垂直平分线EF分别交AB,CD于点E,F,垂足为O.(1)如图1,连接DE,BF.①求证:四边形DEBF为菱形;②直接写出AE的长.(2)如图2,动点P,Q分别从D,B两点同时出发,沿△DEA和△BCF各边匀速运动一周,即点P自D→E→A→D停止,点Q自B→C→F→B停止,在运动过程中,若点P,Q的运动路程分别为x,y(xy≠0),已知A,C,P,Q四点为顶点的四边形是平行四边形,请直接写出x与y满足的数量关系式.6.如图,在平面直角坐标系中,矩形AOBC在y轴上,OB在x轴上,A(0,4),OB=4,连接OC,∠COB=30°,点B作BD⊥OC,垂足为D,动点E从O点以每秒2个单位长度的速度沿OD方向匀速运动到D点为止:点F沿线段CA以每秒个单位长度的速度由点C向点A匀速运动,到点A为止,点E与点F同时出发,点F随点E停止而停止运动,设运动时间为t秒(t>0).(1)线段OD=;(2)连接EF和FD,当△DEF的面积为时,求点E的坐标;(3)在整个运动过程中,当△DEF是以DE为腰的等腰三角形时,直接写出t的值.7.如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,点P从点A出发,以2cm/s 的速度沿边AB向终点B运动,过点P作PQ⊥AB交边AC于点Q,当点Q与点C重合时,点P停止运动,点D为PQ中点,以DQ为边作正方形DEFQ,使点E与点A分别在直线PQ两侧.点P的运动时间为x(s).(1)当点Q在边AC上且不与点A重合时,正方形DEFQ的边长为cm,AQ的长为cm(用含x的代数式表示);(2)当点F落在边BC上时,求x的值;(3)当正方形DEFQ与△ABC重合部分为五边形时,请用含x的代数式直接写出此时正方形DEFQ与△ABC重合部分的面积.8.如图1所示,在Rt△ABC中,∠ACB=90°,AC=4dm,BC=3dm.已知一点Q由点A 出发沿边AC向点C匀速运动,点P由点B出发沿边BA向点A匀速运动,两点的运动速度均为1dm/s.以AQ、PQ为邻边作平行四边形AQPD,连接DQ,交边AB于点E.假设P、Q两点运动的时间为t(单位:s)(0<t<4).(1)求AE的长度;(用含有t的代数式表示)(2)当t取何值时,平行四边形AQPD为矩形?(3)如图2所示,当t取何值时,AP⊥QD?9.如图,在矩形ABCD中,AB=6cm,AD=2cm,点P以2cm/s的速度从顶点A出发沿折线A→B→C向点C运动,同时点Q以1cm/s的速度从顶点C出发沿边CD向点D运动.当其中一个动点到达末端停止运动时,另一点也停止运动.(1)两动点运动几秒,使四边形PBCQ的面积是矩形ABCD面积的?(2)是否存在某一时刻,点P与点Q之间的距离为cm?若存在,直接写出运动所需的时间为;若不存在,请说明理由.(3)直接写出PQ长度的最小值.10.如图1.在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动,连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,则t的值为;(3)如图2,过点Q作QG⊥AB,垂足为G,当t=时,四边形EPQG为矩形;(4)当t=时,△PQF为等腰三角形.11.如图是4×4的正方形网格,△ABC的三个顶点均在格点上.(1)将△ABC绕点A顺时针方向旋转90°得到△AB1C1,在图①中作出△AB1C1;(2)在图②中作格点△A2B2C2,使△A2B2C2∽△ABC,且周长比为;(3)在图③中作一个与△ABC相似且面积最大的格点△A3B3C312.如图,平面直角坐标系中,O是坐标原点,直线y=kx+15(k≠0)经过点C(3,6),与x轴交于点A,与y轴交于点B.线段CD平行于x轴,交直线y=x于点D,连接OC,AD.(1)填空:k=,点A的坐标是(,);(2)求证:四边形OADC是平行四边形;(3)动点P从点O出发,沿对角线OD以每秒1个单位长度的速度向点D运动,直到点D为止;动点Q同时从点D出发,沿对角线DO以每秒1个单位长度的速度向点O 运动,直到点O为止,设两个点的运动时间均为t秒.①当t=1时,△CPQ的面积是.②当点P,Q运动至四边形CP AQ为矩形时,请直接写出此时t的值.13.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点C移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t.(1)根据题意知:CQ=,CP=;(用含t的代数式表示)(2)t为何值时,△CPQ的面积等于△ABC面积的?(3)运动几秒时,△CPQ与△CBA相似?14.如图所示,在平面直角坐标系内,点A、B在x轴上,点C在y轴上,∠ACB=90°,AB=10,AC=8,点Q在边AB上,且AQ=2,过Q作QR⊥AB,垂足为Q,QR交折线AC﹣CB于R(如图1),当点Q以每秒2个单位向终点B移动时,点P同时从A出发,以每秒6个单位的速度沿AB﹣BC﹣CA移动,设移动时间为t秒(如图2).(1)BQ=.(用含t的代数式表示)(2)t为何值时,QP∥AC?(3)t的值=秒时,直线QR经过点P.(4)当点P在边AB上运动时,以PQ为边在AB上方所作的正方形PQMN在Rt△ABC 内部,此时的取值范围是.15.如图,直线l1:y=﹣x+4与直线l2:y=2x﹣2的图象交于点A,与x轴交于点B.(1)填空:A的坐标;B的坐标;(2)过点A作AC⊥y轴于点C,动点P从点O出发,以每秒1个单位长度的速度,沿O→C→A的路线向点A运动,同时动点Q从点B出发,以每秒个单位长度的速度.沿射线BA方向运动,过点Q作直线l∥y轴,交l2于点M.当点P到达点A时,点Q也停止运动,设动点P运动的时间为t秒,△PQM的面积为S.①当P在OC上运动时,求S与t的函数关系式(不必写出自变量的取值范围);②若S=,请直接写出此时t的值.16.如图1,在平面直角坐标系中,▱OABC的顶点A在x轴上,顶点C在正比例函数y=x上,顶点B的坐标为(m,n),且m、n满足=﹣(n﹣)2.(1)求点B、C的坐标;(2)在y轴上存在一点D,使得以O、C、D为顶点的三角形是等腰三角形,求D点的坐标;(3)如图2,∠AOC的角平分线与BC相交于点E,在OE上有一点F,连接CF,动点P从点C出发,以1个单位每秒的速度匀速运动到点F,再以2个单位每秒的速度匀速运动到点O,且到点O之后停止运动,求点P走完全程所需的最少时间,及此时EF的长.17.在平面直角坐标系中,矩形AOCE的顶点E的坐标为(8,6),连接AC,动点P从点C出发,沿CA匀速运动,动点Q从点A出发沿AO匀速运动,两点同时出发,运动速度均为每秒1个单位长度,点Q到达点O时两点同时停止运动,设运动时间为t秒(t >0),连接PQ,过点P作PG⊥PQ交OC于点G,延长GP交EC或AE于点F.(1)如图1,当PQ垂直平分GF时,求证:P A=PC;(2)如图2,当FG⊥OC时,①求证:四边形AQPF是矩形;②直接写出此时的值;(3)当点F在边CE上时,①当点F与点E重合时,直接写出点P的坐标;②若,直接写出t的值.18.如图,已知:在矩形ABCD中,AB=6cm,BC=8cm,点P从点B出发,沿BC方向匀速运动,速度为2cm/s;与点P同时,点Q从D点出发,沿DA方向匀速运动,速度为1cm/s;过点Q作QE∥AC,交DC于点E.设运动时间为t(s),(0<t<4),解答下列问题:(1)当t=时,BP长为cm,AQ长为cm;(2)在运动过程中,是否存在某一时刻t,使PQ平分∠APC?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<时,是否存在某一时刻t,使△PQE是直角三角形?若存在,直接写出t的值;若不存在,请说明理由.19.如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A 出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)20.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C 移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?。

(中考数学)动点问题专题训练(含答案)

(中考数学)动点问题专题训练(含答案)

中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。

中考数学总复习《动点问题》专项提升训练(带答案)

中考数学总复习《动点问题》专项提升训练(带答案)

中考数学总复习《动点问题》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________例题1.如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A﹣B﹣C向终点C运动;点N以每秒1个单位长度沿线段AD向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是()A B C D解:连接BD,过B作BE⊥AD于E,当0≤x<2时,点M在AB上在菱形ABCD中,∠A=60°,AB=4∴AB=AD∴△ABD是等边三角形∴AE=ED=12AD=2,BE=√3AE=2√3∵AM=2x,AN=x∴AMAN=ABAE=2∵∠A=∠A∴△AMN∽△ABE∴∠ANM=∠AEB=90°∴MN=√AM2−AN2=√3xx×√3x=√32x2∴y=12当2≤x≤4时,点M在BC上y=12AN⋅BE=12x×2√3=√3x综上所述,当0≤x<2时的函数图象是开口向上的抛物线的一部分,当2≤x≤4时,函数图象是直线的一部分故选:A.2.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,P A﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC=.解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用两点之间线段最短,得到P A﹣PE≤AE.∴y的最大值为AE∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25设BE的长度为t则AB=t+1∴(t+1)2+t2=25即:t2+t﹣12=0∴(t+4)(t﹣3)=0解得t=﹣4或t=3由于t>0∴t=3∴AB=t+2=3+2=5,AD=BC=3×2=6.故答案为:6.3.如图①,在△ABC中,AB=AC,AD⊥BC于点D(BD>AD),动点P从B点出发,沿折线BA→AC方向运动,运动到点C停止,设点P的运动路程为x,△BPD的面积为y,y与x的函数图象如图②,则BC的长为.解:由题意得:AB+AC=2√13,△ABD的面积=3∵AB=AC∴AB=AC=√13∵AD⊥BC∴∠ADB=90°,BC=2BD∴AD2+BD2=AB2∴AD2+BD2=13∵△ABD的面积=3∴12AD•BD=3∴AD•BD=6∴(AD+BD)2=AD2+2BD•AD+BD2=13+2×6=25∴AD+BD=5或AD+BD=﹣5(舍去)∵AD2+BD2=AB2∴BD2+(5﹣BD)2=13∴BD=2或BD=3当BD=2时,AD=5﹣BD=3(舍去)当BD=3时,AD=5﹣BD=2∴BC=2BD=6故答案为:6.4.如图,在平面直角坐标系中,菱形AOCB的边OC在x轴上,∠AOC=60°,OC的长是一元二次方程x2﹣4x﹣12=0的根,过点C作x轴的垂线,交对角线OB于点D,直线AD分别交x轴和y 轴于点F和点E,动点M从点O以每秒1个单位长度的速度沿OD向终点D运动,动点N从点F 以每秒2个单位长度的速度沿FE向终点E运动.两点同时出发,设运动时间为t秒.(1)求直线AD的解析式;(2)连接MN,求△MDN的面积S与运动时间t的函数关系式;(3)点N在运动的过程中,在坐标平面内是否存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形.若存在,直接写出点Q的坐标,若不存在,说明理由.(1)解:解方程x2﹣4x﹣12=0得:x1=6,x2=﹣2∴OC=6∵四边形AOCB是菱形,∠AOC=60°∴OA=OC=6,∠BOC=1∠AOC=30°2∴CD=OC•tan30°=6×√3=2√33∴D(6,2√3)过点A作AH⊥OC于H∵∠AOH=60°OA=3,AH=OA•sin60°=6×√32=3√3∴OH=12∴A(3,3√3)设直线AD的解析式为y=kx+b(k≠0)代入A(3,3√3),D(6,2√3)得:{3k+b=3√36k+b=2√3解得:{k=−√3 3b=4√3∴直线AD的解析式为y=−√33x+4√3;(2)解:由(1)知在Rt△COD中,CD=2√3,∠DOC=30°∴OD=2CD=4√3,∠EOD=90°﹣∠DOC=90°﹣30°=60°∵直线y=−√33x+4√3与y轴交于点E∴OE=4√3∴OE=OD∴△EOD是等边三角形∴∠OED=∠EDO=∠BDF=60°,ED=OD=4√3∴∠OFE=30°=∠DOF∴DO=DF=4√3①当点N在DF上,即0≤t≤2√3时由题意得:DM=OD−OM=4√3−t,DN=4√3−2t过点N作NP⊥OB于P则NP=DN×sin∠PDN=DN×sin60°=(4√3−2t)×√32=6−√3t∴S=12DM×NP=12(4√3−t)×(6−√3t)=√32t2﹣9t+12√3;②当点N在DE上,即2√3<t≤4√3时由题意得:DM=OD﹣OM=√3−t,DN=2t﹣4√3过点N作NT⊥OB于T则NT =DN •sin ∠NDT =DN •sin60°=(2t ﹣4√3)×√32=√3t −6 ∴S =12DM ⋅NT =12(4√3−t)(√3t −6)=−√32t 2+9t −12√3; 综上,S ={√32t 2−9t +12√3(0≤t ≤2√3)−√32t 2+9t −12√3(2√3<t ≤4√3);(3)解:存在,分情况讨论:①如图,当AN 是直角边时,则CN ⊥EF ,过点N 作NK ⊥CF 于K∵∠NFC =30° OE =4√3 ∴∠NCK =60° OF =√3OE =12 ∴CF =12﹣6=6 ∴CN =12CF =3∴CK =CN ×cos60°=3×12=32 NK =CN ×sin60°=3×√32=3√32 ∴将点N 向左平移32个单位长度,再向下平移3√32个单位长度得到点C ∴将点A 向左平移32个单位长度,再向下平移3√32个单位长度得到点Q∵A(3,3√3) ∴Q (32,3√32); ②如图,当AN 是对角线时,则∠ACN =90°,过点N 作NL ⊥CF 于L∵OA =OC ,∠AOC =60° ∴△AOC 是等边三角形 ∴∠ACO =60°∴∠NCF=180°﹣60°﹣90°=30°=∠NFC∴CL=FL=12CF=3∴NL=CL•tan30°=3×√33=√3∴将点C向右平移3个单位长度,再向上平移√3个单位长度得到点N ∴将点A向右平移3个单位长度,再向上平移√3个单位长度得到点Q ∵A(3,3√3)∴Q(6,4√3);∴存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形,点Q的坐标是(32,3√32)或(6,4√3).练习题1.如图1,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP 长与运动时间t(单位:s)的关系如图2,则AC的长为()A.15√52B.√427C.17D.5√32.如图1,正方形ABCD的边长为4,E为CD边的中点.动点P从点A出发沿AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,线段PE的长为y,y与x的函数图象如图2所示,则点M的坐标为()A.(4,2√3)B.(4,4)C.(4,2√5)D.(4,5)3.如图,在正方形ABCD中,AB=4,动点M,N分别从点A,B同时出发,沿射线AB,射线BC 的方向匀速运动,且速度的大小相等,连接DM,MN,ND.设点M运动的路程为x(0≤x≤4),△DMN的面积为S,下列图象中能反映S与x之间函数关系的是()A B C D4.如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A B C D5.如图,四边形ABCD中,已知AB∥CD,AB与CD之间的距离为4,AD=5,CD=3,∠ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ 的面积为y,则能反映y与x之间函数关系的图象是()A B C D6.如图(1),在平面直角坐标系中,矩形ABCD在第一象限,且BC∥x轴,直线y=2x+1沿x轴正方向平移,在平移过程中,直线被矩形ABCD截得的线段长为a,直线在x轴上平移的距离为b,a、b间的函数关系图象如图(2)所示,那么矩形ABCD的面积为.7.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点P是平面内一个动点,且AP=3,Q 为BP的中点,在P点运动过程中,设线段CQ的长度为m,则m的取值范围是.8.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.=48cm2;③当14<t<22时,y 给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.9.如图,在平面直角坐标系中,点A的坐标为(9,0),点C的坐标为(0,3),以OA,OC为边作矩形OABC.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,求AC•EF的值.10.在平面直角坐标系中,O为原点,菱形ABCD的顶点A(√3,0),B(0,1),D(2√3,1),矩形EFGH的顶点E(0,12),F(−√3,12),H(0,32).(1)填空:如图①,点C的坐标为点G的坐标为;(2)将矩形EFGH沿水平方向向右平移,得到矩形E′FG′H′,点E,F,G,H的对应点分别为E′,F′,G′,H′,设EE′=t,矩形E′F′G′H′与菱形ABCD重叠部分的面积为S.①如图②,当边E′F′与AB相交于点M、边G′H′与BC相交于点N,且矩形E′F′G′H′与菱形ABCD重叠部分为五边形时,试用含有t的式子表示S,并直接写出t的取值范围;②当2√33≤t≤11√34时,求S的取值范围(直接写出结果即可).11.已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求CFBG的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.12.已知四边形ABCD是边长为1的正方形,点E是射线BC上的动点,以AE为直角边在直线BC 的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图,若点E在线段BC上运动,EF交CD于点P,AF交CD于点Q,连接CF 时,求线段CF的长;①当m=13②在△PQE中,设边QE上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过BC的中点且垂直于BC的直线被等腰直角三角形AEF截得的线段长为y,请直接写出y 与m的关系式.参考答案1.C.2.C.3.A.4.A.5.B.6.8.7.72≤m≤132.8.①③⑤.9.30.10.(1)(√3,2)(−√3,32);(2)当2√33≤t≤11√34时,则√316≤S≤√3.11.(1)√2;(2)BE=2MN MN⊥BE (3)9π.12.(1)①√23;②h=﹣m2+m=﹣(m−12)2+14,∴m=12时,h最大值是14;(2)y={1−12m−1−m2(1+m)+m2(0≤m≤12) 1+m22m2+2m(m>12).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点问题专题训练1、如图,在直角梯形ABCD 中AB ∥CD, AD⊥CD, AB=8, CD=12, AD=3,动点P 从点C 出发,以每秒2个单位的速度匀速向点D 运动,动点Q 从点A 出发,以每秒1个单位的速度匀速向点B 运动.设P 、Q 同时出发,运动时间为t ,请回答下列问题:(1) t 为何值时,四边形PQBC 为平行四边形 (2) t 为何值时,四边形PQBC 为等腰梯形(3) t 为何值时,四边形PQBC 为菱形若不能,怎样改变Q 点的速度使四边形PQBC 为菱形. (4) 】(5)t 为何值时,PQ 将梯形ABCD 的面积平分(6) t 为何值时,PQ 将梯形ABCD 的周长平分(7) PQ 能否将梯形ABCD 的面积、周长同时平分改变Q 点的速度后能否平分 (8) 连接DQ, t 为何值时△DPQ 是直角三角形 (9) t 为何值时△DPQ 是等腰三角形 (10) △DPQ 能否成为等边三角形(11) 连接AC 交PQ 于M,点M 的位置是否随着PQ 的运动而改变位置 (12) 求出△AQM 的面积S 与t 的函数关系式. (13) t 为何值时PQ ⊥AC (14) t 为何值时DQ ⊥AC2、如图,在等边△ABC 中,已知AB =BC =CA =4cm ,AD ⊥BC 于D ,点P 、Q 分别从B 、C 两点同时出发,其中点P 沿BC 向终点C 运动,速度为1cm/s ;点P 沿CA 、AB 向终点B 运动,速度为2cm/s ,设它们运动的时间为x(s)。

⑴ x 为何值时,PQ ⊥AC ; \⑵ 设△PQD 的面积为y ,当0<x <2时,求y 与x 的函数关系式;最值3) 当0<x <2时,求证:AD 平分△PQD 的面积; 4) x 为何值时,ABDQ 是等腰梯形。

5) x 为何值时,PBQ 是正三角形6) x 为何值时,PDQ 的面积是ABC 的一半。

(或直角三角形) 7) x 为何值时,AC ∥PQ8) 探索以PQ 为直径的圆与AC 的位置关系。

请写出相应位置关系的x 的取值范围。

ACQA 》9)能否通过改变Q 的运动速度,实现上述的不可能情况 请尝试》3、已知:如图2,等边三角形ABC 的边长为6,点D ,E 分别在边AB ,AC 上,且AD =AE =2.若点F 从点B 开始以每秒1个单位长的速度沿射线BC 方向运动,设点F 运动的时间为t 秒.当t >0时,直线FD 与过点A 且平行于BC 的直线相交于点G ,GE 的延长线与BC 的延长线相交于点H ,AB 与GH 相交于点O . (1)设△EGA 的面积为S ,写出S 与t 的函数关系式; (2)当t 为何值时,AB ⊥GH ;(3)请你证明△GFH 的面积为定值;(4)当t 为何值时,点F 和点C 是线段BH 的三等分点.4、如图3,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21.动点P 从点D 出发,沿射线DA 的方向以每秒2个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动.设运动时间为t (秒).(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式; "(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形(3)当线段PQ 与线段AB 相交于点O ,且2AO =OB 时,求∠BQP 的正切值; (4)是否存在时刻t ,使得PQ ⊥BD 若存在,求出t 的值;若不存在,请说明理由.—图2 B C DP 】Q 图35、已知Rt △AOB 中,∠AOB =90°,OA =3厘米,OB =4厘米,以O 为坐标原点建立如图所示的直角坐标系。

设P 、Q 分别为AB 、OB 边上的动点,它们同时分别从点A 、O 向B 点匀速运动,运动速度都是1厘米/秒。

设P 、Q 运动时间为t 秒(0≤t ≤4) ((1)用t 表示P 点的坐标为 ;(2)求△OPQ 的面积S (cm 2)与运动时间t (秒)之间的函数关系式;并求出当t 为何值时,S 有最大值S 的最大值是多少 (3)当t 为何值时,△OPQ 为直角三角形 6、如图5,梯形ABCD 中,AD ∥BC ,∠B =90°,AD =3,BC =6,tan ∠C =34,与BC 平行的一条动直线交线段AB 于E ,交线段DC 于F ,设AE =x . (1)当x 为何值时,直线EF 将梯形ABCD 的周长分成相等的两部分(2)过点F 作FG ⊥BC 于G ,设四边形EBGF 的面积为y ,试求y 与x 之间的函数关系式;并说明当x 为何值时,四边形EBGF 的面积最大最大面积是多少(3)当x 为何值时,四边形EBGF 成正方形; (4)连结BF ,当x 为何值时,BF ⊥CD .$7、已知BD 是矩形ABCD 的对角线,AB =20厘米,BC =40厘米.点P 、Q 同时从点A 出发,分别以2厘米/秒、4厘米/秒的速度由A →B →C →D →A 的方向在矩形边上运动,只要Q 点回到点A ,运动全部停止.设运动时间为t 秒. (1)当点P 运动在AB (含B 点)上,点Q 运动在BC (含B 、C 点)上时, ①设PQ 的长为y ,求y 关于时间t 的函数关系式,并写出t 的取值范围 ②当t 为何值时,△DPQ 是等腰三角形(2)在P 、Q 的整个运动过程中,分别判断下列两种情形是否存在如果存在,请求出t 的值;如果不存在,请说明理由.①PQ 与BD 平行; ②PQ 与BD 垂直.厘AB C,DE FG 图5AB P #Q8、如图,在直角坐标系中,O 是原点,A 、B 、C 三点的坐标分别为A (18,0),B (18,6),C (8,6),四边形OABC 是梯形,点P 、Q 同时从原点出发,分别坐匀速运动,其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B 运动,当这两点有一点到达自己的终点时,另一点也停止运动。

⑴ 求出直线OC 的解析式及经过O 、A 、C 三点的抛物线的解析式。

⑵ 试在⑴中的抛物线上找一点D ,使得以O 、A 、D 为顶点的三角形与△AOC 全等,请直接写出点D 的坐标。

⑶ 设从出发起,运动了t 秒。

如果点Q 的速度为每秒2个单位,试写出点Q 的坐标,并写出此时t 的取值范围。

!⑷ 设从出发起,运动了t 秒。

当P 、Q 两点运动的路程之和恰好等于梯形OABC 的周长的一半,这时,直线PQ 能否把梯形的面积也分成相等的两部分,如有可能,请求出t 的值;如不可能,请说明理由。

:9、如图,在△ABC 中,∠ACB=90°AC=BC=6㎝,正方形DEFG 的边长为2㎝,其一边EF 在BC 所在的直线L 上,开始时点F 与点C 重合,让正方形DEFG 沿直线L 向右以每秒1㎝的速度作匀速运动,最后点E 与点B 重合.⑴请直接写出该正方形运动6秒时与△ABC 重叠部分面积的大小; &⑵设运动时间为x (秒),运动过程中正方形DEFG 与△ABC 重叠部分的面积为y (㎝2).①在该正方形运动6秒后至运动停止前这段时间内,求y 与x 之间的函数关系式;②在该正方形整个运动过程中,求当x 为何值时,y=21.…A C BE DG (F ) L10、如图1,在矩形ABCD 中,AB =20 cm ,BC =4 cm ,点P 从A 开始沿折线A —B —C —D 以4 cm / s 的速度移动,点Q 从C 开始沿CD 边以1 cm / s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动.设运动时间为t (s ).(1) t 为何值时,四边形APQD 为矩形(2) 如图2,如果⊙P 和⊙Q 的半径都是2 cm ,那么t 为何值时,⊙P 和⊙Q 外切 `@11、如图,矩形ABCD 表示一薄卡片,AB =20cm ,BC =16cm ,点M 在BC 边上,沿DM 折叠,使点C 落在点N 处,设CM =xcm ,四边形DNMC 的面积为ycm 2(1)求y 与x 的函数关系式,并指出自变量x 的取值范围。

(2)某同学在小制作活动中,要剪取形如四边形DNMC 的轴对称图形。

①若不允许拼接,则四边形DNMC 的面积最大是多少此时M 点距C 多远 ②若允许拼接,如何操作四边形DNMC 的最大面积是多少(3)当x =12时,试确定点N 到AB 的距离NP 的值(保留2位小数)。

12、如图1和图2所示,在梯形ABCD 中,AB ∥CD ,∠D =90°,∠BCD =45°,AB =3,CD =6,点E 是BC 的中点,点F 是一动点,从点D 开始以每秒一个单位长的速度沿射线DC 的方向运动,运行时间为t ,连结FE ,(1)是否存在t 的值,使得EF ⊥BD ,如果存在求出t 的值,如果不存在,请说明理由;(2)当FE 的延长线AB 交于点G ,与BD 交于点H 时,是否存在t 的值,使得BH ∶HD =1∶4,如果存在,求出t 的值,如果不存在,请说明理由; —(3)是否存在t 值,使得△DEF 为等腰三角形,如果存在,求出t 的值,如果不存在,请说明理由.13、如图1,Rt △PMN 中,∠P =90°,PM =PN ,MN =8cm ,矩形ABCD 的长和宽分别为8cm 和2cm ,C 点和M 点重合,BC 和MN 在一条直线上。

令Rt △PMN 不动,矩形ABCD 沿MN 所在直线向右以每秒1cm 的速度移动(如图2),直到C 点与N 点重合为止。

设移动x 秒后,矩形ABCD 与△PMN 重叠部分的面积为y 2cm 。

求y 与x 之间的函数关系式。

F C D ABE 45°F C—AG BE H 45°图1 图2。

相关文档
最新文档